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A b s t r a c t .  This paper considers delta estimators of the Radon-Nikodym derivative 
of a probability function with respect to a a-finite measure. We provide sufficient 
conditions for universal consistency, which are checked for some wide classes of non- 
parametric estimators. 
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1. Introduction 

Let  P be a probabi l i ty  measure  in the Borel  space (]l~d,~d), absolutely continuous 
with respect  to the a-finite measure  # and f = dP/d#  be the corresponding Radon-  
Nikodym derivative, which is assumed to belong to the space Lp(]~d,~d,p), with 1 < 
p < c~. Usually, the Lebesgue measure  A is considered, and f = dP/dA is the associated 
probabi l i ty  density funct ion (pdf) .  Given a r andom sample {Xi}i~l  from P ,  a delta 
estimator of f is defined as, 

n 

1 E Kin .  (x; Xi) ,  
i=1 

where m n =  re(n) is called a smooth ing  sequence, and { K m ,  }hen a generalized kernel 
sequence. 

The  sequence {mn}neN is not  necessarily a sequence of numbers ,  it may  be a se- 
quence of positive definite matr ices  ordered by decreasing norm, in the usual kernel 
es t imator  of a mult ivar ia te  density; or the order  of a polynomial ,  in the Fourier series 
est imator .  We consider tha t  the smooth ing  sequence {ran}heN belongs to some directed 
set ~. We say tha t  the set ][ is d i rected if it is a non empty  set endowed with a par t ia l  
preorder  <,  such tha t  if Vml ,m2  E ][, 3m3 E IT such tha t  ml  _~ m3 and m2 _~ m3. We 
also assume tha t  {mn}nCN diverges in ][ as n ~ ~ ,  i.e., VM E IT, 3riM C I~ such tha t  
mn ~_ M,  Vn ~ nM. 

The  class of del ta  es t imators  was in t roduced  by Whi t t l e  (1958), encompassing most  
of the existing nonparamet r ic  es t imators .  Terrell  (1984) and Terrel l  and Scott  (1992) 
have shown tha t  all nonparamet r i c  densi ty  es t imators  which are cont inuous and differ- 
entiable functionals of the empirical  d is t r ibut ion function,  can be in terpre ted  as del ta  
est imators ,  at least asymptotical ly.  
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In case of pdf estimation, f'n (x) is pointwise asymptotically unbiased if, 

l i m  E[f'n(X)] = / 5 ( z  - x ) f ( x )A(dx )  = f ( x ) ,  

where 5 is the Dirac delta generalized function with a jump at zero. This is why these 
estimators are known as delta estimators. Watson and Leadbetter (1963), Walter and 
Blum (1979) and Prakasa Rao (1983) have provided sufficient conditions for global con- 
sistency in norm Lv(A) and pointwise consistency, assuming smoothness conditions on f .  
Winter (1973, 1975) has studied uniform consistency and consistency of the correspond- 
ing smooth integrated distribution function estimator. Watson and Leadbetter (1964) 
have established asymptotic normality. Basawa and Prakasa Rao ((1980), Chap. 11) have 
provided results for dependent observations. In this literature, consistency is achieved 
under restrictive smoothness conditions on the pdf f .  The universal consistency of gen- 
eral delta estimators has not been obtained yet. 

DEFINITION 1.1. Universal Consistency. Let p be a a-finite measure in (N d, ]Bd), 
and P a probability distribution P << p, with f = d P / d #  E Lp(~  d, ]~d, #). Henceforth, 
Lp(p) := Lp(]Rd,]~d,#). We say that a delta estimator f'n is strongly consistent (in 
Lp(p)-global sense) when 

(1.1) 

and weakly consistent, when the convergence is in probability. We say that the conver- 
gence is universal when (1.1) holds for every probability function P << # with f E Lp(p). 
Note that the degree of universality depends on p. 

Usually, weak universal consistency is defined as, 

EHfn P / - filL,<.)] -- E[l n(X) - f ( x ) ] P ] # ( d x )  - -~ 0, 

see Stone (1977). The equivalence with the above definition is a consequence of Markov's 
inequality and Lebesgue's dominated convergence theorem. 

