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A b s t r a c t .  We consider maximum likelihood estimation of finite mixture of uniform 
distributions. We prove that  maximum likelihood estimator is strongly consistent, 
if the scale parameters of the component uniform distributions are restricted from 
below by exp(--nd), 0 < d < 1, where n is the sample size. 
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1. Int roduct ion 

Consider  a mix tu re  of two uniform dis t r ibut ions  

(1 - a ) f l  (x; a l ,  bl) + a f2 (x; a2, b2), 

where  fro(x; am, bm), m = 1, 2, are uni form densit ies wi th  p a r a m e t e r  (am,b , , )  on the  
half -open intervals [am - bin, am + bin) and 0 < a < 1. For defini teness and  convenience 
we use the half -open intervals in this paper ,  a l though obviously the  intervals  can  be open  
or closed. By using half-open intervals,  our  densit ies are right cont inuous  and  the  version 
of the  densi ty  is uniquely de termined.  For s implici ty  suppose  t h a t  a l  =-- 1/2, bl = 1/2, 
a = ao are known and the  p a r a m e t e r  space is 

{(a2, b~) I 0 a2 - b2, a2 + b2 _< 1} 

so t ha t  the suppor t  of the densi ty is [0, 1). Let  z l , . . . ,  xn denote  a r a n d o m  sample  of size 
n _> 2 f rom the t rue  densi ty  ( 1 -  ao ) f l  (x; 1/2, 1 / 2 ) +  a0f2(x ;  a2,0, b2,0). I f  we set a2 -- Xl, 
t hen  likelihood tends  to infinity as b2 --~ 0 (Fig. 1). Hence the  m a x i m u m  likelihood 
e s t ima to r  is not  consistent.  Actual ly  it does not even exist  for each finite n. 

W h e n  we restr ic t  t h a t  b2 >_ c, where  c is a posi t ive real  cons tan t ,  t hen  we can 
avoid the divergence of the  likelihood and the m a x i m u m  likelihood e s t i m a t o r  is s t rongly  
consis tent  p rovided  t ha t  b2,0 >_ c. Bu t  there  is a p rob lem of how smal l  we have to choose 
c to  ensure  b2,0 >_ c since we do not know b2,0. An interest ing ques t ion  here is whe the r  
we can decrease the bound  c = cn to zero wi th  the  sample  size n and  yet  gua ran tee  
the  s t rong consis tency of m a x i m u m  likelihood es t imator .  If  this  is possible,  the fur ther  
quest ion is how fast Cn can decrease to zero. This  quest ion is s imilar  to  the  (so far open)  
p rob lem s t a t ed  in H a t h a w a y  (1985), which t r ea t s  mix tu res  of no rma l  d is t r ibut ions  wi th  
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Fig.  1. T h e  l ike l ihood t e n d s  to  in f in i ty  as  b2 ~ 0 a t  a2 = x l .  
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Fig.  2. A n  e x a m p l e  of  log l ike l ihood  f u n c t i o n  for n -- 40. 

constraints imposed on the ratios of variances. See also a discussion in Section 3.8 of 
McLachlan and Peel (2000). 

Figure 2 depicts an example of likelihood function. Random sample of size n -- 40 is 
generated from 0.6. f(x; 0.5, 0.5) + 0.4. f(x; 0.6, 0.2) and the model is 0.6. f(x; 0.5, 0.5) + 
0.4. f(x; a, b). Despite the limited resolution in Fig. 2, there are actually n = 40 peaks of 
the likelihood function as b ~ 0. We see that  although the likelihood function diverges to 
infinity at these peaks, the divergence takes place only for very small b and the likelihood 
function is well-behaved for most of the ranges of b. This suggests that  the bound cn can 
decrease to zero fairly quickly while maintaining the consistency of maximum likelihood 
estimator. In fact we prove that  Cn can decrease exponentially fast to zero for the mixture 
of M uniform distributions. More precisely we prove that  maximum likelihood estimator 
is strongly consistent if cn = exp(--nd), 0 < d < 1. 

The organization of the paper is as follows. In Section 2 we summarize some prelim- 
inary results. In Section 3 we state our main result in Theorem 3.1. Proof  of Theorem 
3.1 is given in Appendix. In Section 4 we give a simulation result and some discussions. 

2. Preliminaries on identifiability of mixture distributions and strong consistency 

In this section, we consider the identifiability and strong consistency of finite mix- 
tures. The properties of finite mixtures t reated in this section concerns general finite 
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mixture distributions. 
A mixture of M densities wi th  parameter  0 = (cq, r i1 , . . . ,  eLM, riM) is defined by 

M 

f(x;  O) =-- E am fro(X; rim), 
m = l  

where am, m = 1 , . . . ,  M,  called the mixing weights, are nonnegative real numbers t ha t  
sum to one and fm(X;rim) are densities with parameter  rim. fm(x;rim) are called the 
components of the mixture.  Let 8 denote the parameter  space. 

In general, identifiability of a parametr ic  family of densities is defined as follows. 
Note tha t  in this paper a version of the density is uniquely determined by the right 
continuity. 

DEFINITION 2.1. (Identifiability of a parametr ic  family of densities) A paramet-  
ric family of densities {f (x ;  0) ] 0 E 8}  is identifiable if different values of parameter  
designate different densities; tha t  is 

f(x;O) = f(x;O') Vx, 

implies 0 = 0'. 

