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Abstract .  In this paper, we consider the product-limit quantile estimator of an 
unknown quantile function when the data are subject to random left truncation and 
right censorship. This is a parallel problem to the estimation of the unknown distri- 
bution function by the product-limit estimator under the same model. Simultaneous 
strong Gaussian approximations of the product-limit process and product-limit quan- 

O[ (log n) 3/2 tile process are constructed with rate ~ nl/s ). A functional  law of the i terated 
logarithm for the maximal  deviat ion of the est imator  from the es t imand is derived 
from the construction.  

Key words and phrases: Left truncation, right censorship, product-limit, quantile 
process, Gaussian approximations. 

1. Introduction 

Let X, T and S be independent, positive random variables with continuous distri- 
bution functions (dr) F ~ G O and L ~ respectively. Moreover, F ~ is differentiable with 
derivative f0. Let Y = min(X, S) and 5 = I ( X  <_ S). If Y > T, one observes (Y, T, 6). 
If Y < T, nothing is observed. We think of X as the variable of interest, the observation 
of which is subjected to right censorship, S ,  and left truncation, T, mechanisms. 6 indi- 
cates whether the observed Y is a censored item or not. This is the left truncation, right 
censorship (LTRC) model. Denote the df of Y by J.  By the independent assumption, 
we have 1 -  J = ( 1 -  F ~  L~ Let (X i ,T i ,S i ) ,  i =  1 , . . . , N  be i.i.d, as ( X , T , S ) ,  
where the population size N is fixed, but unknown. The empirical data are (Yi, Ti, 6~), 
i = 1 , . . .  ,n  where n is the number of observed triplets. 

The nonparametric maximum likelihood estimator of F ~ Wang et al. (1986)) is 

[ (1.1) 1 - F ~  H 1 nC~-(Y~) 
i: Yi <_t 

assuming no ties in the data where nCn(z) = Y~]i=l I{Ti  < z < Yi}. F ~ reduces to the 
Kaplan-Meier product-limit (PL) estimator when T = 0 and to the Lynden-Bell (1971) 
estimator when there is no right censoring. We shall refer to F ~ as the product-limit 
(PL) estimator for the LTRC model. 

Gu and Lai (1990), Lai and Ying (1991) obtained a functional law of the iterated 
logarithm for a slightly modified form of the PL-estimator using martingale theory. 
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Gijbels and Wang (1993), Zhou (1996) established almost sure representation of PL- 
estiamtor in terms of sums of normed i.i.d, random processes. Zhou and Yip (1999) 
initiated and Tse (2003) established strong Gaussian approximation of the PL-process 
Zn(t) = v/-n[F~ - F~ by a two-parameter Gaussian process at the almost sure 
rate of O((log n)3/2/nl/S), a rate that  reflects the two-dimensional nature of the LTRC 
model. Zhou (2001) examined the asymptotic properties of a smooth quantile estimator. 

The quantile function Q and its empirical counterpart Qn are defined as 

(1.2) q(p) := inf{t : f~  > p}, Qn(p) := inf{t : F~ > p}, 0 < p < 1. 

The normed PL-quantile process is defined as Pn(P) := v/-~f~ Qn(p)]. This 
is the analog of the normed quantile process for i.i.d, data as defined in Csbrg5 and R4vdsz 
(1981). The role of the quantile function in statistical data  modeling was emphasized 
by Parzen (1979). In econometrics, Gastwirth (1971) used the quantile function to give 
a succint definition of the Lorenz curve, which measures inequality in distribution of 
resources and in size distribution. 

In this paper, we build on the result of Tse (2003) to construct strong approximations 
of the PL-process and the PL-quantile process by the same two-parameter Kiefer type 
process at the rate of O((logn)3/2/nl/S). The basis of our work is Borisov's (1982) 
extension of Koml6s, Major and Tusngdy's (KMT) (1975) theorem for the univariate 
empirical process to higher dimensions. In our case, the appropriate dimension is two. 
The approximation rate is not as fast as that in the KMT's  theorem, but is still good 
enough to let us deduce almost sure statements like the law of the iterated logarithm 
from that of the corresponding Gaussian processes. 

