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A b s t r a c t .  A general  class of condi t ional  U-s ta t i s t ics  was in t roduced  by W.  S tu te  
as a general izat ion of the  N a d a r a y a - W a t s o n  es t imates  of a regression function. I t  
was shown tha t  such s ta t is t ics  are universal ly  consistent .  Also, universal  consisten- 
cies of the  window and kn-nearest  neighbor  e s t ima to r s  (as two special  cases of the  
condi t ional  U-stat is t ics)  were proved. In this  paper ,  we ex tend  these resul ts  from the 
independent  case to dependent  case. The  resul t  is appl ied  to  verify the  Bayes risk 
consis tency of the  corresponding d i sc r imina t ion  rules. 

Key words and phrases: Universal ly consis tent  condi t ional  U-sta t is t ics ,  absolute  
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1. Introduction 

In this paper we work with the so-called conditional U-statistics introduced by 
Stute (1991). These statistics may be viewed as generalizations of the Nadaraya-Watson 
estimates of a regression function. 

To be precise, let {(Xi,Yi), i  _> 1} be a sequence of random vectors in some Eu- 
clidean space ~ d  • ms,  defined on some probability space (~, A, P).  We assume that  
{(X~, Yi), i _> 1} is absolutely regular with rates 

(1.1) E rn/3i-1/~(m) < +oz, 
rn~_l 

where 0 < ~(m) < 1 and r is a positive integer. Also assume that  the random vectors 
(r.v.'s) {(Yi I Xi) , i  >_ 1} are independent.  

Recall that  a sequence of random vectors {Xi, i > 1} is absolutely regular if 

maxE/j___l (AEa(XI,i)_j+m)SUp IP(AIa(Xi, l < i < j ) ) - P ( A ) l } = ~ ( r n ) l O .  

Here a(Xi, 1 < i < j) and a(Xi, i > j + m) are the a-fields generated by (X1 , . . . ,  Xj)  
and (Xj+m, Xj+m+l,... ,Xn), respectively. Also recall that  {Xi} satisfies the strong 
mixing condition if maxj>l{sup IP(A A B) - P(A)P(B)I; A C a(Xi, 1 <_ i <_ j), B C 
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a(Xi,  i _> j + m)} = a(m)  j~ O. Since a(m) <_/3(m), it follows that if {X~} is absolutely 
regular, then it is also strong mixing. 

Let h be a function of k-variates (the U kernel) 
which means that E{supz Ih(Yz)[ ~} < + ~  (where 
/3 = (~31, .. . ,/3k) of length k, that is, over all pairwise 
which implies that for all integers i l , i 2 , . . . , i k  (il < i2 < --- < ik) h(Yil , . . . ,Yik)  E E~ 
the space of all random variables Z for which IZ[ r is integrable. In order to measure the 
impact of a few X's,  say (X~, . . . ,  Xk), on a function h(Y~, . . . ,  Yk) of the pertaining Y's, 
set 

such that for some r _> 1, h C s 
sup extends over all permutations 
distinct i l l , . . . , /3k taken from ~V*) 

(1.2) re(x) =_ r a ( x l , . . . , x k )  := E[h(Y1, . . . ,Yk)  I X1 = x l , . . . , X k  = xk] 

where m is defined o n / R  dk. 
For estimation of m(x) ,  Stute (1991) proposed a statistic of the form 

(1.3) u,~(x) = u n ( x l , . . . ,  xk) = Ef t  h (Yz l , . . . ,  YZ~) I]jk-1K[(xj - Xz j ) /hn  ] 
k I ] j= l  K [ ( x j  - 

where un is defined on ~ d k  K is the so-called smoothing kernel satisfying f K(u)clu = 1 
and {h,,  n > 1} is a sequence of bandwidth tending to zero at appropriate rates. Here 
summation extends over all permutations fl = ( f l l , . . . , f lk)  of length k, that is, over 
all pairwise distinct f l l , . . . , f lk  taken from 1 , . . . , n .  Stute (1991) proved the asymp- 
totic normality and weak and strong consistency of Un(X) when the random variables 
{(Xi, Y~),i > 1} are independent and identically distributed. Harel and Puri (1996) ex- 
tended the results of Stute (1991) from independent case to the case when the underlying 
random variables are absolutely regular. Stute (1994b) also derived the s  convergence 
of the conditional U-statistics under the i.i.d, set up. 