If a parametric  family of densities is not identifiable, then  it is said to be unidenti- 
fiable. 

In mixture case, when all components  fm(x;rim),  m = 1 , . . . , M  belong to the 
same parametric family, then f(x; O) is invariant under  the permutat ions  of the com- 
ponent  labels. Because of this trivial unidentifiability, the definition of identifiability 
for the mixture densities can be weakened as described in Teicher (1960), Yakowitz and 

M 
Spragins (1968), MeLaehlan and Peel (2000) and so on, so that ~-~-m=l Olrnfm( x; rim) = 

M ~ ! Y'~m'=l OZm' fm'(X; ' = M'  m' rim') implies M and for each m there exists some such tha t  
ctm = am, and rim --- ri~m" But,  even under  such a weakened definition, mixtures of 
density functions still have unidentifiability. For example, if c~1 = 0, then for all param- 
eters which differ only in ri1, we have the same density. We also discuss examples of 
non-trivial unidentifiabili ty of mixtures after Theorem 3.1 below. In any way, mixture  
model is unidentifiable. 

In unidentifiable case, true model may consist of two or more points in the parameter  
space. Therefore we have to carefully define strong consistency of est imator  0n, because 
we should define E)n to be consistent if 0n falls in arbi t rary  small neighborhood of the set 
of points designating the true model as n ~ oc. 

The following definition is essentially the same as Redner 's  (1981). We suppose 
tha t  the parameter  space 8 is a subset of Euclidean space and dist(0,0 ')  denotes the 
Euclidean distance between 0, O' E 8. 

DEFINITION 2.2. (Strongly consistent est imator)  Let To denote the set of true 
parameters  

To - {0 c 8 I f (x;  O) -- f(x;  0o) Vx}, 

where Oo is one of parameters  designating the true distribution. An est imator  On is 
strongly consistent if 

Prob ( lim inf dist(On,O) = O~ = 1. 
\n--*oo O~To / 
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In this paper two notations Prob(A) = 1 and A, a.e. (A holds almost everywhere), 
will be used interchangeably. The index 0 to the parameter always denotes the true 
parameter. 

In finite mixture case, regularity conditions for strong consistency of maximum 
likelihood estimator are given in Redner (1981). When the components of the mixture 
are the densities of continuous distributions and the parameter space is Euclidean, the 
conditions become as follows. Let F denote a subset of the parameter space. 

C O N D I T I O N  1. F is a compact subset of Euclidean space. 

For 0 C F and any positive real number r, let 

f (z ;  O, r) = sup f (x;  0'), 
dist(O',O)<r 

f*(x; O, r) = max(i ,  f (x;  O, r)). 

CONDITION 2. For each 0 C F and sufficiently small r, f (x;  O, r) is measurable and 

(2.1) f log(f* (x; 0, r)) f(x;  Oo)dx < cr 

CONDITION 3. If lim~__.or On = 0, then limn~c~ f (x;  On) -~ f (x;  O) except on a set 
which is a null set and does not depend on the sequence {On}n~176 

CONDITION 4. 
/ *  

(2.2) / l log f (x;  Oo)lf(x; Oo)dx < co.  
d 

The following two theorems have been proved by Wald (1949), Redner (1981). 

THEOREM 2.1. (Wald (1949), Redner (1981)) Suppose that Conditions 1, 2, 3 and 
4 are satisfied. Let S be any closed subset of F not intersecting To. Then 

suPoesf(zl;O ) x . . .  x f(zn;O) ) 
(2.3) Prob l i m  f--~l;-~0) x T . -  x f ~ - ~ o ~  = 0 = 1. 

THEOREM 2.2. (Wald (1949), Redner (1981)) Let On be any function of the obser- 
vations xl ,  . . . ,xn such that 

Vn, I I  f(xi;  On) 
i=1 f (xi;  0o) > 5 > 0, 

then Prob(limn__,~ inf0eTo dist(~),~, 0)) = 1. 

If Conditions 1, 2, 3 and 4 are satisfied, then it is readily verified by Theorems 2.1 
and 2.2 that  maximum likelihood estimator restricted to F is strongly consistent. 
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We also s tate  Okamoto's  inequality, which will be used in our proof in Appendix.  

THEOREM 2.3. (Okamoto (1958)) Let Z be a random variable following a binomial 
distribution Bin(n,  p). Then for  5 > 0 

 rob(  

3. Main result 

Here, we generalize the problem stated in introduct ion to the problem of mixture  
of M uniform distr ibutions and then state our main theorem. 

A mixture  of M uniform densities with parameter  0 is defined by 

M 

f(x;  o) _=  mfm(x; rim), 
m = l  

where fm(X; rim) =- fro(x; am, bin), m = 1 , . . . ,  M ,  are uniform densities with parameter  
y,~ = (a,~, b,~) on half-open intervals [am - bin, am + bm) and am are mixing weights. 
The parameter  space O C R 3M is defined by 

@ = (o~1, al,  b l , . . . ,  CtM, aM, bM) [ 0 <_ 0 ~ 1 , . . .  , Ot M ~__ 1, am = 1, b l , . . . ,  bM > 0 . 
r n = l  

Let Oo = (ao,1, ao,1, bo,1,. �9  (:tO,M, aO,M, bo,M) be the  true parameter  and let 

M 

f ( x ;  0o) = E ao,mfm(X; ao,m, bo,m) 
r n = l  

be the t rue density. Denote the minimum and the max imum of the support  of f ( x ;  0o) 
by 

Lmin = rain(a0,1 - b0,1, . . . ,  ao,M -- bo,M), 

Lmax = max(ao,1 + b0,1, . . . ,  ao,M + bo,M), 

and let 
L = Lma x - Lmin. 