In the absence of censorship, we get the corresponding statements for the random 
truncation model at the same rate, which complement the strong approximation results 
of the PL-process in Tse (2000). On the other hand, when there is no truncation mech- 
anism, the LTRC model reduces to the one-dimensional random censorship model for 
which the optimal rate of O(log 2 n/v/-~) has been obtained by Burke, S. Csbrg5 and 
Horvgth (BCH) (1981, 1988) for the PL-process and by Aly et al. (1985) for the PL- 
quantile process. It follows that any model that includes the general truncation mecha- 
nism is at least of Dimension 2, in contrast to the one-dimensional nature pertaining to 
the censoring mechanism. 

In Section 2, we introduce the notation and present the main results. Auxiliary 
results and proofs are relegated to Section 3. Examples of applications can be found in 
Csbrg6 and R~v4sz (1981). In particular, our results can form the basis for an asymptotic 
theory of the empirical Lorenz curve under the same model. 

2. Notation and main theorems 

As a consequence of truncation, the number of observed pairs, n, is a Bin(N, a) 
random variable, with a := P(T <_ Y). By the strong law of large numbers, n /N  -~ 
almost surely a s N  --* c~. Conditional on the value of n, (Yi, Ti, 5i), i = 1 , . . . ,  n are still 
i.i.d, but  with the joint conditional distribution of (]I, T) becomes 

H(y,t) = P { Y  <_ y ,T ~ t I T <_ Y}  

/: = ~-1 G~ A z)dJ(z) 



QUANTILE PROCESS FOR LEFT TRUNCATED AND RIGHT CENSORED DATA 63 

for y, t > O. The  marginal  dis t r ibut ion functions are denoted  by 

// F ( y )  :---- H ( y ,  oo) = o~ -1 G~ 

a(t) := H ( ~ ,  t) = a -1 a ~  z)dZ(z). 

Here and in the following, f :  = f(a,b] for 0 < a < b _< c~. Empir ica l  counte rpar t s  of 

these dis t r ibut ion functions are denoted  by Hn(y, t), Fn(y) and an(t) respectively. For 
0 _< z < ec, let 

C(z) = G(z) - F ( z - )  -- 1 p ( T  < z < S)[1 - F ~  

C(z) is consistent ly es t imated  by C,~(z) = Gn(Z) - Fn ( z - ) .  Note  tha t  Fn and Gn are 
the empirical  dis t r ibut ion functions for the observed Y's  and T ' s  respectively. To take 

n into account  the information from the indicator  variable. Let  F ~  (z) -- 1 ~ = ~  I(Y/ < 
n 

z, 5i = 1) which is a consistent es t imator  of Fl(Z) = P ( Y  <_ z, 5 --- 1 I T < Y).  Note  
tha t  F1 is a sub-dis t r ibut ion of F .  The  tr iplets  Fn, G~ and Fnl contain  all the  relevant  
informat ion from the da ta  for the es t imat ion of F ~ and Q. Th e  corresponding empirical  
processes are defined as: 

OZnl(Zl) :---- v / - n [ F n ( Z l )  - -  F(Zl ) ] ,  
t~nl (u) :~-- vf'~[Fnl (~t) - F1 (u)] .  

~ 2 ( z 2 )  := v ~ [ a ~ ( z 2 )  - a(z2)] ,  

T he  no ta t ion  is intended to  remind us tha t /3n l  is a sub-process of an1, whereas a~ l  and 
a~2 together  form a two components  r andom process wi th  covariance depending on F ~ 
and G ~ 

For any df K ,  let aK = inf{z : K(z)  > 0} and bK = s u p { z :  K(z)  < 1} denote  the 
left and right end points of its support .  As in the  r andom t runca t ion  model  (Woodroofe  
(1985)), F ~ can be recons t ruc ted  only when aao <_ aj  and bao <_ bj .  The  borderl ine 
case is aao = aj.  For the  sake of simplicity, we assume tha t  aco = aj  = 0 and bao < bj 
th roughout .  The  cumulat ive hazard  funct ion associated wi th  F ~ is 

j[o t dF~ 
A~ := 1 - F ~  ' 0 <_ t < oc, 

= fo ~ dFl(z) 
C(z) ' 

which is consistently es t imated  by 

fo t dFln(Z) 
A~ := Ca(z) ' 0 < t < o c .  

The  cor responding  cumulat ive hazard  process is Zn(t) := v/n[A~ - A~ For the 
theorems below, we assume tha t  F ~ G o and L ~ satisfy the condi t ion 

(2.1) fo ~176 dF1 (z) C3(z------ T < oo. 
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The condition, while not optimal, serves to keep the variances of the limiting processes 
finite near the lower end point and simplify the proof a great deal. 

