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Abstract. A general non-stationary point process whose intensity function is given
up to an unknown numerical factor A is considered. As an alternative to the con-
ventional estimator of A based on counting the points, we consider general linear
unbiased estimators of )\ given by sums of weights associated with individual points.
A necessary and sufficient condition for a linear, unbiased estimator for the intensity
A to have the minimum variance is determined. It is shown that there are “nearly”
no other processes than Poisson and Cox for which the unweighted estimator of A,
which counts the points only, is optimal. The properties of the optimal estimator are
illustrated by simulations for the Matérn cluster and the Matérn hard-core processes.
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1. Introduction

A typical task of spatial statistic is to study properties of estimators of parameters of
point processes. One of the most important parameters of a point process is its intensity.
In this work we consider a point process ® with a known non-stationary structure. It
means that the intensity measure of ® has the form

A(B) = /B My(z)dz,

where A is unknown and ~(x) is a known function that determines the non-stationary
structure of ®. ® is said to be a process with unknouwn scaling.

If v(z) is constant, then @ is stationary. To prevent the over-parametrisation of the
model, assume that [, y(z)dz = |W|, where W C R? is the observation window and
|W| is the d-dimensional Lebesgue measure of W.

Processes with unknown scaling are important itself but even more because they
are related to stationary processes of compact sets with a known distribution of primary
grain, see Stoyan et al. (1995), Molchanov (1997). In fact the reference points of compact
sets which hit the observation window form a process with unknown scaling where the
function v may be computed from the distribution of the primary grain.
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There are various estimators of the intensity A. One often used is

5 _ W)

(1.1) A W
where ®(W) denotes the number of points of & in W. The estimator N is strongly
consistent as W T R? if the process ® is ergodic. Other estimators based on the interpoint
distance method are discussed in Byth (1982) and Diggle (1983). An estimation method
in which a fraction of the points is independently marked (and thus counted) followed
by consideration of the ranks of the nearest marked point is described by Sarkka (1992).

In this work we consider a family of unbiased estimators (called first order or linear,
unbiased estimators)

(1.2) =Y f@),

zedNW

where f: W — R is a weight function. Condition
[ fanes =1
w

ensures that A is unbiased. The estimator (1.1) corresponds to f(z) = |W|™".

An important task is to compare the existing estimators and find an optimal estima-
tor. For stationary Poisson and mixed Poisson processes (Stoyan et al. (1995)) the exact
likelihood is available and the maximum likelihood estimator and the minimum variance
unbiased estimator is A. However for other more complicated processes the problem of
determining the best estimator is still open.

In Section 2 we find a necessary and sufficient condition on f for estimator (1.2)
to have the minimal variance among all linear, unbiased estimators. Then the question,
when the common constant estimator A given by (1.1) is optimal, is discussed. It is shown
that X is a minimum variance unbiased estimator for non-stationary Poisson and mixed
Poisson point processes and that there are “nearly” no other processes than Poisson and
Cox for which A is optimal. In Section 3 we present simulation studies which compare
the constant estimator with the optimal one.

2. Necessary and sufficient condition for optimal estimator

Assume that the process @ is a second-order point process in R?. Let u(®(d(z,y))
(respectively a® (d(x,y))) denote the second-order moment (respectively factorial mo-
ment) measure of ®. Let Fp be the family of real-valued measurable functions on W
such that

Ja(f) = /wa 1(@) F()u® (d(z,y)) < oo.

Furthermore, let

Go

{f € Fsp: /W flx)y(z)dz = 1}

Ho={seFu: [ fonis- o}

and
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The variance of Xf is Var(Xf) = Js(f) — A2, where
kU)=%%Wf@Mwme@w»
zxﬁgﬂmﬂmm+ﬂwwﬂwﬂwﬁmaawy

The aim is to minimize the variance of the estimator given by (1.2) for f € Gs.
Then minimisation of Var(As) corresponds to minimisation of the functional Jg(f) over

f € Go. Note that Js(f) is a non-negative definite bilinear form hence it is convex on
Fo.