The literature on universal consistency of smooth nonparametric estimators is enor- 
mous, and is mainly based on Stone's (1977) seminal paper. Universal consistency of 
histograms and regressograms has been proved by Abou-Jaoude (1976a, b, c), Devroye 
and GySrfi (1985a, 1985b), Devroye and GySrfi (1983), Gy5rfi et al. (2002). Univer- 
sal consistency of discriminant analysis rules based on partitions have been studied by 
Devroye et al: (1996b) and Lugosi and Nobel (1996). Universal consistency of density 
and regression kernel estimators has been showed by Devroye and Wagner (1979, 1980a, 
19805), Devroye (1983, 1987), Devroye and Gy5rfi (1985a), Devroye and Krzy2ak (1989) 
and Gy5rfi et al. (2002). Also discriminant analysis rules have been studied by Devroye 
and Krzyiak (1989) and Devroye et al. (1996b). Universal consistency of estimators 
based on k - nn in density and regression estimation has been considered by Stone 
(1977), Devroye and Gy5rfi (1985a), GySrfi (1981), Devroye et al. (1996a) and GySrfi et 
al. (2002). Discriminant analysis rules has been studied by Stone (1977), Devroye and 
Wagner (1982), Devroye et al. (1996b). Orthonormal series estimators of density and 
regression functions, based on sieve estimators theory, have been studied by Devroye 
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and GySrfi (1985a), Lugosi and Zeger (1995), GySrfi et al. (2002) and, in the context of 
pattern recognition by Vapnik (1982) and Devroye et al. (1996b). 

There are also some monographs on universal consistency. Devroye and Gy5rfi 
(1985a) and Devroye (1987) have focused on density estimation, GySrfi et al. (2002) on 
regression estimation and Devroye et al. (1996b) on pattern recognition. 

The aim of this paper is to provide fairly primitive conditions which are sufficient for 
universal consistency, as defined in (1.1). To this end, we use the triangular inequality, 

(1.2) I lL  - fllL (/ ) l I E ( L )  - f l lLp( . )  + I l L  - E ( L ) I I L . ( . ) .  

The first term on the right-hand side is known as the bias term, which is deterministic, 
and the second term is known as the variation term, which is stochastic. 

In next section, we provide sufficient conditions for the universal convergence of the 
bias term to zero, using approximation theory. We also illustrate the results checking 
the conditions for some wide classes of estimators. In Section 3 we provide sufficient 
conditions for the universal convergence of the variation term, applying Law of Large 
Numbers (LLN) for triangular arrays on Banach spaces. Proofs are confined to the last 
section. 

2. Universal asymptotic unbiasedness 

First, we introduce the concept of net. Let (B; I1 liB) be a Banach space. Given a 
directed set I[, a net {gm}rne~ in (B; I1' liB), is an application gm = g(m) with g :  I[ ~ B. 
We say that the net {gm}me~ converges to f E B, denoted by limmc~ Ilgm - f l lB = O, 
ifVe > 0, ~m~ E ] [ such tha t  I l g m - f l l B  < e for al l rn_> m~. For an introduction to 
convergence analysis of nets, see Edgar and Sucheston (1992). 

Let c~m~(f)(.) = f Km~(', z ) f ( z )p (dz )  be the expected value of f'n(') with respect 
to the probability distribution P.  Notice that  a,~ is a linear operator in the Banach 
space (Lp(#), I1" 

a m  : L p ( ] ~ d , ~ d , ~ )  ~ Lp(]l~d,]~d,~) 

f H am(f ) (x )  = / K i n ( x ,  z) f (z )p(dz);  

and {am}me~ is a net of linear operators. 
Thus, the delta estimator fn is universally asymptotically unbiased in Lp(]~ d, ]~d p), 

with p �9 [1, c~), when 

lim H a m ( f )  -- fllLp(rt) = 0, V f  �9 L p ( R d , ] ~ d , # ) ;  
rnE~ 

that  is, { a m } m ~  is a linear approximate identity. Further details can be found in Vidal- 
Sanz (1999). The next theorem provides sufficient conditions ensuring that {c~m}me~ is 
a linear approximate identity. Related results can be found in Kantorovich and Akilov 
((1982), Th. 3, p. 203). 