Let Oc be a constrained parameter  space 

O c -  {O E O [b,~ >_c >O, r n =  l , . . . , M } ,  

where c is a positive real constant.  We can easily see tha t  Condit ions 1, 2, 3 and 4 are 
satisfied with Oc. Therefore if 00 E Oc, then maximum likelihood est imator  restricted to 
~c is strongly consistent (Redner (1981)). But  there is a problem of how small c must  
be to ensure 0o E ~c as discussed in Section 1. 

Since the support  of uniform density is compact ,  the following lemma holds. 
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LEMMA 3.1. For any parameter O = (o~l ,a l ,b l , . . . ,aM,aM,bM)  C 8,  there exists 
! I ! / a parameter 0' = (~1, al, b l , . . . ,  C~M, aM, bM) E 0 satisfying 

such that 

! . ! 
Lmin _< al," ", a M <_ Lmax, 0 < b~, . . . ,  b~  < L 

M M 

amfm(X'am'b~)  > E C~mfm(x;am,bm), 
r n =  l r n =  l 

VX C [Lmin, Lmax), 

where equality does not hold if there exists c~m > 0 such that am ~_ [Lmin,Lmax] or 
b m > L .  

By Lemma 3.1, maximum likelihood estimator is restricted to a bounded set in 
O C ]1~ 3M. 

Let {Cn}n~__0 be a monotone decreasing sequence of positive real numbers converging 
to zero and define On by 

O n = { 0 E O I 0 < c ~  < b m , m = l , . . . , M } .  

We are now ready to state our main theorem. 

THEOREM 3.1. Suppose that the true model f (x;  0o) can not be represented by any 
model consisting of less than M components. Let Co > 0 and 0 < d < 1. I f  cn = 
Co exp ( - n  d) <_ bm for all bin, then maximum likelihood estimator (which is restricted to 
On) is strongly consistent. 

Proof of this theorem is given in Appendix. 
Note that under the assumption of Theorem 3.1 the strong consistency holds even 

if the true model is unidentifiable in a non-trivial way. We illustrate the assumption of 
Theorem 3.1 by examples of two-component models. If the true model is aU(x; O, c~) + 
( 1  - c~)U(x; c~, 1) (see Titterington et el. (1985), p. 36) which is unidentifiable and can 
be represented by one component model, then the assumption of Theorem 3.1 is not 
satisfied. But if the true model is represented by �89  1)+ 2 U ( x ; - 2 ,  2) (see Everitt 
and Hand (1981), p. 5), which is unidentifiable because �89  1) + �89  
represents the same distribution, then the assumption of Theorem 3.1 is satisfied, because 
it can not be represented by one component model. 

Next proposition states that the rate of c~ = exp(--nd), d < 1, obtained in Theorem 
3.1 is almost the lower bound of the order of en which maintains the consistency. 

PROPOSITION 3.1. I f  Cn decreases faster than exp( -n ) ,  i.e., e~cn ~ 0, then the 
consistency of maximum likelihood estimator restricted to On fails. 

PROOF. By the strong law of large numbers, mean log likelihood of true model 
1 n log ~-~i=1 f (x i ;  00) converges to E[log f (x ;  0o)] < oc almost everywhere. Assume that 

Cn decrease faster than exp( -n ) .  Take al = Xl, bl = cn. Fix ~1 > 0 and fix other 
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1 n M 
. ,  log {Era=2 amfm(X~; ~Tm)} converges paramete rs  ( a2 ,~2 , . .  a M , ~ )  such tha t  ~ Y~i=2 

to a finite limit almost everywhere.  Then  

M 

1 log E fin(Xi;Zlm) 
n i=1 m=l 

> - - l o g { o q Z l ( X l ; a l  = X l , b l  -~- Cn) } -I- -- E l o g  o L m f m ( X i ; ~ m  
Tt n i=2 = 

1 {5 } > - log + - log o~mfm(Xi; ?Trn) "---+ (DO. 
n n i=2 ra=2 

Therefore  mean  log likelihood of the t rue  model  is domina ted  by tha t  of o ther  models  
and consistency of max imum likelihood es t imator  fails. [] 

4. Some discussions 

As s ta ted  above in Section 1, the failure of consistency of max imum likelihood es- 
t ima tor  is caused by the divergence of the likelihood of the model,  where some scale 
paramete rs  go to zero. Therefore  in our  set t ing it is of interest  to  investigate the be- 
havior of the likelihood of the models on the b o u n d a ry  (bin = Cn) of the res t r ic ted 
pa rame te r  space On. We repor t  a s imulat ion result  for the case tha t  the t rue  model  
is 0 .6 .  f ( x ;  0.5, 0.5) + 0 .4 .  f ( x ;  0.6, 0.2) and a compet ing  model  is 0 .6 .  f ( x ;  0.5, 0.5) + 
0.4.  f ( x ;  a, b = cn) which is on the bounda ry  (b = cn) of the rest r ic ted pa rame te r  space, 
where cn = exp(n-~ The  second column of Table  1 shows the log likelihood at 