LEMMA 2.1. Let ® be a second-order point process. The directional derivative
8Ja(f,v) of Jo(f) at f € Fe in the direction v € Fg exists, is finite and is given by

6Jq>(f,v)=2/

W x

F(@)v(y)u® (d(z,y)).
w

PrOOF. The definition of the directional derivative (Zeidler (1986)) yields

0

610(1.0) = 5 [ (1) + (@) ) + ol d(z.v)

=2 /WXW F(@)o(y)u® (d(z,y)).

e=0

It suffices to prove that 6Js(f,v) is finite for every f,v € Fg. The Schwartz in-
equality and Campbell’s theorem yield

/waf(w)v(y)u(”(d(w,y)) =E !Z > f(:ri)v(yj)} =E [Z IHERDY v(yj)}

z, €Dy ed z,€® y; €9
) o\ 1/2
<2|E [Z f(xi)} E !Z 'U(yj)]
z; €D y; €P
= (Jo(f)Je(v))"/? < oo. O

The following lemma provides a factorisation of the second-order factorial moment
measure into the Lebesgue measure and the kernel K, (dy) which is non-stationary version
of the second reduced moment measure X(dh) defined in the stationary case in Stoyan
et al. ((1995), p. 126).

LEMMA 2.2. Let @ be a point process with unknown scaling. Then
a® (A x B) = A2 / / Ko (dy)y()dz,
AJB

where K, (dy) is a measure on R? for every z € R?.
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PRrROOF. Let P denote the distribution of the process ® and, let P, denote the
Palm distribution of ®. The refined Campbell theorem (Stoyan et al. (1995), Section
4.4) yields

a@(AxB):E[ > u(@@@)}: [ 3 14@s(B\ () Plas)

z,yed,z7#y zed
Y / / La(@)6(B \ {z}) s (dd)y()dz = X? /A /B K. (dy)y(2)ds,

where I4(z) is the indicator function and the measure X, is defined for a Borel set B
by

A, (B) = / $(B\ {z})Pa(d9). O

THEOREM 2.1. Let ® be a second-order point process with unknown scaling. Then
Jo(f), [ € Gs, is minimal for f = fmin if and only if

(2.1) A min(Z) + A2/ foin(@)Ke(dy) = K for almost all z € W,
w
where K is a constant such that [, fmin(z)y(z)dz = 1.

PRrROOF. First, note that Jg(f) attains its minimum for f = fui, if and only if
8J5(fmin,v) = 0 for every v € He.

Necessity. Choose v € He given by v(z) = vy(z) ' Iw, (z) — v(z) ' Iw_(z) for a
subset W, C W with |[W,| = [W|/2 and W_ = W \ W,. Then by Lemma 2.1 and
definition of u(?)(d(x,y)) we get the second equality and by Lemma 2.2 we get the third
equality,

0 = 6J5(fmin,¥) =2 [A /W Feoim ()0 () y(2)dz + / . fmm(y)v(:v)a‘”(d(x,y))]

W
=2 [ [, Atz [ /\fmin(x)dx]
[, [, Xtetataas = [ )k (dy)dw}
L. (Maia@) + || 3 fuin(ala)) dx}

2 [ [ (Mot + [ 3 fmntoceta) dw}
= [ [, s@e= [ g(m)dx] ,

where g(z) = Afmin(2) + [y A2 fmin (¥) Kz (dy). It is easy to see that g(x) = K for almost
allx € W.

+2

=2
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Sufficiency. Assuming (2.1) and by Lemma 2.1, Lemma 2.2 and definition of
1@ (d(z,y)) we have

o) = A [ frin(ao@ni@de + 2 [ [ frino@katdn(a)ds
— [ 1@ [Moia@) 2 [ i)l o
= K/W v(z)y(z)dz =0,

for every v € He. O

It can be shown that the optimal function fui, is continuous under a uniform con-
tinuity condition on the product density.
Now determine when the equally weighted estimator

< 1 B(W)
A= 2, W

is optimal.

