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A b s t r a c t .  A general  non- s t a t iona ry  point  process whose in tens i ty  funct ion is given 
up to  an unknown numerica l  factor A is considered. As an a l te rna t ive  to  the  con- 
vent ional  e s t ima tor  of A based  on counting the  points ,  we consider  general  l inear  
unbiased es t ima tors  of A given by sums of weights associa ted  with  ind iv idua l  points .  
A necessary and  sufficient condi t ion  for a linear, unbiased  e s t ima to r  for the  in tens i ty  
A to have the  min imum var iance is de termined.  I t  is shown tha t  there  are "nearly" 
no o ther  processes than  Poisson and Cox for which the  unweighted e s t ima to r  of A, 
which counts the  points  only, is opt imal .  The  proper t ies  of the  op t ima l  e s t ima to r  are 
i l lus t ra ted  by s imulat ions  for the  Mat~rn cluster and  the  Mat~rn hard-core  processes.  

Key words and phrases: In tens i ty  es t imat ion,  Poisson process,  l inear es t imators ,  
Mat~rn cluster  process; Mat~rn hard-core process.  

1. Introduction 

A typical task of spatial statistic is to study properties of estimators of parameters of 
point processes. One of the most important parameters of a point process is its intensity. 
In this work we consider a point process �9 with a known non-stationary structure. It 
means that  the intensity measure of ~ has the form 

A(B) = ~ AV(x)dx, 

where A is unknown and V(x) is a known function that  determines the non-stationary 
structure of ~. �9 is said to be a process with unknown scaling. 

If V(x) is constant, then �9 is stationary. To prevent the over-parametrisation of the 
model, assume that  fw V(x)dx IW], where W C R d is the observation window and 
IWI is the d-dimensional Lebesgue measure of W. 

Processes with unknown scaling are important itself but even more because they 
are related to stationary processes of compact sets with a known distribution of primary 
grain, see Stoyan et al. (1995), Molchanov (1997). In fact the reference points of compact 
sets which hit the observation window form a process with unknown scaling where the 
function V may be computed from the distribution of the primary grain. 

*This research was partially supported by Grant Agency of Czech Republic, project No. 201/03/D062. 
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There are various estimators of the intensity A. One often used is 

(1.1) r 
IWi 

where O(W) denotes the number of points of �9 in W. The estimator ~ is strongly 
consistent as W T ]~d if the process �9 is ergodic. Other estimators based on the interpoint 
distance method are discussed in Byth (1982) and Diddle (1983). An estimation method 
in which a fraction of the points is independently marked (and thus counted) followed 
by consideration of the ranks of the nearest marked point is described by Ss163 (1992). 

In this work we consider a family of unbiased estimators (called first order or linear, 
unbiased estimators) 

(1.2) A f :  ~ f (x) ,  
xEapNW 

where f : W --~ ]R is a weight function. Condition 

/wf( X)V(x)dx = 1 

ensures that  ~/  is unbiased. The estimator (1.1) corresponds to f ( x )  = Iwl-'. 
An important task is to compare the existing estimators and find an optimal estima- 

tor. For stationary Poisson and mixed Poisson processes (Stoyan et al. (1995)) the exact 
likelihood is available and the maximum likelihood estimator and the minimum variance 
unbiased estimator is ~. However for other more complicated processes the problem of 
determining the best estimator is still open. 

In Section 2 we find a necessary and sufficient condition on f for estimator (1.2) 
to have the minimal variance among all linear, unbiased estimators. Then the question, 
when the common constant estimator ~ given by (1.1) is optimal, is discussed. It is shown 
that ~ is a minimum variance unbiased estimator for non-stationary Poisson and mixed 
Poisson point processes and that there are "nearly" no other processes than Poisson and 
Cox for which A is optimal. In Section 3 we present simulation studies which compare 
the constant estimator with the optimal one. 