For 0 < t < b < b j ,  let 

fo 
t dF1 (u) 

(2 .2)  l ( t )  :=  C 2 ( u )  " 

THEOREM 2.1. Suppose condition (2.1) is satisfied and 0 < Po <_ Pl. Assume 
that F ~ is Lipschitz continuous and that F ~ is twice continuously differentiable on 
[Q(po) - 5, Q(pl)  + 5] for some 5 > 0 such that fo  is bounded away from zero there. 
On a rich enough probability space, one can define a sequence of independent and iden- 
tically distributed mean zero Gaussian processes {Bn( t ) ,O < t < b}, for b < b j ,  with 
Cov[B~(s) ,B~(t)]  = l (min(s , t ) ) ,  for 0 < s , t  < b < bj such that, almost surely, 

{'log n'~ 
sup IZn(t) - [1 - f~  = 0 \n--~/6j, 

0< t<b  

( l o g  n'~ 
sup Ipn(p) - (1 - p)Bn(Q(p) )  I = o \ n-n-i-~ j , 

po <_p<_pl 

where 0 < Q(po) < Q(pl)  < b. 

The s ta tements  above are condit ional on n, the observed sample size. The results 
may  be formulated in terms of the non-random populat ion size N with considerable 
complicated notat ion as in Tse (2000). To keep things simple, we choose to present the 
results in terms of n. 

Theorem 2.1 approximates Z~ and pn by sequences of copies of their  Gaussian 
limits. Weak convergence results follow immediately.  However, almost sure s ta tements  
cannot  be obtained from them since the covariances between different members in the 
sequences are not specifed. In the next theorem, these sequences are replaced by single 
two-parameter  Gaussian processes. 

THEOREM 2.2. Suppose condition (2.1) is satisfied and 0 < Po <<_ Pl. Assume that 
F ~ is Lipschitz continuous and that F ~ is twice continuously differentiable on [Q(p0) - 
5, Q(pl)  + 5] for  some 5 > 0 such that fo  is bounded away from zero there. On a rich 
enough probability space, one can construct a two-parameter mean zero Gaussian process 
B ( t , u )  for  t >_ 0 and u > 0 with C o v [ B ( s , n ) , B ( t , m ) ]  = ~ l ( s ) ,  for n <_ m,  s < t 
such that, almost surely, 

( (l~ n)3/2 ~ 
sup [Zn(t) - [1 - F~ = 0 \ ~ ) ,  

0< t<b  

sup Ipn(p) - (1 - p ) B ( Q ( p ) , n ) l  = 0 nl/8 , 
po <_p<_pl 

where 0 < Q(po) < Q(pl)  < b. 

As a consequence of the second s ta tement  of Theorem 2.2 for Pn, we obtain the next 
theorem for the uniform consistency rate of Qn for the LTRC model. The counterpar t  
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for the PL-estimator F ~ which follows from the first statement of Theorem 2.2, has been 
established in Tse (2003). 

THEOREM 2.3. Under the same assumption as in Theorem 2.2, the sequence 

{(21o:logn) 1/2pn(p) } 

is almost surely relatively compact in the supremum norm of functions over [PO,Pl], and 
its set of limit points is {l(Q(pl))l/2(1 _ eJ't~J~'[ l(Q(p)) ~ : g C S} where S is Strassen's set 
of absolutely continuous functions 

{ } S= glg: [0 ,1]~R,g(0)=0,  \ ~ ]  d x < _ l  . 

Consequently, with v2(p) = (1 - p)21(Q(p) ), 

n )1/2 sup I f ~  = sup v(p), 
limn__.ccsup 2 log log n po <_p<_pl po <_p<_pl 

l imin f (n loglogn)  U2 sup f ~ 1 7 6  7r (l(Q(pl)))l/2 
n--*oo Po <~p<_pl 1 - p 81/2  ' 

implying, 

8~-7~v(Q(pl)) < l imin f (n log logn)  1/2 sup f~176 - pl n-.*.oo Po <_P<_Pl 
7r 

<_ 8-i--~(I(b))1/2. 

Note that  in the absence of censorship, Theorems 2.1, 2.2 and 2.3 give corresponding 
results for the random truncation model. In the absence of truncation, the model reduced 
to the one-dimensional censorship model for which BCH's (1981, 1988) result is optimal. 