/}n = 00. The  th i rd  column shows the  log likelihood maximized with respect  to a E [0, 1] 
(but  b is taken  to be cn). In the compet ing  model,  wi th  probabi l i ty  tending to 1, the 
length of the interval 2Cn is shor ter  t han  the  min imum of the dis tance between realized 
values. Therefore  with probabi l i ty  tending to 1 the suppor t  of f ( x ;  a, b = Cn) does not  
contain two or more realized values for all a E [0, 1]. Therefore  the  m ax im u m  of the 
likelihood is usually achieved when the  suppor t  of f ( x ;  a, b = cn) contains just  one re- 
alized value. Then  f ( x ;  a, b = cn) = 0.6 + 0.4/(2cn) on one par t icular  real izat ion and 
f ( x ;  a, b = c , )  = 0.6 on the other  n - 1 realized values. In this case the m ax im u m  of the 
log likelihood in compet ing  model  is given by log {0.6 + 0.4/(2Cn)} + (n - 1)log{0.6}. 
The  result  in Table 1 is based on one replicat ion for each sample size. If we repea t  the 
simulations, the  results are similar. Therefore  the result  in Table 1 indicates tha t  the log 
likelihood of the t rue  model  gets larger t han  tha t  of the compet ing  models with b = cn 
as the sample size n increases. This  s imulat ion result is consistent wi th  T h e o r e m  3.1. 

Table 1. Log likelihood of the true model and that of a competing model. 

sample size n log likelihood (true) log likelihood (b = Cn) 

10 0.7767 2.305 
50 9.769 11.38 

100 15.61 20.26 
500 56.49 67.11 

1000 117.9 104.7 
5000 582.6 199.3 
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We expect that  our result can be extended to other finite mixture cases, especially 
for densities which are Lipschitz continuous when the scale parameters are fixed. On 
the other hand, in Theorem 3.1, it might be difficult to weaken the assumption that 
there is no representation of the true model with less than M components. The problem 
studied in this paper is similar to the question stated in Hathaway (1985) which treats 
the normal mixtures and the constraint is imposed on the ratios of variances. Methods 
used in this paper may be useful to solve the question. 

Appendix: Proof of the strong consistency 

Here we present a proof of Theorem 3.1. Note that it is sufficient to prove Theorem 
3.1 for d arbitrarily close to 1. Therefore we assume d > 1/4 hereafter. 

The whole proof is long and we divide it into smaller steps. Intermediate results 
will be given in a series of lemmas. 

Define 

O~n = {O C On I Lmin _< Vain <_ Lmax, Cn <_ Vbm <_ L,  c n ~ 3bin < Co}, 

Fo -- {0 c O I Lmin < am _< Lmax, Co <_ bm <_ L, m = 1 , . . . ,  M}. 

Because {cn} is decreasing to zero, by replacing Co by some cn if necessary, we can assume 
without loss of generality that  To C F0. 

In view of Theorems 2.1, 2.2, for the strong consistency of MLE on On, by Lemma 
3.1, it suffices to prove that 

n 

lim suP~ [L=I  f ( x i ;  O) = O, a.e. 
n I]i=l f(x ; 0o) 

for all closed S' C F0 not intersecting To. Note that for all S' and {xi}in=_l, 

sup H f ( z i ; O )  = max sup f ( x i ; O ) ,  sup H f ( z i ; 0 )  . 
OeS'UO'n i-=l l, OeS' i=1 0eO~ i=1 

Furthermore equation (2.3) with S replaced by S ~ holds by Theorem 2.1. This implies 
that it suffices to prove equation (2.3) with S replaced by ( ~ .  

Note that  in the argument above the supremum of the likelihood function over 
S' U O" is considered separately for S' and O~. S' and ( ~  form a covering of S' U O~. 
In our proof, we consider finer and finer finite coverings of O ' .  As above, it suffices to 
prove that the ratio of the supremum of the likelihood over each member of the covering 
to the likelihood at 00 converges to zero almost everywhere. 

Let 0 C O ' .  Let K - K(O)  >_ 1 be the number of components which satisfy bm _< co. 
Without  loss of generality, we can set bl <_ b2 <_ . . .  <_ bK <_ co < bK+l <_ . ."  <_ bM. Let 
O',/c be 

(~ln, K :-- {0 E OIn I bl <_ b2 <_ . . .  <_ bK < co < bK+l <_ "'" <_ bM}.  

Our first covering of O" is given by 

M 

e" U '  = ~)n,K" 
K = I  
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As above, it suffices to prove equation (2.3) with S replaced by O~, K. We fix K from 
now on. Define ~K by 

(~K ~ { (aK+l 

M 
, a K + l , b K + l , . . . , a M , a M , b M )  C ]~3(M-K) j E am <- 1, a m > 0, 

m=K+l 

Lmin _< am <_ Lmax,eO <_ bm <_ L ,m = K +  1,. . .  , M }  

and for 0 E (~K, define 

M 
- Z amfm(X;.m), 

m=K+l 
] ( x ;  -- sup  ](x; 0'). 

dist(O,0')<_p 

Note that f(x; 0) is a subprobability measure. 

LEMMA A.1. Let B(0, p(0)) denote the open ball with center 0 and radius p(O). 
Then (gK can be covered by a finite number of balls B(0 (1), p(~(1))), . . . ,  B(~(s), p(~(s))) 
such that 

(A.1) Eo[logf(x;O(S),p(O(S)))] < Eo[logf(x;Oo)], s -- 1 , . . . , S ,  

where Eo[.] denotes the expectation under 0o. 