2. Necessary and sufficient condition for optimal estimator 

Assume that the process �9 is a second-order point process in I~ d. Let tt(2)(d(x, y)) 
(respectively a(2)(d(x, y))) denote the second-order moment (respectively factorial mo- 
ment) measure of O. Let .Tr be the family of real-valued measurable functions on W 
such that 

J r  = / f ( x ) f (Y)P(2) (d (x ,Y) )  < oo. 
dw • 

Furthermore, let 

and 
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The variance of ~S is Var(~/) : J<~(f) - A 2, where 

J<~(f) : _ .../WxW f (x) f (Y)P(2) (d(x' y) ) 

The aim is to minimize the variance of the estimator given by (1.2) for f E G~. 
Then minimisation of Var(~l) corresponds to minimisation of the functional Jo  (f)  over 
f E G~. Note that J~(f)  is a non-negative definite bilinear form hence it is convex on 

LEMMA 2.1. Let �9 be a second-order point process. The directional derivative 
5J~ (f, v) of J~ (f) at f C ~ in the direction v C ~ exists, is finite and is given by 

5J~(f,v) = 2 /WxW f(x)v(y)P(2)(d(x'Y))" 

PROOF. The definition of the directional derivative (Zeidler (1986)) yields 

0 
5J~' if,  v) = ~ .../w x w (f(x)  + ev(x))(f  (y) + ev(y))# (2) (d(x, y)) 

c~O 

2/WxW f(x)v(Y)#(2)(d(x, y)). 

It suffices to prove that 5J~(f, v) is finite for every f,  v C ~'~. The Schwartz in- 
equality and Campbell 's theorem yield 

= E  

< 2  

] ~ ~-~ f(x~)v(yj) - -E f(xi)  ~ v(yj) 
~C y~C(~ Lx~E ~p y~E~ 

1/2 ' 2 2) 

= ( j r 1 6 2  < 

w x w  f(x)v(Y)tt(2)(d(x, y) ) 

[] 

The following lemma provides a factorisation of the second-order factorial moment 
measure into the Lebesgue measure and the kernel ~ (dy) which is non-stationary version 
of the second reduced moment measure ~(dh) defined in the stationary case in Stoyan 
et al. ((1995), p. 126). 

LEMMA 2.2. Let �9 be a point process with unknown scaling. Then 

.(2)(A • 8) -- f .  

where ]Cx (dy) is a measure on R d for every x E R d. 
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PROOF. 
Palm distribution of ~. 
4.4) yields 

Let P denote the distribution of the process �9 and, let Px denote the 
The refined Campbell theorem (Stoyan et al. (1995), Section 

] 
a(2)(A • B) = E E IA(X)IB(y)[ = / E IA(X)r \ {x})P(dr 

x,yE ~ ,xCy J xE aP 

where IA(X) is the indicator function and the measure/Cx is defined for a Borel set B 

by 

AK;,(B) = / r  \ {x})P,(dr [] 
J 

THEOREM 2.1. Let ~ be a second-order point process with unknown scaling. Then 
Yr f C 6r is minimal for f = fmin if and only if 

(2.1) /~fmin(x) + ) 2 / w  fmin(Y)]Cx(dy) --- g for almost all x �9 W, 

where K is a constant such that f w  fmi, (x)7(x)dx -- 1. 

PROOF. First, note that J r  attains its minimum for f = fmin if and only if 
5Jr -- 0 for every v C 7-/r 

Necessity. Choose v e 7/r given by v(x) = 7(x)-lIw+(X) - V(x)-lIw_ (x) for a 
subset W+ C W with [W+I -- IWI/2 and W_ = W \ W + .  Then by Lemma 2.1 and 
definition of #(2)(d(x, y)) we get the second equality and by Lemma 2.2 we get the third 
equality, 

O=hJr215 ] 

= 2 I/W§ I)~fmin(X)-~-/w/\2fmin(Y)]Cx(dy)) dx ] 

where g(x) = ~fmin(x) + f w  a 2 / m i n ( Y ) J C x ( d Y )  ' ~t is easy to see that  g(x) = K for almost 
all x E W. 
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Sufficiency. Assuming (2.1) and by L e m m a  2.1, L e m m a  2.2 and  definition of 
p(2) (d(x, y)) we have 

5J, I,(fmin, V) ~- /~ / w  fmin(X)V(X)7(x)dx + )~2 f w  / w  fmin(y)v(x))~x(dY)7(x)dx 

= ~V(X)'~(X) [~fmin(X) -]-'~2/wfmin(Y))~'x(dy)] dx 

= K f w  v(x)~(x)dx = o, 

for every v E 7-/~. [] 

It can be shown tha t  the opt imal  function fmin is continuous under  a uniform con- 
t inuity condition on the product  density. 