THEOREM 2.1. Central approximation theorem. Let {Olrn}mE~ be a net of linear 
operators in a Banaeh space (B, II'IIB), such as Lp(p). Suppose that, (1) sup,~e~ IIC~,~IIB < 
c>o, where [IC~mHB := suPllflls< 1 IlC~m(f) llB, and (2) there exists a G c B,  which is 



794 J O S E  M. V I D A L - S A N Z  A N D  M I G U E L  A. D E L G A D O  

dense in B,  such that, limme~ I iam(f)  - f l lB = O, V f  C ~. Then, {C~m}m~ is a linear 
approximate identity. Moreover, i f  Ilam]ls < co for  each m E ][, then conditions 1) and 
2) are necessary. 

From the proof of Theorem 2.1, it follows that if ]]OLrn]] B < CO for each m E I[, but  
condition 1) is not satisfied, then there exists a dense G5 set C C B,  such that 

lim ]lara(f) - f lIB = oo, V f  E C, 
mC~ 

(recall that  a G~ set is a countable intersection of open sets). This result is very relevant, 
since in B spaces without isolated points (such as Lp spaces), every dense G~ set is non 
numerable (see e.g., Rudin (1966), Th. 5.3.3). For example, the Dirichlet linear operators 
in Ll([-~r, lr]) associated to Fourier series are bounded and satisfy the approximation 
property for trigonometric polynomials (that is a dense subset). However, the uniform 
boundedness condition fails. Hence there exists a G~ dense set g of divergence. In other 
words, in Ll([-~r, 7r]) there is a infinite non numerable dense set of densities, such that 
the bias of their Fourier series estimators tends to infinite in L1 norm. On the other 
hand, in Lp([-Tr, 7r]), with 1 < p < cx~, the Dirichlet operators are uniformly bounded 
and the approximation property holds. 

The next corollary is relevant in a nonparametric context. It allows to interchange 
the limits or take joint limits in II(~m(gr) - glIB. 

C O R O L L A R Y  2.1. Let (B, ]l. lIB) be a Banach space and {am}me~ an approximate 
identity on such a space. I f  ]]amiis < Co for  each m E]I, then for  all nets {g~}rcM in B,  
such that lim~eM ]]g~ -- glib = 0, it is satisfied that, 

lim lim I[a~(g~) - glib = lim lim II(~m(gr) - glib = lim IlOtm(gr) -- glib = O. 
rEM m E  II rnC~ rE M  ( m , r ) E ~ x  M 

In order to get a smooth estimator, we often apply a linear approximate identity 
{am} over some consistent but discontinuous nonparametric estimators grn, e.g., his- 
tograms. For example, we can use some approximation methods, as interpolation tech- 
niques, B-splines, or some other linear approximator with continuous images. Notice 
that the smooth approximator a,~n depends on the sample size n. The histogram ~r. is 
a sequence of curves that also depends on the sample size, and we take joint limits when 
n ~ co. Thus, universal consistency of frequency polygons derives from the universal 
consistency of histograms and Corollary 2.1. 

The following theorem provides conditions on the generalized kernel net 
{K,~(x, z)}mcz, which are sufficient for guaranteeing that the net {c~m}mc~ is a linear 
approximate identity and, therefore, the delta estimator is universally asymptotically 
unbiased. 

Notice that c~,r = f K,m(x, z )p (dz ) .  We define the net of majorized operators 
of [am},~r as the net {lal,~}m~K, 

IO~lm(f)(x) = / I K m ( x ,  z ) l f ( z ) # ( d z ) .  

THEOREM 2.2. Assume  that 
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A.1. {l~lm}m~ is uniformly bounded in Lp(]Rd,Bd,#), 1 <_ p < c~, i.e., 

(2.1) 
( 

sup I I I~I~IIL,0~) := sup ~ sup 
mE~ mEI[ I, II:llLp(.)_<l 

II I~l~(f) llL~(,)} <oo.  

A.2. limme~ I I~m(1) - 1ILL,(,) -- o. 
A.3. For all compact sets C C ~d, p (C)  < (DO. 
A.4. For all 6 > O, and all compact sets C C ]R d, 

lim [ IKm(X,Z)l~e(dz) L.(,c) 
me~ J{~:llx-zll>a} 

= 0, 

where #c, is the restriction of# to the compact set C. 
Then, the net {am}-~e~ is an approximate identity in Lp(l~d,B d, p), i.e., f,~ associ- 

ated to {Kin(x, z)} is universally asymptotically unbiased. 