PROOF. The proof is the same as in Wald (1949). For all 0 E (~K, there exists a 
positive real number p(0) which satisfies 

Eo[log f(x; 0, p(0))] < Eo[log f(x; 0o)]. 

Since (~K C I-J0 B(0, p(0)) and OK is compact, there exists a finite number of balls 
B(~(1), p(O(1))),..., B(O(s), p(~(s))) which cover OK. [] 

Define 

etn,K,s = {0 C 0tn,K ] (aK+l,  aK+l, bK+I , . . . ,  aM, aM, bM) E B(O (s), p(~(s)))}. 

t t I . We now cover On, K by On,K,1,. . . ,  On,K, S. 

S 
OIn, K = U (~tn,K, s" 

s=l 

Again it suffices to prove that for each s, s = 1 , . . . ,  S, 

sup0ee:.K.~ 1--[in=l f(xi; O) 
(A.2) li~rnoo 1-Ln=l f(xi;Oo) ---- O, 

We fix s in addition to K from now on. 

a.e. 
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Because 
n 

lim -1 Z log f(xi; Oo) = Eo[log f(x; Oo)], 
r~,---* cx3 n 

i = 1  

(A.2) is implied by 

a . e .  

n 
1 

(A.3) l i m s u p -  sup Elogf (x i ;O)  < Eo[logf(x;Oo)], a.e. 
Tt O '  n-.-*oo OE n ,K ,~  i = 1  

Therefore it suffices to prove (A.3), which is a new intermediate goal of our proof here- 
after. 

Choose G, 0 < G < 1, such that  

(A.4) ;~ = eo[log f(x; 00)] - Eo [log {f(x; t~ (8), p(O(~))) + G}] > 0. 

Let u - maxx f(x; 00). Because {cn} is decreasing to zero, by replacing Co by some C n 

if necessary, we can again assume without loss of generality that  co is small enough to 
satisfy 

2Co < e -1, 

(A.5) 3 M .  u .  2Co. ( - l o g G )  < 4 '  

1 A 
(A.6) 2 M . u .  2Co. log ~ < 1---2" 

Although G depends on Co, it can be shown that G and Co can be chosen small enough 
to satisfy these inequalities. We now prove the following lemma. 

K LEMMA A.2. Let J(O) denote the support of ~-~m=l amfm(x;~?m) and let Rn(V) 
! denote the number of observations which belong to a set V CIR. Then for 0 C On,K, s 

(A.7) _1 ~ ,  log f(xi;O) 
n 

i = 1  

n 

1 E log {f(xi;  0 (~) p(O(~))) + G} 
n 

i = 1  

1 1 
+ -  E logf(xi;O)+ R,~(J(O)).(-logG). 

n 
x l e J ( O )  

PROOF. For x ft J(O), f(x;O) M ~-- Em=K+I C~mfm(x; ~]m). Therefore 

n 1 } 
1 F_logf(x,;O)= 1 logf(x ;0)+- Z log 
n i = 1  n n x i c J ( O )  x i f~J (O)  m = K + l  

< - log amfm(Xi; rim) + G 
n i = 1  m = K + l  

~_, logf(xi;O)-log amf~(xi;rl~)+G + ~  
x i E J ( O )  r n = K + l  
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1 n 

< - ~ log { /(x~;  ~(s), p(~(s))) + G} 
n 

i=1  

1 
+ -  E log f (x i ;O)-  1Rn(J(O))logG. 

n ?z 

[] 

We want to bound the terms on the right hand side of (A.7) from above. The first 
term is easy. In fact by (A.4) and the strong law of large numbers we have 

(A.8) lim -1 f i log{f(x{;O(~),p(~(s)))+G} = Eo[logf(x;Oo)] - A, a.e. 
n--* a~ n 

i = 1  

Next we consider the third term. We prove the following lemma. 

L E M M A  A . 3 .  

1 
limsup sup -R , (J (O))  < 3M.  u.  2co, 

n ' - - ~  O e O ~ , K ,  s "It 
a . e .  

PROOF. Let c > 0 be arbitrarily fixed and let J0 be the support of the true density. 
Jo consists of at most M intervals. We divide Jo from Lmin to Lmax by short intervals 
of length 2c0. In each right end of the intervals of Jo, overlap of two short intervals 
of length 2c0 is allowed and the right end of a short interval coincides with the right 
end of an interval of J0. See Fig. 3. Let k(co) be the number of short intervals and let 
Ii(c0),. . . ,Ik(co)(co) be the divided short intervals. Because J0 consists of at most M 
intervals, we have 

L 
k(co) <_ ~ + M. 

Note that  any interval in J0 of length 2Co is covered by at most 3 small intervals from 
K 

{Ii(co),...,Ik(co)(C0)}. Now consider J(0), the support of ~-]m=lamfm(X;~m). The 
support of each fro(x; ~?m), 1 <_ m <_ K, is an interval of length less than or equal to 2c0. 
Therefore J(O) is covered by at most 3M short intervals. Then the following relation 
holds. 