THEOREM 2.2. Let ® be a non-stationary Poisson or mized Poisson point pro-
cess with an arbitrary unknown intensity function. Then the constant estimator is the
minimum variance unbiased estimator.

LEMMA 2.3. Let ® be a Poisson point process with unknown scaling. Then the
statistic (W) is complete and sufficient for the intensity \.

PrROOF. @®(W) has a Poisson distribution with parameter A\|W/|. The Poisson dis-
tribution is a complete family of distributions, hence ®(W) is complete statistic.

Since A(W) < o0, @ is a finite point process in a bounded region. Thus we can
consider ® to be a random element taking values in U;?‘;OW? Define p as a measure
on UR W7 by p = 372, (A%, where WO = {0}, A% is the d-dimensional Lebesgue
measure and (A%)° = &. Then the density of ® with respect to y is

) (@) - v(=5)
wp

flza,...,z;) = exp(—A|W]) (M?'/!

It can be seen from the process density and from factorisation criterion (Lehmann (1991))
that the statistic ®(W) is sufficient for . J

PrROOF OF THEOREM 2.2. Because the equally weighted estimator does not de-
pend on the non-stationary structure y(z), we can assume for a while that y(z) is known
and that we work with a point process with unknown scaling. Let @ be a Poisson process.
The Rao-Blackwell theorem, Lemma 2.3 and the fact that A is an unbiased estimator
yield that R R

(@) = E[X(@) | (W)



76 TOMAS MRKVICKA AND ILYA MOLCHANOV

is the minimum variance unbiased estimator for A for Poisson process. For mixed Poisson
process (Stoyan et al. (1995)) it is straightforward consequence of the previous.

The equally weighted estimator for estimating the global intensity of cyclic Pois-
son process is studied in Helmers and Mangku (1999). Theorem 2.2 says that in this
framework the equally weighted estimator is the minimum variance unbiased estimator.

The following theorem is a characterisation of the optimality of the constant esti-
mator among linear unbiased estimators.

THEOREM 2.3. Let ® be a stationary second-order point process with the second
reduced moment measure K.
i) If K is proportional to the Lebesque measure, then the constant estimator is
optimal for every observation window W C R,
ii) If the equally weighted estimator is optimal on the observation window W =
[0, A]? for every A > 0, then K is proportional to the Lebesgue measure.

PrRoOF. By Theorem 2.1, the necessary and sufficient condition for the constant
estimator to be optimal among all linear, unbiased estimators is

(2.2) K{h:2+heW})=K for almost all z €W,

where K = K, is the second reduced moment measure. The implication i) follows
immediately from (2.2).

ii) The stationarity implies that (2.2) is satisfied for every d-dimensional cube in
R?. Note that the translates of cubes generate the Borel o-algebra on R?. Thus (2.2) is
satisfied for every Borel set. Therefore K is translation invariant, hence is proportional
to the Lebesgue measure. [J

3. Simulation study

In this section we will work only with processes for which the product density
p¥(z,y) of the second-order factorial moment measure exists. Note however that the
optimal function satisfying equation (2.1) can also be found if the second-order factorial
moment measure is discrete. The following corollary reformulates Theorem 2.1 for point
process with existing product density.

COROLLARY 3.1. Let @ be a point process with unknown scaling and product den-
sity PP (z,y). Then As given by (1.2) has the smallest variance if and only if f = fmin
with

(3.1) A fenin () +/ Smin (?/)ng;i)dy =K foralmostall zeW.
w

The equation (3.1) is a Fredholm integral equation of the second type. The theory
of these integral equations is well developed, see for example Kanwal (1971), Kolmogorov
and Fomin (1970) and Kress (1989).

If @ is stationary, then p(?)(z,y) = p® (z —y) depends only on the difference (x —y)
and y(z) identically equals 1. The following corollary concerns the stationary case with
existing product density.
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COROLLARY 3.2. Let ® be a stationary point process with product density p‘? (h).
Then Af has the smallest variance over f € Gg if and only if f = fumin, where

(32)  Afmin(2) + / fuin@)p® (z —y)dy = K for almost all = € W.
w

The numerical study has been carried over in two frameworks.