If a number of the Xi's in the random sample are exactly equal to x which can 
happen if X is a discrete random variable, PY (. ] X = x) can be estimated by the 
empirical distribution of the Yi's corresponding to Xi's equal to x. If few or none of the 
Xi's are exactly equal to x, it is necessary to use Y~'s corresponding to Xi's  near x. This 
leads to estimators/~n Y(. I X  = z) of the form 

I x  = x )  = j 
i = l  

where W,~(x) = Wn~(X, X 1 , . . . ,  X~) (1 < i < n) weights those values o f / f o r  which X~ is 
close to x more heavily than these values of i for which Xi is far from x and IA denotes 
the indicator function of A. 

Let g be a Borel function on ~ such that g(Y) E s Corresponding to W~ is the 
estimator gn(X) of g(x) = E(g(Y)  ] X = x) defined by 

n 

i=1 

More generMly if we now consider the estimates of re(m) defined in (1.2), this leads to 
weighting those values of fl for which X~  = ( X z l , . . . ,  XZk) is close to x more heavily 
than the values of fl for which X~  is far from x. 
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This is why, as in Stute (1994a), we study a fairly general class of conditional 
U-statistics of the form 

(1.4) ran(X) : E W ~ , n ( x ) h ( Y ~ )  

designed to estimate re(x), where Wfi,~(x) is defined from a function W~(x, y) by 
W~,n(X) = W~(x, XZ), Y~ = ( Y z l , " ' ,  Yzk), and the summation in (1.4) takes place 
over all permutations/3 -- ( i l l , . . .  ,ilk) of length k such that  1 < l i  _< n, i = 1 , . . . ,  k. 

Remark 1.1. The estimator defined in (1.3) is a special case of the estimator de- 
fined in (1.4), see (2.6). 

In order to make ran(x) a local average, W~,n(x) has to give larger weights to 
those h(Yfl) for which Xfl is close to x. For this general class of conditional U-statistics 
(defined in (1.4)) and for i.i.d, random variables, Stute (1994a) derived the universal 
consistency. We extend his results for the case of absolutely regular r.v.'s which allow 
broader applications that  include, among others, hidden Markov models described in 
detail in Section 3. 

We shall call {Wz,n } un ive r sa l l y  cons i s t en t  if and only if 

m~(X) --* re(X) in s  

under no conditions on h (up to integrability) or the distribution of {(Xi, Yi),i >_ 1}. 
Here X = ( X ~  ~ is a vector of X's with the same distribution as (Xl , . . . ,Xk)  
and independent of {(Zi, Y/), i > 1}. 

For the ease of convenience, we shall write WZ for W~,n. 
Assumptions and main results are gathered in Section 2. In Section 3, we will 

show how our results are useful for the problem of discrimination that  is considering 
an unobservable random vector Y which is correlated to an observable vector X. To 
estimate the value of Y from the value of X by using the minimal conditional risk, we 
need to know the distribution of (X, Y) which is unknown. That  is why we use a sequence 
of observations (X1, Y1),..., (Xn, Yn) independent of (X, Y) and often called a training 
sequence in pattern recognition to estimate the unknown conditional probabilities. The 
most adapted estimates to this situation are those which have the form given in (1.4) 
because we need to use the (Xi, Y/) where Xi is near x. At last, we will see an application 
to the hidden Markov model. Then we give the proofs in Section 4. The main idea is to 
show that  the estimator m~ is the ratio of two U-statistics. 

2. Assumptions and main results 

Consider the following set of assumptions. 
(i) There exist functions V~(x, y) on /R 2dk such that  for each s �9 s z (n) = 

(Zl , . .  . , zn)  �9 j~dn and y(n) ~_ (Yl , . . . ,Yn)  �9 j~sn 

~ Vn(x,z~)g(yz) 
~-~.Wn(x, zz)e(Yz)= ~-zV~,-~ ) 

where zz = (z~l , . . .  ,z~k) and yz = (YZl,...,Y~k). 
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(ii) There exists a function V(~) on j~dk satisfying 

f lV(x)ldx < 

such that for each scalar function q o n  j ~ d k  verifying 

sup lq(x)l  < 
X E.h~ d • k 

we have 
k 

nlim / q(z)Vn(x,z)  H F(dzj) 
j = l  

= q(x)/(x)/V(z)dz 

where F is the d.f. of X1 and ](x)  k = [Ij=l f (x j )  where f is the density function of F.  