(A.9) sup 1Rn(J(O)) - 3 M . u . 2 c o  > e 
EOn,K,s  ' / t  

~ 1 _< ?k _< k(~o), R~(-rk(~o)) - ~ .  2co > a--M" 

11.(co)/n(~o) -. ..... 
i i ! ! :: :: 

2co 2co ............... 2co 

. . . . . .  x k C o o ) ( ~ )  

2co . . . . . .  2co 2co . . . . . .  2,-~ 

Fig.  3. D i v i s i o n  o f  J o  b y  s h o r t  i n t e r v a l s  of  l e n g t h  2co. 
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From (A.9), we have 
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Prob  sup 1Rn(J(O)) -  3M.  
OcO.,K,8 n 
k(co) 

< E Prob(1Rn(Zk(co)) - 
k=l 

u - 2 c 0  > r  

u �9 2co > 

For any set V C N, let Po(V) denote  the probabi l i ty  of V under the  true densi ty 

Po(V) - [ f(x; Oo)dz. 
Jv 

Then  

(A.10) Po(Ik(co)) <_ u.  2Co, k = 1 , . . . ,  k(O). 

Since R~(V) ~ Bin(n,  Po(V)) and from (2.4), we obta in  

P rob  Rn(Ik(co)) - u. 2co > 

<_ Prob (1Rn(Ik(co)) - Po(Ik(CO)) 

2n 2 
_< exp 9--M-if]. 

Therefore 

) P r o b (  sup 1 R n ( J ( O ) ) - 3 M ' u ' 2 c o > e  <_ -~co+M e x p ~  9M2].  
\oeo'~.K,s 

W h e n  we sum this over n, the resulting series on the right converges. Hence by Borel- 
Cantelli,  we have 

( sup 1 R n ( J ( O ) ) - 3 M . u . 2 c o > c  i.o.~ = P rob  0. 
\ 0 c o :  K,s n ] 

Because e > 0 was arbitrary, we obtain  

l imsup  sup 1Rn(J(O)) <_ 3M.  
n~oo OE(~',K,8 rt 

u �9 2co, a.e. [] 

By  this l emma and (A.5) we have 

(A.11) l imsup  sup 1 R n ( J ( O ) ) . ( - l o g G ) < _ 3 M ' u ' 2 c o ' ( - l o g G ) < - ~ .  
n---+ec 0EO-,K,s n 

This bounds  the third t e rm on the right hand side of (A.7) from above. 
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Finally we bound the second term on the right hand side of (A.7) from above. This 

is the most difficult part of our proof. For x E J(O) write f (x;  O) M = E m : ~  ~m/m(X; V~) 
a s  

(A.12) f(x; O) : 1 T~ H(Jt(O))l g,(o)(X), 
n 

t=l  

where Jt =- Jr(O) are disjoint half-open intervals, 1j,(o)(X) is the indicator function, 

H(Jt(O)) = f(x;  0), x C Jr(O), 

is the height of f(x;O) on Jr(O) and T =_ T(O) is the number of the intervals Jr(O). 
Note that T(O) < 2M, because f(x;  O) changes its height only at am - b m  or am + bin, 
m = 1 , . . . ,  M. For convenience we determine the order of t such that  

H(JI(O)) <_ H(J2(O)) <_'" <_ H(JT(o)(O)). 

We now classify the intervals Jr(O), t = 1, . . .  ,T(O), by the height H(Jt(O)). Define c~ 
by 

' ( ) c n = co �9 exp - - n  1/4 

and define 7-n (0) 

(A.13) 7n(O) - max t e { 1 , . . . , T }  I H(Jt(O)) < 2c--~n �9 

Then the second term on the right hand side of (A.7) is written as 

(A.14) 1 E l ~  ) 1  Z logH(Jt(O)) 
n n x,eJ(O) t=l x~eJ~(o) 

T(O) 

_ _ 1 E Rn(Jt(O))'logH(Jt(O)) 
n 

t = l  

~n(o) 
_= i E nn(Jt(O)) ' logH(Jt(O)) 

n 
t = l  

T(O) 
1 

+ -  E Rn(Jt(O)l ' logg(Jt(O)) .  
n t=r,(O)+l 

From (A.5), (A.6), and noting that  log x / x  is decreasing in x > e, we have 

(A.15) 

~-~(o) 

t=l H(Jt(O)) 
logH(Jt(O)) <_ 3 . 2 M . u .  2co-log ~ < 

~.co 

T(O) 

E 
t=rn(O)+l 

3.  - l o g H ( d , 0 ) )  < 3 . 2 M .  -2. # - log M 
n n 

4 0 .  
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Suppose that  the following inequality holds. 
t ' - _ _  

(A.16) lim sup sup l~l~lRn(Jt(O))logH(Jt(O)) 
n--*~ OEO'.K,s 

-- 3 H(Jt(O)) 

+ ~ -logH(J~(O)) <o, a.e. 
n 

t = r ~ ( O ) + X  

Then from (A.14) and (A.15), the second term on the right hand side of (A.7) is bounded 
from above as 

4 
(A.17) l imsup 1 sup E logf(xi;O) <_ ~. 

n ~ o c  n 0 E O - 1 < s  
, , x i C J ( O )  

Combining (a.8), (A.11) and (A.17) we obtain 

1 
l imsup sup - ~_, logf(xi;O) <_ (Eo[logf(x;Oo)] - ,k) + ~ + -4 

0 ' rt n---*oo E(9 ,K, ~ i=1  

< E0[log f(x; 00)] 2 '  a.e. 

and (A.3) is satisfied. Therefore it suffices to prove (A.16), which is a new goal of our 
proof. 

I We now consider further finite covering of On,K, s. Define 
! (9",K,s,T,~ -- {0 e O,~,K,s ] T(O) ---- T,'r,~(O) = T}. 