Now determine when the equally weighted est imator  

1 ~(w)  
2= ~ IWl- IWI x C ~ N W  

is optimal. 

THEOREM 2.2. Let g2 be a non-stationary Poisson or mixed Poisson point pro- 
cess with an arbitrary unknown intensity function. Then the constant estimator is the 
minimum variance unbiased estimator. 

LEMMA 2.3. Let �9 be a Poisson point process with unknown scaling. Then the 
statistic O(W) is complete and sufficient for the intensity A. 

PROOF. (I)(W) has a Poisson distr ibution with  parameter  ~lWI. The Poisson dis- 
t r ibut ion is a complete family of distributions, hence ~ ( W )  is complete statistic. 

Since A(W) < 0% ~5 is a finite point process in a bounded region. Thus we can 
consider �9 to be a random element taking values in U~=oWJ. Define # as a measure 

on U~_oWJ by it = Y-}j=o ()~d)J, where W ~ {0}, Ad is the d-dimensional Lebesgue 

measure and (Ad) ~ = 5~. Then the density of �9 with respect to # is 

f(xl , . . . ,  xj) = exp(-NWl) j! iWlJ 

It can be seen from the process density and from factorisation criterion (Lehmann (1991)) 
tha t  the statist ic ~ ( W )  is sufficient for ,k. [] 

PROOF OF THEOREM 2.2. Because the equally weighted est imator  does not de- 
pend on the non-s ta t ionary s t ructure  7(x),  we can assume for a while tha t  ~,(x) is known 
and tha t  we work with a point process with unknown scaling. L e t  �9 be a Poisson process. 
The Rao-Blackwell theorem, L e m m a  2.3 and the fact t ha t  ~ is an unbiased es t imator  
yield tha t  

~(~) = ~[~(~) I ~(w)] 
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is the minimum variance unbiased estimator for A for Poisson process. For mixed Poisson 
process (Stoyan et al. (1995)) it is straightforward consequence of the previous. [] 

The equally weighted estimator for estimating the global intensity of cyclic Pois- 
son process is studied in Helmers and Mangku (1999). Theorem 2.2 says that  in this 
framework the equally weighted estimator is the minimum variance unbiased estimator. 

The following theorem is a characterisation of the optimality of the constant esti- 
mator among linear unbiased estimators. 

THEOREM 2.3. Let �9 be a stationary second-order point process with the second 
reduced moment  measure IC. 

i) I f  IC is proportional to the Lebesgue measure, then the constant estimator is 
optimal for  every observation window W C N d. 

ii) I f  the equally weighted estimator is optimal on the observation window W = 
[0, A]d for every A > 0, then 1C is proportional to the Lebesgue measure. 

PROOF. By Theorem 2.1, the necessary and sufficient condition for the constant 
estimator to be optimal among all linear, unbiased estimators is 

(2.2) / C ( { h : x + h � 9  for almost all x � 9  

where K: = /Cx is the second reduced moment measure. The implication i) follows 
immediately from (2.2). 

ii) The stationarity implies that (2.2) is satisfied for every d-dimensional cube in 
N d. Note that  the translates of cubes generate the Borel a-algebra on N d. Thus (2.2) is 
satisfied for every Borel set. Therefore/C is translation invariant, hence is proportional 
to the Lebesgue measure. [] 

3. Simulation study 

In this section we will work only with processes for which the product density 
p(2)(x,y) of the second-order factorial moment measure exists. Note however that  the 
optimal function satisfying equation (2.1) can also be found if the second-order factorial 
moment measure is discrete. The following corollary reformulates Theorem 2.1 for point 
process with existing product density. 