Remark 2.1. Our conditions (i) and (ii) are completely different from conditions 
(ii) to (v) in Stute (1994a). Our conditions are more general and more easy to verify. 
More, the condition (i) in Stute (1994a) is not necessary. 

The following theorems generalize Theorems 1.1, 1.2 and 3.1 in Stute (1994a) from 
the independent case to the absolute regularity case. 

T H E O R E M  2.1.  Assume that h �9 s r. Then under (i), (ii), and (1.1), 

m (x) re(x) in 

that is 

where p denotes the distmbution of (X1, X2 , . . . ,  Xk). 

(2.2) 

COROLLARY 2.1. 

, 0  

Assume that h is a bounded function, and 

E no exp(-nl-Pdn) < oo 
n > l  

for some p (0 < p < 1) and 

k 

.~  ~dk  J7 s j = l  
ie{1 ..... k} 

then, under the conditions of Theorem 2.1, mn(x) --, re(x) with probability one for 
p-almost all x. 

Theorems 2.2 and 2.3 deal with two special cases: window weights and NN-weights. 
Consistency of window estimates for the regression function has been obtained by 
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Devroye and Wagner (1980) and Spiegehnan and Sacks (1980). NN-weights for the 
regression function have been studied in Stone ((1977), Theorem 2). 

In what follows, I" ] denotes the maximum norm on ~ d .  We also write 

IIX  - x l l  : =  max IX~, - xil. 
l< i<k  

To define window weights, put (see Stute (1994a)) 

{l[llx~_~ll<_hnl / ~-~ l[llX~_~lt<h~ ] if well defined, 
(2.3) WZ(x) = 0, otherwise. 

Here ha > 0 is a given window size to be chosen by the statistician. Then we have the 
following result: 

THEOREM 2.2. Assume hn --+ 0 and nh d --~ cr as n --+ oo. Then, under (i), (ii) 
and (1.1), we have 

m n ( X )  ~ re (X)  in s 

where Wz(x )  in (1.4) is given by (2.3). 

For the NN-weights, recall that Xy is among the k~-NN of x E j~d  iff dj (x) : =  

HXy - x]l is among the kn-smallest ordered values dl:n(x) < . . .  < dn:n(X) of the d's. 
Ties may be broken by randomization. 

F o r a  given 1 < kn <_ n, set 

if X ~  is among the kn-NN of xi for 1 < i < k 
(2.4) W~(x) = kn u"  d otherwise. 

THEOREM 2.3. 
(ii) and (1.1) 

Assume that kn ~ oo and kn /n  ---+ 0 as n --~ c r  Then under (i), 

ran(x) re(x) in 

where W~(x)  in (1.4) is given by (2.4). 

We now consider as estimator of re(x),  the statistics of the form 

(2.5) m (x) = an(x)  

where un(x) is defined in (1.3). Then, in view of (1.4), we have 

(2.6) 
W~,n(X) = [ I k = l  K[(xj - Zfl~)/hn] 

~./~ k 
[ l j = l  K[(xj -- X~j)/hn] 

where K ( x )  is a so-called smoothing kernel satisfying f K ( u ) d u  -- 1 and 
limu~oo lu lK(u)  = 0 and {hn,n > 1} is a sequence of bandwidths tending to zero. 
This special case was studied by Stute (1991) for i.i.d, random variables, and further 
investigated by Harel and Puff (1996) for dependent random variables. The following 
theorem establishes that the universal consistency still holds for conditional U-statistics 
involving kernel K and a sequence of bandwidth hn. 
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THEOREM 2.4. Assume that hn --+ 0 and nh d ~ c~ as n ~ ~ .  Then under 
conditions (i), (ii) and (1.1), we have 

m (x) re(x) in s 

where re(x) is g,ven by (1.2). 