Then 

(A.18) sup 
0E(O;,K,~ 

[ ~  1Rn(Jt(O)) log H(Jt(O)) 
n 

- 3 H(J~(O)) l o g H ( J ~ ( 0 ) )  + ~ -n logH(J~(O)) 
t = r , ~ ( O ) + l  

- -  T = I , . . . , 2 M ~ r = I , . . . , T  [_OCOn,K,s,T,.r 

- a log H(Jt(O)) 
~=1 H(Jt(O)) 

+ 0coo'_sup~ ~ T ~ {~t=,+X 1Rn(Jt(O))l~ 

- a  ~ -~XogH(J~(O)) . 
t = ~ - + l  
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Suppose tha t  the following inequalities hold for all T and T. 

(A. 19) lira sup sup 
n-"-+o0 OC(~,K,s,T,r 

(A.20) lira sup sup 
n--*oe OC@'~,tC,,,T,~ 

))] _ 3  E u t = l  H(Jt(O))log H(J t (0  _< 0, a.e. 

[t=~_~+l l Rn(Jt(O)) l~ H(Jt(O)) 

- 3 Z -2 logH(Jt(O)) < O, a.e. 
n 

t = ' r + l  

Then (A.16) is derived from (A.18), (A.19), (A.20). Therefore it suffices to prove (A.19) 
and (A.20), which are the final goals of our proof. We state (A.19) and (A.20) as two 
lemmas and give their proofs. 

LEMMA A.4. 

] l imsup sup Rn(Jt(O)) logH(Jt(O)) - 3 - logH(Jt(O)) <_ 0 
n----~oo OEOIn,K,s,T,T t = • + l  t = ~ - + l  n 

a.e.  

PROOF. Let 6 > 0 be any fixed positive real constant and let a~(O) denote the 
middle point of Jr(O). Here, we consider the probability of the event that  

(A.21) s . p  
O' @E n,K,s,T,T t = T + l  

> 2M5. 

] 1Rn(Jt(O))l~ 3 E 21~ 
t = r + l  

(A.22) 

The event (A.21) occurs. 

s u p  
OC(~,K,s,T,T 

! 
=~ 30 E I~n,K,s,T,T, 3 t  > 3- 

max{O,(1Rn([alt(O )-cn,' a~(O) 
! 

==~ 30  E On,g , s ,T ,T ,  ~ t  > T 

- ' a i (O ) + c~n]) > 6 Rn([a~(O) Cn, 

[t=r+l ~ max {0, (1-1:~n([a~(O)--etn,alt(O) -~- Cln]) 

- - > 5  
2cn 

sup R n ( [ a '  -- C~n, a' + e~]) _> 6. 
Lmin _~a t ~ L m a x  

> 2M5 

Noting that  for t > % the length of Jr(O) is less than  or equal to 2c~, the following 
relation holds for this event. 



16 K E N T A R O  T A N A K A  A N D  A K I M I C H I  T A K E M U R A  

Below, we consider the probability of the event that  (A.22) occurs. We divide J0 from 
Lmin to Lmax by short intervals of length 2d n as in the proof of Lemma A.3. Let k(c') be 
the number of short intervals and let I1 (c~) , . . . ,  Ik(c-)(c~) be the divided short intervals. 
Because J0 consists of at most M intervals, we have 

L 
(A.23) k(c'~) <_ ~2c--- 7 + M. 

Since any interval in J0 of length 2c~ is covered by at most 3 small intervals from 
{Ii(c~n),... ,  Ik(c')(c~)}, the following relation holds. 

(A.24) sup Rn([a' - c', a' + C'n]) > 6 ~ 1 <_ 3k <_ k(C~n), Rn(Ik(Ctn)) > 2. 
Lmin <--a' <-- L . . . .  

Note that  Rn(Ik(dn) ) ~ Bin(n, Po(Ik(c~n))) and Po(Ik(dn) ) < 2dnU. Therefore from 
(A.22), (A.23) and (A.24) we have 

Prob sup 1nn(Jt (O)) l~  E n l~ >2M6 
~kOEOn,K,s ,T,  "r t=~ -+ l  t = ~ - + l  

< ~ + M (2c'~,)~(1 - 2 d ~ )  n-~ 
k = 2  

< + M ~ ( 2 c ' u )  k 
k = 2  

<_ + M (2nc'u) 2exp(2nc~u). 

When we sum this over n, resulting series on the right converges. Hence by Borel-Cantelli 
and the fact tha t  6 > 0 was arbitrary, we obtain 

l imsup sup [ ~ ~  
n ~ o c  0 ~ O ' ~ K s T  . . . .  r t = T + l  

Rn( Jt(O) ) log H( Jt(O) ) 

- 3 ~-~t=T+l-n 21~ <0 a.e. [] 

Finally we prove (A.19). 

LEMMA A.5. 

lim SUPn_.c~ 0cO'~,,,,sup. s, T ,T [ ~ l Rn( Jt(O) ) l~ H( Jt(O) 

T 

_ 3  E u t=l n(J~(O)) logS(J~(O))  < 0  a.e. 



C O N S I S T E N C Y  OF MLE FOR M I X T U R E S  17 

PROOF. Let 5 > 0 be any fixed positive real constant  and let hn be 

(A.25) h~ ~ ~ u log . 