1. Assume that the distribution of the process is known up to the intensity A. For
each simulation A is estimated by the equally weighted estimator A. Then the optimal
function fmin is calculated by (3.2) and the optimal estimator Ay, .. is constructed.

2. Assume that the distribution of the process belongs to a certain parametric fam-
ily. For each simulation, the process parameters are estimated in order to determine the
product density. Then the optimal function fu;, is calculated by (3.2) and the optimal
estimator A fmin 18 cOnstructed.

The solution of the Fredholm integral equation of the second type (3.2) was found
by a standard numerical algorithm, namely the quadrature method (Kress (1989)).

Unless otherwise stated, simulations have been carried over in a square window
of side 1 in dimension 2. For every model, 1000 simulations have been performed in
Framework 1 and 400 in Framework 2. There is a possibility of the third framework. That
involves estimating the product density directly by a kernel estimator. But simulations
showed that the estimator of product density is too unstable to achieve any improvement
by our method.

Simulations reported below have been carried over for the Matérn cluster process
and Matérn hard core process described in (Stoyan et al. (1995)).

Ezample 1. (Matérn cluster process) It can be shown that the optimal function
fmin(x) for any Neyman-Scott process does not depend on the intensity A which, in
fact, we want to estimate. Figure 1 shows the optimal functions for Matérn cluster
process computed in dimensions 1 and 2 for an arbitrary intensity, the cluster with ball
shape with radius R = 0.2 and number of points in a cluster with Poisson distribution
with parameter 10. The optimal function here gives to the points near the boundary
bigger weight than to the middle points. We can observe a small wave in the middle
of the function which we can not clearly explain. The comparison of A and Ay, . in

Fig. 1. The optimal functions for Matérn cluster process in one and two dimensions.



78 TOMAS MRKVICKA AND ILYA MOLCHANQV

Table 1. The comparison of A and A foin fOr stationary Matérn cluster process.

A :\fmin
parameters Fr. mean Var mean Var r
A=100, R=0.1, =10 1 99.16 1018.78 99.4856 963.577 5.4
A=200,R=02,u=20 1 197.243  3308.25 197.542 2871.2 13.2
A =100, R=0.05 4 =10 1 100.273 1063.76 100.101 1028.26 3.3
A=100,R=0.1, u =10 2 103.783 823.083 101.399 737.614 10.4

Frameworks 1 and 2 is shown in Table 1. The ratio r which appears in the tables is
r = 100(1 — Var(:\\fmin )/ Var(})).

In Framework 2 we estimate the/iiameter of the cluster R by half of the length
where the estimated product density p(h) changes for the first time, from the decreasing
to the increasing behaviour. We estimate the mean number of points per cluster u by
minimising (over u) the approximated integral

2R o
/ 0 (1, B, %) — o) 2dh,
2b

where p®)(h, u,ﬁ, X) is the theoretical product density, R and X are estimated process

——

parameters and b is the bandwidth used to calculate the kernel estimator p(h) of the
product density. We used the rectangular kernel because it gives smaller variance then
Epanechnikov kernel, see Stoyan and Stoyan (2000).

Because the method mainly corrects the edge effects a simulation study has been
carried over also for a non-square window being the map of middle Bohemia without
Prague as this particular area was studied to determine the risk of being infected by
encefalitida. Figure 2 shows the non-square window which was used for simulations
and an optimal function for Matérn cluster process computed in dimension 2 for an
arbitrary intensity, the cluster with ball shape with radius R = 0.2 and number of points
in a cluster with Poisson distribution with parameter 20. The comparison of A and
Afmin based on 1000 simulations in Framework 1 shown in Table 2 confirms the achieved
improvement.

Fig. 2. The observation window and the corresponding optimal function for Matérn cluster process.
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Table 2. The comparison of X and X fmin fOr stationary Matérn cluster process in the non-square

window shown on Fig. 2.