3. Application to the Bayes risk consistency in discrimination 

Now, we apply the results of Section 2 to the problem of discrimination described 
in Section 3 of Stute (1994a). Then we apply it to the Hidden Markov Model (HMM) 
which satisfies condition (1.1). At last, we give an example such as a multivariate mixing 
process defined in (3.4) below. We give a generalization of Theorem 3.1 of Stute (1994a). 

Let h be any function taking at most finitely many values, say 1 , . . . ,  M. The sets 

Aj = {(Yl, . . . ,  Yk); h ( y l , . . . ,  Yk) = j}, 1 <_ j < M 

then yield a partition of the feature space. Predicting the value of h(Y1,. . . ,Yk) is 
tantamount to predicting the set in the partition to which (Y1,..-,  Yk) belongs. For any 
discrimination rule g, we have 

M P 

P ( g ( X )  = h ( Y ) )  < ~-~.1  m a x m J ( x ) # ( d X l )  .. .#(dxk)  
j= l - - J{x :g (x )=J}  

where 

(3.1) mJ(x )  = P ( h ( Y )  = j l X = x) ,  x e ~ p. 

The above inequality becomes an equality if 

(3.2) go(x) = arg max mJ(x )  
I<j<M 

go is called the Bayes rule, and the pertaining probability of error 

(3.3) L* = I - P 0 ( g 0 ( X ) = h ( Y ) ) = I - E [  max mJ(x)]  
[I<j<M J 

is called the Bayes risk. Each of the above unknown function mJ's can be consistently 
estimated by one of the methods discussed in Section 2. Let 

m~(x )  = E Wz(x)l[h(r~)=J]'  1 < j <_ M 
Z 

gno(X) = arg max rnJn(X). I~j~M 

and set 

Write 
Ln : =  P(gno(X) • h( Y)). 

Then, the following theorem shows that  the discrimination rule gno 
Bayes' risk consistent (i.e. Ln ~ L*). 

is asymptotically 
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THEOREM 3.1. 
for  almost all x 

Assume  that the weights {Wzn} are universally consistent. Then 

Ln ~ L* as n ~ c~. 

PROOF. Follows from the obvious relation 

, L u -  L*] ~ 2E  [maxl<_j<_M ] m Y ( X ) - m J ( X ) ] ]  " [] 

Remark  3.1. From Theorem 2.1, as h is bounded, we can apply Theorem 3.1 when 
the conditions (i), (ii) and (1.1) are satisfied. 

Now, we consider models for which the Bayes risk consistency in discrimination is 
available. One very useful should be the tt idden Markov Model (HMM) introduced by 
Baum and Petrie (1966). First we explain the elements and the mechanism of the type 
of HMM's. 

There are a finite number, say M, of states in the model; we shall not rigorously 
define what a state is but  simply say that within a state the signal possesses some mea- 
surable, distinctive properties. At each time i, a new state is entered based upon a 
transition probability which depends on the previous state (Markovian property). After 
each transition is made, an observation is produced according to a probability distribu- 
tion which depends on the current state. This probability distribution is held fixed for 
the state regardless of when and how the state is entered. 

For example, let us consider an "urn and ball" model (Rabiner and Juang (1986)). 
There are M urns, each filled with a large number of colored balls. There are m possible 
colors for each ball. The observations sequence is generated by initially choosing one of 
the M urns (according to an initial probability distribution), selecting a ball from the 
initial urn, recording its color, replacing the ball, and then choosing a new ball according 
to a transition probability distribution associated with the current urn. 

Define now a Hidden Markov Model. Let (Yi)i___l be a Markov chain with state 
space A; C / R  ~ and let (Xi)i_>l be a stochastic process with state space A' C Nd. 

We call (Xi, Yi)i_>l a hidden Markov Model (HMM) if the (Y/) are conditionally 
independent given (X~)~>~ such that for a family (Q~)xex  of probability measures on y .  

P (  (Y/)~->I E I-I Aii>_l 

for any measurable Ai  E Y where 

Q~(A)  = P(Y~ c A I X i  -- x) 

is the conditional distribution independent of i. 
If such a process satisfies the condition (1.1), we can apply the discrimination rule 

and the Bayes risk consistency is verifed if the weights {Wf3,n) satisfy the conditions (i), 
(ii) and particularly the window weights, the kernel weights, and the NN-weights. 