3. Auxiliary results and proofs 

To achieve our goal of simultaneous Gaussian approximations of Zn over [0, b] and 
Q,~ over [po,pl] where 0 < Q(po) < Q(pl) < b, we shall obtained a representation of the 
PL-quantile process in terms of the PL process. This is the analogue of Bahadur 's  (1966) 
result for i.i.d, data. Similar representations for randomly censored data  have been 
obtained by Cheng (1984), Aly et al. (1985), Lo and Singh (1986), and for randomly 
truncated data  by Guler et al. (1993) and Zhou (2001). Then we apply the strong 
Gaussian approximation results for the PL process Tse (2003) to obtain Theorems 2.1 
and 2.2. Finally, Theorem 2.3 follow from the its analogue for the PL process. 

To prepare for the Proof of Theorem 2.1, we start with a few lemmas. Lemma 3.1 
shows the strong consistency of Qn(p) as an estimator of Q(p). Lemma 3.2 shows that 
F ~ composed with Qn is an approximate identity up to order O(1/n).  Lemmas 3.3 and 
3.4 give global and local bounds for the deviation between Q~ and Q. 
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LEMMA 3.1. Suppose F ~ is continous, aao <_ a j ,  bao < bj and condition (2.1) is 
satisfied. I f  Q(p) is the unique solution of F~ = p, then Q~(p) converges to Q(p) with 
probability one. 

The proof is parallel to that  for i.i.d, data, we omit it here. (See Serfling (1980).) 

LEMMA 3.2. I f  condition (2.1) is satisfied, then SUppo<p<m IF~ - p] = 
0 (  1 ) with probability one. 

PROOF. Noting that Qn(p) = Y~ for some observed item Y/, we have 

o F0 Fo(~) Fo(~_). [Fn(Qn(P)) - P] = n(Qn(p)) - p <<_ 

Taking supremum over [P0,Pl] and using the definition of the PL estimator (1.1), we 
have, almost surely, 

F o IF~ sup I n(Qn(P) ) -P l  <- sup 
pO~P(_Pl Qn(po)<__Yi<__Qn(pl) 

< sup [ 1 - F ~  1 ] ~ 
-- Q. (po)<y ,  g Q . ( p , )  nC~(Yi) 

[11 < sup - -  
-- Qn(po)<_y~<_Q,~(pl) n C n ( Y i )  

where nCn(Y~) _> 1 for 1 _< i _< n. For large enough n and small enough e, the last 
1 expression is bounded by supQ(po)_r e I ~ 1  by Lemma 3.1. Finally, since 

Cn converges uniformly to C and infQ(po)_~<_y<Q(m)+~ C(y) > 0, we obtained the desired 
result. [] 

LEMMA 3.3. Suppose condition (2.1) is satisfied and F ~ is continuously differen- 
tiable with derivative fo bounded away from zero on [Q(po) ,  6, Q(pl)+6]  for some 6 > o. 
Then we have, almost surely, SUppo<<_p<_pl v/-nlQn(p) - Q(p)I -- 0 ( ~ ) .  

PROOF. Using the strong approximation results for the PL-process in Theorems 
2.1 and 2.2 in Tse (2003), and the law of the iterated logarithm (LIL) for the Wiener 
process, we have, almost surely, supo<t<bv~ lF~  F~ = O ( ~ ) .  With 
t = Qn (p), we have, almost surely, 

x/~F~ = v~F~ + O ( l v / ~ l o g n ) .  

By Lemma 3.1, a Taylor expansion about Q(p) gives, almost surely, 

v~F~ ) = v/~F~ ) + v ~  f~ )[Qn(p) - Q(p)] + o ( ~ )  

for some in(P) between Q(p) and Qn(p). Rearranging and using Lemma 3.2, we have, 
almost surely, 

x/~f~ - Q(p)] = x/~[F~ - F~ + O( ~ n )  

= v/nip - F~ + O ( l x / ~ l o g n )  
= 
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since F ~ is continuous. Recalling the assumption for fo ,  we can divide bo th  sides by 
f~ Taking supremum over [Po,Pl] gives the desired result.  [] 