A 3‘fmm
parameters Fr. mean Var mean Var r
A=100, R=0.1, u=10 1 100.075 1902.25 99.7353 1694.95 11
A=200,R=0.2, =20 1 201.293 5765.63 201.609 4897.58 15

A =100, R=0.05 =10 1 97.9502 1953.47 98.36556  1828.97 6.3

Ezample 2. (Matérn hard-core process) Unfortunately the form of the product
density here does not eliminate A in solving the necessary and sufficient condition. But
the dependence of the solution on A is weak, it has even no influence on the shape
of the solution, therefore we present here the optimal function for one parameter \
only. Figure 3 shows the optimal functions for Matérn hard-core process computed in
dimension 1 and 2 with intensity 6 in dimension 1 and 50 in dimension 2 and with hard-
core distance 0.075. The comparison of A and Ag, . in Frameworks 1 and 2 is shown in

Table 3.

For hard-core processes the points near the border are getting less weight than in the
middle and conversely for cluster processes. This is caused by behaviour of the optimal
estimator which aims to incorporate the border effect. When a point from a repulsive
point process appears near to the window’s border, then we can expect no points near
it and outside the observation window. Therefore the estimator gives to this point less

| |
!

Fig. 3. The optimal functions for Matérn hard-core process in one and two dimensions.

Table 3. The comparison of A and X fmin for stationary Matérn hard-core process.

A j‘fmin
parameters Fr. mean Var mean Var r
A =50,k =0.075 1 49.879 14.8773 49.891 14.5921 2.6
A=T7,h=02 1 6.947 2.88307 6.94688 2.71923 5.7
A=7,h=0.075 1 7.02 6.30791 7.0288 6.30451  0.05
A =50, h =0.075 2 50.0775 16.2822 50.088 15.7745 3.1
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weight. In case of a cluster process, a point located near to the border is likely to have
a number of neighbors from outside the window. Then the estimator attaches to this
point more weight. Tables 1 and 3 show that the amount of the improvement of the
optimal estimator depends on the size of the part of the window possibly influenced
by outside points. In fact, the described method is an edge correction method, which
incorporates the second order behavior of the process, in stationary case. Note that when
we estimate the product density parametrically then the results are even better than for
known product density. This is probably caused by the fact that when the parameters are
estimated from particular observation, it suits better for particular observation then the
real parameters, thus the method can better estimate the behaviour of this observation
outside the window.

Ezample 3. (Non-stationary Matérn cluster process) Consider a non-stationary
Matérn cluster process with the intensity function y(zy,z2) = 7sin(nz,/2)/2 in dimen-
sion 2. Similarly, as in the stationary case, the non-parametric kernel estimator of the
intensity function is too unstable to achieve any improvement by our method. Therefore
7 has to be estimated parametrically or supposed to be known. In this example we sup-
posed that -y is known. We used the estimate of the product density of the second-order
intensity-reweighted stationary point process which was introduced in Baddeley et al.
(2000) to estimate the parameters of the cluster model in the Framework 2.

Figure 4 shows the intensity function and the optimal function for Matérn cluster
process computed in dimension 2 for an arbitrary intensity, the cluster with ball shape

Fig. 4. The intensity function and the optimal function for the non-stationary Matérn cluster
process.

Table 4. The comparison of X and A fmin for Matérn cluster process with intensity function
proportional to ¥(x1,z2) = wsin(nrz1/2)/2.

A ’Xfmin
parameters Fr. mean Var mean Var r
A=100, R=0.1, u =10 1 99.234 812.169 99.6242 712.918 12.2
A=200,R=02u=20 1 200.738  601.072 200.835 525.252 13
A =100, R=0.05 =10 1 99.903 873.649 100.393 772.606 11.6
A=100, R=0.1, n =10 2 102.107 836.422 101.36 726.126 - 13.2
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with radius R = 0.2 and number of points in a cluster being Poisson distributed with
mean 20. The comparison of A and Ay, in Frameworks 1 and 2 shown in Table 4
confirms improvement for the non-stationary case against the stationary case.
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