We give an example of HMM process (Xi, Y~)~_>I which satisfies condition (1.1). It 
implies that we can apply Theorem 3.1. 
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Consider the model 

(3.4)  = + i > 1 

where Xi denotes a ~d-vec to r  of observed values, ko is a measurable known function, ei is 
a mult ivariate white noise corresponding to the measurement  errors ( tha t  is, {r i �9 ZW} 
is a sequence of i.i.d, random ~r~d-vectors with str ict ly positive density) and Y/ is an ~ 
predictor vector. If the sequence {Yi, i _> 1} of the random vectors is absolutely regular 
wi th  a geometric rate,  the process (Xi, Yi) satisfies condition (1.1). 

It is well known tha t  any Markov process which is Harris recurrent,  aperiodic and 
geometrically ergodic is absolutely regular with a geometric rate. 

For example, consider the sequence of random vectors (Y/)i>l defined by: 

pl p2 

(3 .5 )  + = + i �9 
j = l  l ~ l  

where A1, . .  �9 Apl and B 1 , . . . ,  Bp2 are p x p real matrices, A m and Bp~ are invertible and 
ei = (eil, �9 �9 �9 eip) is a multivariate white noise where each ei~, i > 1, 1 _< j < p admits  the 
same density g such tha t  f Ixl~g(x)dx < oc and f [g(x) - g(x - O)ldx = 0(101~ ) for some 
6 > 0 and 7 > 0. From P h a m  and Tran (1985), Yi admits  a Markovian representat ion 

Yi = HZi, Zi = FZi-1 +Gei 

where {Zi, i > 1} is a sequence of random vectors, and H,  F ,  G are appropriate  matrices. 
If the eigenvalues of the matrices H have a modulus less than  1, then Y~ is absolutely 
regular with a geometrical rate and the process (Xi, Y/)i>I satisfies condit ion (1.1). 

If p = 1, q = 1 and  k = 2, we can write the following part icular  case of (3.4) and 
(3.5)  as  

(3.6) Xi -- aY~ + ei, 

where Yi is an AR(1) process defined by 

(3.7) Y/-= bY/-1 + ei 

4. Proof of theorems and Corollary 2.1 

(4.1) 

a E ~  

where Ibl < 1. 

First  we show tha t  rn n is the ratio of two U-statistics. 
Let x = ( X l , . . . ,  xk) be fixed throughout .  Let 

Un(h, x) - G ( x )  =- Un 

_ ( n - k ) ,  / f k n! E h ( Y / 3 ) V n ( x ' X ~ )  Vn(X,U) 1-I F(duj). 
/3 1 j = l  

Hence mn(x) = Un(h, x)/Un(1, X) and Un(h, x), for each n > k is a classical U-statist ic 
with a kernel depending on n. 

Consider a sequence of functionals 

O (h,x)-on= f m(zl, V (x,u) l-IF(du ) 
j = l  / j = l  
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Note tha t  On = E(Un). For every c, (0 < c < k) put  

gc ,n ( z ( c ) ,  y (c ) )  _ gc(z (C) ,  y(C))  _ gc 

= fh(y)~~ V~(x, ~) H F(d~j), 
j > c  j = l  

where G(x; .) is the conditional densi ty function of (Y1 iX1 = x), 

1 

and where the summat ion  is taken over all permutat ions  ( ~ O ) ( k ) , . . . , a ( k ) ( k ) )  of 
{ 1 , . . . ,  k}. We have go,n -- en and 

// gk(z, y) = h(y)Vn(x, z) Vn(x, u) 1-I F(duj). 
/ j = l  

Let n - [ d  = {n(n-  1 ) . . .  ( n -  r + 1)} -1. Set 

c U(nC)--n-[C'~igc(z@)'Y(C))~d(I[(x'.'Y'.)<-("'~')]-H(zj'Y')),=, 
where /~(c) is the summat ion  over all permutat ions  fl(c) = (71 , - . . ,  C/c) of { 1 , . . . ,  n} of 
length c. Then 

k 

C~I 

from the Hoeffding decomposition. 
To prove Theorem 2.1, the following lemmas are needed. 

LEMMA 4.1. Under the conditions of Theorem 2.1 

(4.3) (U(C)) 2 = O(n-2) ,  2 < c < k. 