COROLLARY 3.1. Let #P be a point process with unknown scaling and product den- 
sity p(2) (x, y). Then Af given by (1.2) has the smallest variance if  and only if f = frnin 
with 

(3.1) 
f p(2) (x, Y) Afmi, (x) + ] fmin (Y) dy = K for almost all x E W. 
J w  

The equation (3.1) is a Fredholm integral equation of the second type. The theory 
of these integral equations is well developed, see for example Kanwal (1971), Kolmogorov 
and Fomin (1970) and Kress (1989). 

If �9 is stationary, then p(2)(x, y) = p(2)(x - y) depends only on the difference (x - y) 
and 7(x) identically equals 1. The following corollary concerns the stationary case with 
existing product density. 
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COROLLARY 3.2. Let �9 be a stationary point process with product density p(2)(h). 

Then A~ has the smallest variance over f E 6~ if and only if f = fmin, where 

(3.2) •fmin(X) + f fmin(y)p(2)(X -- y)dy = K for almost all x �9 W. 
Jw 

The numerical study has been carried over in two frameworks. 
1. Assume that the distribution of the process is known up to the intensity A. For 

each simulation A is estimated by the equally weighted estimator A. Then the optimal 
function fmin is calculated by (3.2) and the optimal estimator A/ml. is constructed. 

2. Assume that the distribution of the process belongs to a certain parametric fam- 
ily. For each simulation, the process parameters are estimated in order to determine the 
product density. Then the optimal function fmin is calculated by (3.2) and the optimal 

estimator A]mln is constructed. 
The solution of the Fredholm integral equation of the second type (3.2) was found 

by a standard numerical algorithm, namely the quadrature method (Kress (1989)). 
Unless otherwise stated, simulations have been carried over in a square window 

of side 1 in dimension 2. For every model, 1000 simulations have been performed in 
Framework 1 and 400 in Framework 2. There is a possibility of the third framework. That  
involves estimating the product density directly by a kernel estimator. But  simulations 
showed that the estimator of product density is too unstable to achieve any improvement 
by our method. 

Simulations reported below have been carried over for the Mat4rn cluster process 
and Mat4rn hard core process described in (Stoyan et al. (1995)). 

Example 1. (Mat4rn cluster process) It can be shown that the optimal function 
fmin(X) for any Neyman-Scott process does not depend on the intensity A which, in 
fact, we want to estimate. Figure 1 shows the optimal functions for Mat4rn cluster 
process computed in dimensions 1 and 2 for an arbitrary intensity, the cluster with ball 
shape with radius R -- 0.2 and number of points in a cluster with Poisson distribution 
with parameter 10. The optimal function here gives to the points near the boundary 
bigger weight than to the middle points. We can observe a small wave in the middle 
of the function which we can not clearly explain. The comparison of A and ~fmia in 

1.6 

1.4 

1.2 

0,8 

0.6 

Fig. 1. The optimal functions for Mat@rn cluster process in one and two dimensions. 



78 TOMAS MRKVICKA AND ILYA MOLCHANOV 

Table 1. The comparison of ~, and ~'fmi~ for stationary Mat~rn cluster process. 

~fm~n 
parameters Fr. mean Var mean Var r 

A = 100, R = 0.1, # -- 10 1 99.16 1018.78 99.4856 963.577 5.4 

A -- 200, R = 0.2, # =- 20 1 197.243 3308.25 197.542 2871.2 13.2 

A = 100, R = 0.05, tt ---- 10 1 100.273 1063.76 100.101 1028.26 3.3 

A = 100, R = 0.1, # = 10 2 103.783 823.083 1 0 1 . 3 9 9  737 .614  10.4 

Frameworks  1 and 2 is shown in Table  1. T h e  ra t io  r which appea r s  in the tables  is 

r = 100(1 - Var(Afr , ,n) /Var(~)) .  