LEMMA 3.4. Let en = kl(logn/n) 1/2 and an = k2(logn/n) 3/4, where kl, ks are 
constants. Suppose F ~ is Lipschitz continuous on [0, b], b < b j ,  and condition (2.1) is 
satisfied. Then, for any 0 <_ s, t < b, we have, almost surely, 

(3.1) sup -~n [Zn(s) - Zn(t)][ = O(Sn). 
Is-tl<e,~ 

PROOF. We star t  with the cumulat ive hazard process Zn, which has the usual 
decomposi t ion 

%-< 2n(t) = + dF1 + Rnl(t), for 0 < t < b, --c- 

o ( ~  where suP0<t<b IRnl(t)] = x/-g ) almost surely by Theorem 2.1 of Zhou and Yip 
(1999). For 0 < s, t < b, we have, almost surely, 

1 i s t d ( F n , - F 1 )  Sstv/-n(C (3.2) V ~ 1 2 n ( S )  - 2n( t ) l  = C + - C'~) dF~ 

By the Lipschitz continuity of F ~ and the LIL for empirical process,  the second te rm in 
the right hand side is O(logn/n) almost  surely. 

For the first term, introduce the grid 

Ynj=j6n,  j = O , l , . . . , l n = [ f f - ~ ] ,  yn , .+i=b.  

For each y E [0, b], choose Ynj such that  Ynj <- Y <- Ynj+l. In part icular ,  snj and tnjl 
satisfy Snj _< s < snj+l  and tnj < t < tnj+l. Since C(y) > 0 for y E [s,t], and F ~ is 
Lipschitz continuous, 

c / ''~ d(y~l - vI) t d(Yn - F 1 )  < 
(3.3) q- 0(r := Anj q- O(~Sn). 

j 8n j C 

Each Any is an average of mean zero i.i.d, random variables with common bound  denoted  
say, by M.  Moreover, nVar(Anj) < / tnj+i  

- ~s.j ~ = O(en). Benne t t ' s  or, Bernstein 's  
inequality (see Pollard (1984), p. 193) gives 

P(Anj > 5n) _< 2 exp 
2en + 2M5~ 

where K(k2)  increases with k2. Choose large enough K so tha t  the  last expression is 
O(n -a ) .  Since there are at  most  O(n 5/4) Any'S, Borel-Cantelli  l emma gives P(Anj >_ 5n 
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infinitely often) = 0. Or, equivalently, max Anj ~_ 5n eventually with probability one. 
Returning to (3.2), we now have the O(6n) upper bound for the oscillation modulus of 
Z~/x/~. The lower bound is obtained in a similar manner. 

Finally, Theorem 2.2 of Zhou and Yip (1999) allows us to obtain the corresponding 
statement for the PL-process. [] 

PROOF OF THEOREM 2.1. We continue to use the notation gn and 6n as in Lemma 
3.4. Let s = Qn(p) and t = Q(p), p0 -< p <- pl, Lemma3.3  yields I s - t  I = O(en). 
Applying Lemma 3.4 gives, almost surely, 

(3.4) F~ - F~ = F~ - F~ + O(Sn). 

By Lemma 3.2, F~ can be replaced by p up to O(1/n).  For the right hand side, 
a Taylor expansion of the first term about Q(p) up to second order term gives, almost 
surely, f~ - Q(p)] + O([Q~(p) - Q(p)]2) + o(sn)  for po _< p <_ pl- Invoking 
Lemma 3.3 and rearranging terms in (3.4), we have, ahnost surely, 

v~f~ - Q(p)] = v/-~[p - F~ + O(x/~6n) 

for P0 _< P _< Pl. Since F ~ is continuous, F~ = p. Recalling the definitions of the 
PL process Zn and normed PL-quantile process Pn, we now have, almost surely, 

(3.5) 
(log n)  3/4 ) 

Pn(P) = Zn(Q(p) )  + 0 n l /4  

for P0 _< P _< Pl. Finally, Theorem 2.1 of Tse (2003) provides the strong Gaussian 
approximation statement for Zn, and hence, by (3.5), also for Pn. This completes the 
proof of the theorem. [] 

PROOF OF THEOREM 2.2. This is similar to the proof of last theorem with the 
role of Theorem 2.1 of Tse (2003) replaced by Theorem 2.2 of the same paper. [] 

PROOF OF THEOREM 2.3. This theorem follows from the representation (3.5) 
and the uniform consistency rate of the PL-process established in Theorem 2.3 of Tse 
(2003). [] 
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