PROOF. We shall consider the case c = 2. The proofs in the cases c -- 3, . . . ,  k are 
analogous and so they  are omitted.  We first note tha t  

(4.4) U (2) = n [-2] 

So we have 

(4.5) 

l ~ i i 4 i 2 ~ _ n  

- g l ( X ~ l ,  Y~,) - a l ( X ~ , ,  Y~,) + On}.  

(n-[2])-2E(U(2))2 -- E E J((il,i2),(jl,j2)) 
l <_il < i2 <_n l <_jl < j~ <_n 
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J((il, i2, ), (jl,j2)) 
= E { ( g s ( X i i ,  Yil ), (Xi2, Yi2)) - g l ( X i l ,  Yil ) - gl (Xi2,  Yi2) q- On} 

{g2 ( ( Z l , ) ,  (Z2, Y2)) -- ( Z l , )  -- (Z2, Y2) -~0n}H(dz l ,  dyl) = O, Yl gl yl gl 

we have from L e m m a  2.1 in Yoshihara  (1976) the  following inequalities: 
i f l  < i l < i s < j l < j 2  < n a n d j s - j l > i 2 - i l  t hen  

(4.6) J((il,i2), ( j l , j 2 ) )  <_ 4DMi/r(r, h)fll-1/r(j2 - j i )  

where M(r,h) = E{sup~ [h(Yz)lr}, and similarly, if 1 < il  < i2 < j l  < j2 < n and 
i2 - il  > js  - j l ,  then  

(4.7) J ( ( i l ,  i2), (jl,j2)) < 4DM1/r(r, h)fll-1/~(i2 - i l ) .  

Thus ,  from (4.5), (4.6) and the Assumpt ion  (1.1) 

(4.8) E J ( ( i l ,  i2), ( j l ,  j2)) 
l_<il <i2 <_ji <j2 _<n 

n 
< 4DMX/~(r, h)n 2 E ( p  + 1)flx-U~(p) = O(n2). 

p=l 

Similarly, we have 

(4.9) E J((Q, is), ( j l ,  j2)) 
l_<ii <ji _<i2 <j2_<n 

n 
< 4DMUr(r, h)n s E ( p  + 1)flx-1/r(p) = O(n2),  

p=l 

(4.10) 

and  

(4.ii) 

E J ( ( i l , i 2 ) ,  ( j l ,  j2)) = O(nS),  
l_<it <jl <J2 <i2 ~n 

E ~ Or((il, i2), ( j l , j 2 ) )  
l <_il,jl <n i2=1 

<_ 4DMl/r(r,h)n2 ( l  -~- ?=lfll-1/r(P)) = O(nS) .  

Prom (4.8)-(4.11) and (4.5), we obta in  (4.3) for c = 2. The  proof  follows. [] 
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LEMMA 4.2. Under the conditions of Theorem 2.1, for p-almost all x 

(4.12) On(h, x) ~ re(x) as n---* oc. 

829 

PROOF. From condition (ii) in Section 2, we have 

k 

~i~ i ~(,),o(~, :) II ~(~z,): m(:)s(:)i'(:)': 
j = l  

and so 

Thus 

k 

:'~ooi'n("') II-(..,)- s(.)i-(:)... 
j = l  

lim O,~(h, x) = m ( x ) f ( x )  f V ( z ) d z  = re(x). 
~ - ~  f ( x )  f V ( z ) d z  

To prove Theorem 2.1, from Lemmas 4.1 and 4.2 and the fact that  h C s  we now 
have to show that  p-almost all x 

UO)(x) --+ 0 in probability. 