In  Framework  2 we es t ima te  the  d i ame te r  of the  cluster  R by  half  of the length 

where the  es t imated  p roduc t  densi ty  p(h) changes for the  first t ime,  f rom the decreasing 
to the  increasing behaviour .  We e s t ima te  the mean  n u m b e r  of  points  per  cluster  p by 
minimis ing (over #) the  a p p r o x i m a t e d  integral  

b 

where p(2)(h, #, /~,  ~) is the  theore t ica l  p roduc t  density, /~ and  ~ are e s t ima ted  process 

p a r a m e t e r s  and b is the b a n d w i d t h  used to calculate  the kernel  e s t ima to r  p(h) of the 
p roduc t  density. We used the r ec t angu la r  kernel  because  it gives smaller  var iance then  
Epanechnikov  kernel, see S toyan  and  S toyan  (2000). 

Because the me thod  main ly  correc ts  the  edge effects a s imula t ion  s tudy  has been  
carr ied over  also for a non-square  window being the  m a p  of  middle  Bohemia  wi thou t  
P r ague  as this par t icular  a rea  was s tudied  to de te rmine  the risk of being infected by 
encefali t ida.  Figure  2 shows the  non-square  window which was used for s imulat ions  
and an op t ima l  funct ion for Mat@rn cluster  process c o m p u t e d  in d imension  2 for an 
a rb i t r a ry  intensity, the  cluster  wi th  bal l  shape  wi th  radius  R = 0.2 and  number  of ~oints  
in a c lus ter  with Poisson d is t r ibu t ion  wi th  p a r a m e t e r  20. The  compar i son  of ~ and  
~ f ~  based  on 1000 s imulat ions  in F r a m e w o r k  1 shown in Table  2 confirms the  achieved 
improvement .  

,.2 / j z  

Fig. 2. The observation window and the corresponding optimal function for Mat@rn cluster process. 
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Table 2. The comparison of.~ and "~Imm for stationary Mat@rn cluster process in the non-square 
window shown on Fig. 2. 
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~fmin 
parameters Ft. mean Var mean Var r 

,k= 100, R = 0 . 1 , # =  10 

,k = 200, R = 0.2, tt = 20 

,k = 1O0, R = 0.05, # = 10 

1 100.075 1902.25 99.7353 1694.95 11 

1 201.293 5765.63 201.609 4897.58 15 

1 97.9502 1953.47 98.3655 1828.97 6.3 

Example 2. (Mat@rn h a r d - c o r e  p r o c e s s )  U n f o r t u n a t e l y  t h e  fo rm of  t h e  p r o d u c t  

d e n s i t y  he re  does  n o t  e l i m i n a t e  ,~ in  s o l v i n g  t h e  n e c e s s a r y  a n d  suf f ic ient  c o n d i t i o n .  B u t  
t h e  d e p e n d e n c e  of  t h e  s o l u t i o n  on  ~ is weak ,  i t  ha s  even  no  in f luence  on  t h e  s h a p e  

of  t h e  so lu t i on ,  t h e r e f o r e  we p r e s e n t  he re  t h e  o p t i m a l  f u n c t i o n  for  one  p a r a m e t e r  

only.  F i g u r e  3 shows  t h e  o p t i m a l  f u n c t i o n s  for M a t 6 r n  h a r d - c o r e  p r o c e s s  c o m p u t e d  in  
d i m e n s i o n  1 a n d  2 w i t h  i n t e n s i t y  6 in d i m e n s i o n  1 a n d  50 in d i m e n s i o n  2 a n d  w i t h  h a r d -  

core  d i s t a n c e  0.075. T h e  c o m p a r i s o n  o f  ~ a n d  ~/min in  F r a m e w o r k s  1 a n d  2 is s h o w n  in 
T a b l e  3. 