We divide [c'n/M , co] from Co to C'n/M by short intervals of length ha. In the left end 
c'~/M of the interval [C'n/M , Co], overlap of two short intervals of length hn is allowed and 
the left end of a short interval is equal to C~n/M. Let In be the number  of short  intervals 

of length hn and define b} n) by 

b}n) ~ ~ c O -- ( l -  1)hn, 

[ e'/M, 

Then we have 

CO 
(A.26) In < 7 -  + 1. 

nn 

Next, we consider the probabil i ty of the event tha t  

(A.27) sup 
O~(~tn,K,s ,T,r 

l <l  <In, 
/ = / ~ + 1 .  

[t=~l l Rn(Jt(O))l~ 

-3~--~ u logH(Jt(O))] 
t = l  H(Jt(O)) 

> 2M5. 

For this event the following relation holds. 

The event (A.27) occurs. 
l 

::~ ~0 E On,K,s,T,r, 1 ~ ~ / (1 ) ,  . . . ,  ~ I (T)  < 1 n s . t .  

2h(. ) < 1 9h(n) oh(n) 1 
" l ( 1 ) + l -  H(Jl(O)) < - - -~ l (1 ) ' ' ' ' ' "~ l ( r )+ l  ~-- H(J~(O)) 

{ (1 h(n) a,t(0) + max O, Rn([a't(O)--~l(t), ~l(t)J' 
t = l  

0h(n) - 3u .  -~l(t)+l ] } log - -  

! 30 c On,g,~,T, ., 1 <_ 3t <_ r, 1 <_ 31(t) <_ In s.t. 

2h(n) 1 9h(n ) 
"l(t)+l <- H(Jt(O)) <- "vz(t)' 

{ h(n) + 
m a x  0, -]~n([a!t(O)--Vl(t)' ~l(t)J] 

- 3u. .vz( t )+l  log - -  

=~ 1 < 31 < l,~ s.t. 

max{0 ,  sup (1Rn([ a, b(n) a, (n) 
Lmin<_a'<_L . . . .  \ n  - z , + bz ]) 

_< 2b12), 

1 
> 2M5 

2h(-) ~'/(t)+l 

1 
> 5  h(n) 

"l(t)+l 
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(A.28) 1 _< 3l _< In s.t. 

s . p  
Lmin_<a' _<Lm~x 

o~(~ ) ~ } 1 -3u..~,l+lj l o g ~  > 5  
"V/+l 

b(n) I ) 1 
l ,a  + b}n)]) - 3u.  2b} n) log oh(n--- ~ 

~V/+l 

+ 3u(2b}, ) 9h(n ) 1 } - "~1+1) log 
"~/+1 

>5.  

Then from (A.25) the following relation holds. 

(A.29) 
The event (A.28) occurs. 

1 < 31 < ln, 
(n) 1 5 

sup (Rn([a ' -b}n) ,a  '+b}~)]) - 3 u - 2 b  l )loggh~- ~ - >  ~. 
Lmin _~a' ~ Lmax ~Vl-~- 1 

Below, we consider the probability of the event that (A.29) occurs. We divide J0 
from Lmi, to Lmax by short intervals of length 2b} n) as in the proof of Lemma A.3. Let 

(~) 
) be the number of short intervals and let II(b}n)) , . . .  ,Ik(b},))(b} n)) be the divided k(b l 

short intervals. Then we have 

(A.30) 
(n) L 

k(b  l ) ~ 2b}n----- ~ -~- M .  

Since any interval in J0 of length 2b} n) is covered by at most 3 small intervals from 
(-) 

{I1 (b}n)),. . . ,  Ik(bl.) )(b I )}, the following relation holds. 

( (A.31) sup ( 1 R n ( [ a ' - b ( n )  , ! l) ! ) 5_2 1 + boa)  - 3u.  2Do n) > log 
Lmin<~a'~Lm . . . .  /+1 / 

m a x  ( 1  / , ( \ \  _ u .  ( ) ~ 1 5 ( ~ ) - l l o g  
k=l ..... k(b} n) ) -~n('Ik('bin) ) ) 2b~n) 3 " -2 

Note that Rn(Ik(b}n))) ,.~ Bin(n, Po(Ik(bln)))) and Po(.[k(b}n))) ~__ U "  2bl n). Therefore 
from (2.4) and (A.30) we have 

(A.32) Prob 
1 ( n))) 1 

max - Rn(Ik(b} - u .  > 3 " -2 
k=l ..... k(b}n)) n 

L 52 1 
_< + M  exp - 2 n -  ~-~ log 

~'/+1 / 

( 1 1) 
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F r o m  (A.26),  (A.28),  (A.29),  (A.31),  (A.32),  we o b t a i n  

P r o b  (\0EO,~,K,~.T. [t=~l l t~n(Jt(O))logg(Jt(O)) 

- 3 H(Jt(O)) 
t=l 

) { < ~ + 1  2 - - ~ + M  exp - 2 n . ~ - ~  log 

W h e n  we s u m  this  over  n,  the  resu l t ing  series on  the  r igh t  converges .  Hence  by  Borel-  
Cante l l i  and  the  fact  t h a t  5 > 0 is a rb i t ra ry ,  we have  

lim sup n--. o~ 0ee'sup, K, ~ ,T,r [ fi lRn(Jt(O))l~ 

t=l  H(Jt(O)) logH(Jt(O < 0 a.e. []  

Th i s  comple te s  the  p roo f  of  T h e o r e m  3.1. 
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