Since 

we have 

n 

Un(1) (x)  : rt-1 E ( g l  ( X i ,  Y i )  - On) ,  
i=l  

2 

E(U(1)) 2 = n - 2 E  gl(Xi ,  Yi) - On 

n 

= n -2 E E ( g l ( X i ,  Yi) - On) 2 
i=1 

+ 2 n - 2  E E { ( g l ( X i , Y i ) - O n ) ( g l ( X j , Y j ) - O n ) }  
l ~ i < j ~ n  

(from Lemma 2.1 of Yoshihara (1976)) 

n 
< 2n-2nM(2,  h) + 4n-2M1/r(r ,  h) E (  p + 1)fll-1/r(p) 

p=l 

= O(n -1) 

which implies 

(4.13) E(UO)) 2 = O(n-1).  
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From Lemmas  4.1 and 4.2 and from (4.13) we have Un(h, x) ~ re(x) and U,~(1, x )  --~ 1 
in probabili ty,  as n ~ oc for # almost  all x. It remains to prove the uniform integrability. 
By  Jensen 's  inequality, we have 

sup E Vn(X, X 3 ) l h ( Y 3 ) [ / E V n ( X ,  X3) 
nGffq* /3 

_<sUPne~V. E{ EVn(X'X3)[h(Y~3)f/EVn(X'X3) 3 

from (i), and Theorem 2.1 is proved. [] 

PROOF OF COROLLARY 2.1. From L e m m a  4.1, we have 

(4.14) E(Un - kUO)) 2 = O(n -2 ) .  

Then, from the Borel-Cantelli  lemma, it suffices to show that  

U (1) --* 0 with probabi l i ty  1. (4.15) 

Clearly 

where 

Yn (1) ~- ?2 - 1 E { S i , n  - -  E ( S i , n ) }  

i=1 

Si,n = gl(Xi, I/i) - On. 

As h is bounded,  there exists two posit ive constants  b and c such tha t  

(4.16) [Si,n[ _< b/dn and E(S2n) <_ c/dn. 

If Cl,  U 2 , . . . ,  Un are independent  r andom variables with ]Uil< m, E(U 2) < a~, then an 
inequali ty due to Benne t t  ((1962), p. 39) s tates  tha t  

P [ n - 1 E  Un _> c] < 2 e x p { - n r  2 + me)}  

n 2 Pu t  q = q~ = In p] + 1 for some 0 < p < 1, and write where 0 -2 = n - 1  ~ i = l  ~  �9 - -  - -  

q 

= Z 
j = l  

where 
g j  

S~*,n = E{Sy+pq,n- E(Sj+m,~) } 
p = O  
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and gj is the largest integer such tha t  j + ~.jq ~ n. Then,  proceeding as in Harel  and 
Puff  (1996), we get 

P[U(n 1) > c] < 2nP[exp{-agjdn} + ~/1-Pfl([rtP] ~- 1)] 

where a = r  + 4be). 
From the Borel-Cantelli  lemma and conditions (2.1) and (2.3), we deduce (4.15) and 

Corollary 2.1 is proved. [] 

PROOFS OF THEOREMS 2.2 TO 2.4. We have only to show tha t  condit ions (i) and 
(ii) are satisfied. 

For Theorem 2.2, we can write for every g E s  

EZ h~kl[ll*,-*l'<hn]g(Yz) / f l[If~-*ll<_h~] Ejk'=l F(duj) 

nlim~ ] q(~)h;  ~ I I  K ~ - ~ F(az~) 
j = l  j = l  

and (ii) is proved for Theorem 2.4 if we put  V(x) = K(x). [] 

fl ~'-~fl hn l[llx~_xll<hn]// f l[llu-xll<_h,d 1-I~=l f(duj) 

and (i) is proved. 
Now we have 

k 

limoo hnk / l[llx-zll<h'd q(z) H F(dzj) 
j = l  

k 

= lirn hX k f l[ll~ll_<llq(x + uhn)f(x + uhn)h k H duj 
j = l  

k 

= q(~)7(~)  f 1E,.,<,I I t  duj = 2 kq(~)](x) 
j = l  

and (ii) is also proved for Theorem 2.2 where Vn(x,z) = l[llx_z}<hn] and V(x) = 
l[llxll_<ll" 

For Theorem 2.3, from the fact tha t  ~ZWZ(x)  = 1, we can pu t  Vn(x,y) = 
W n (x ,  y)  and we have 

E~ wn(x, z~)e(yp) 
~w..(~,z~)e(y~) = E~ Wn(~,Z~) 

and (i) is proved. Now we get (ii) if we put  Y(x) =_ 1. 
Theorem 2.4 follows analogously, if we put  

v~(~,  z) = h~ k I I  K x - z 
j = l  

then (i) is immediate.  From Cacoullos (1966), we deduce 
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