Fo r  h a r d - c o r e  p r o c e s s e s  t h e  p o i n t s  n e a r  t h e  b o r d e r  a r e  g e t t i n g  less w e i g h t  t h a n  in  t h e  
m i d d l e  a n d  c o n v e r s e l y  for c l u s t e r  p roces se s .  T h i s  is c a u s e d  b y  b e h a v i o u r  o f  t h e  o p t i m a l  

e s t i m a t o r  w h i c h  a i m s  to  i n c o r p o r a t e  t h e  b o r d e r  effect.  W h e n  a p o i n t  f r o m  a r e p u l s i v e  

p o i n t  p r o c e s s  a p p e a r s  n e a r  t o  t h e  w i n d o w ' s  b o r d e r ,  t h e n  we c a n  e x p e c t  no  p o i n t s  n e a r  
i t  a n d  o u t s i d e  t h e  o b s e r v a t i o n  w indow.  T h e r e f o r e  t h e  e s t i m a t o r  g ives  t o  t h i s  p o i n t  less 

1 . 0 5  

0.9! 

0 . 9  

Fig. 3. The optimal functions for Mat6rn hard-core process in one and two dimensions. 

Table 3. The comparison of ,~ and ~lmin for stationary Mat6rn hard-core process. 

parameters Fr. mean Var mean Var r 

A = 5 0 ,  h = 0 . 0 7 5  1 49.879 14.9773 49.891 14.5921 2.6 

= 7, h = 0.2 1 6.947 2.88307 6.94688 2.71923 5.7 

A = 7, h = 0.075 1 7.02 6.30791 7.0288 6.30451 0.05 

= 50, h = 0.075 2 50.0775 16.2822 50.088 15.7745 3.1 
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weight. In case of a cluster process, a point located near to the border is likely to have 
a number of neighbors from outside the window. Then the estimator attaches to this 
point more weight. Tables 1 and 3 show that  the amount of the improvement of the 
optimal estimator depends on the size of the part of the window possibly influenced 
by outside points. In fact, the described method is an edge correction method, which 
incorporates the second order behavior of the process, in stationary case. Note that  when 
we estimate the product density parametrically then the results are even better than for 
known product density. This is probably caused by the fact that  when the parameters are 
estimated from particular observation, it suits better for particular observation then the 
real parameters, thus the method can better estimate the behaviour of this observation 
outside the window. 

Example 3. (Non-stationary Mat6rn cluster process) Consider a non-stationary 
Mat@rn cluster process with the intensity function 7(Xl, x2) = 7rsin(TrXl/2)/2 in dimen- 
sion 2. Similarly, as in the stationary case, the non-parametric kernel estimator of the 
intensity function is too unstable to achieve any improvement by our method. Therefore 
7 has to be estimated parametrically or supposed to be known. In this example we sup- 
posed that  7 is known. We used the estimate of the product density of the second-order 
intensity-reweighted stationary point process which was introduced in Baddeley et al. 
(2000) to estimate the parameters of the cluster model in the Framework 2. 

Figure 4 shows the intensity function and the optimal function for Mat@rn cluster 
process computed in dimension 2 for an arbitrary intensity, the cluster with ball shape 

Fig. 4. The intensity function and the  optimal function for the non-s ta t ionary  Mat@rn cluster 
process. 

Table 4. The comparison of ~ and ~fmin for Mat@rn cluster process wi th  intensity function 
proport ional  to "/(xi, x2) = zr sin(Trxl/2)/2. 

~fmin 
parameters  Fr. mean Var mean Var r 

A =  100, R = 0 . 1 , # =  10 

A = 2 0 0 ,  R = 0 . 2 , # = 2 0  

A = 100, R =  0.05, ~ = 10 

= 100, R =  0.1, # = 10 

1 99.234 812.169 99.6242 712.918 12.2 

1 200.738 601.072 200.835 525.252 13 

1 99.903 873.649 100.393 772.606 11.6 

2 102.107 836.422 101.36 726.126 13.2 
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with radius R = 0.2 and number of points in a cluster being Poisson distributed with 
mean 20. The comparison of ~ and A/,,,in in Frameworks 1 and 2 shown in Table 4 
confirms improvement for the non-stationary case against the stationary case. 
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