Assumption A.1 establishes that the net sequence {l~lm}me~ is uniformly bounded 
in Lp(R d,]~d,lt). This condition is fairly easy to check when p = 1 or p = 2. If p -- 1 
and IKm(x, z)l is continuous for almost all points x, z C IR d, then (2.1) is equal to 

me~sup Iesssup f lKm(x'z)ltt(dx) } zeRO,, J 

where ess sup denotes the "essential supremum' ,  i.e., 

esssup If(z)l : :  inf sup If(z)l. 
zCRa,tt { BE~d:~( B) =0} zEB 

If p = 2 then (2.1) is bounded by 

See DeVore and Lorentz ((1993), pp. 30-34) and Dunford and Schwartz (1957) for a 
discussion of these results. 

A sufficient Condition for A.2 is that  there exists an mo E]I such that Yrn > too, 

O~m(1) ---- 1 a.s. [p]. 

If it is a finite measure, a weaker sufficient condition for A.2 consists of assuming 

# ( {  xCRd:me~lim]am(1)(x)-l' > 5 } ) = 0 ,  V S > 0 ,  

sup ]am(1)(x)] e Lp(IR d, B d, #), 
rnC~ 

which implies A.2 by dominated convergence arguments, see e.g., Chung ((1974), p. 100) 
and Sillingsley ((1986), p. 220). 
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If # is a finite measure, condition A.3 holds. The Lebesgue measure also satisfies 
A.3. A sufficient condition for A.4 is that, when m increases, the support of IKm(x, z)l 
shrinks on {(x, z) : x = z} and, possibly in other points of null measure. 

P R O P O S I T I O N  2.1. Condition A.2 in Theorem 2.2 can be substituted by, 
A.2'. limmc~ Ilam(1) - lilLe(t, ) ----0. 

Condition A.4 may be difficult to check. The next proposition provides a sufficient 
condition. 

PROPOSITION 2.2. A sufficient condition for A.4 is 
A.4q For some s >_ 1, 

lim / ] I x  - z]lSlKm(x,z)lp(dz) Lp(~) 
mC~ 

= 0 .  

In addition, the next proposition provides sufficient conditions for A.4q 

, 
PROPOSITION 2.3. The following conditions are sufficient for A.4': for some s > 

(i) f I]x - zllSIKm(x,z)l#(dz) --~ O, a.s. [p], (or in measure), 
(ii) f I[x - zl]Slgm(x,z)l#(dz) < IT(x)I, T e np(]l~d,]]~d,#). 

Weaker sufficient conditions in Propositions 2.2 and 2.3 can be obtained, substitut- 
ing # by Pc  (i.e., the restriction of p to C), for every compact set C. 

Next, we check approximate identity conditions for some broad classes of nonpara- 
metric density estimators. 

2.1 

as ,  

Singular integral estimators 
Consider the class of singular integral estimators of a pdf f C Lp(]1~ d, ~d,/~), defined 

n 

1 E Kin. (Xi - x). (2.2) L ( x )  = 
i=1 

Usually, in the nonparametric literature it is assumed that Kin(u) = K , , ( - u ) .  These 
estimators are associated to the singular integral linear approximators i n  Lp(]l~ d, ]~d,/~), 

~m(f ) (x)  = / Km(z  - x ) f ( z ) l (dz ) .  

The global unbiasedness of these estimators has been considered by Devroye and Gyhrfi 
((1985a), Chap. 12, Sec. 8), for the Lebesgue measure restricted to a finite interval. 

Singular integral estimators encompass relevant families of nonparametric estimators 
like, 

�9 Kernel estimators in Lp(Rd,~ d,/~), that take, 

1 -1 
KH(U) - det-(H) K ( H  u), 
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with H a definite positive matrix, and the matrices are ordered by the relation "to have 
smaller IIHII". For the multiplicative kernel K(u)  d = l-Ij=l K j (u j ) ,  the matrices H are 
usually diagonal. 

�9 Fourier series estimators in Lp([-Tr, ~r]), 1 < p < oc, with Dirichlet's kernel, 

sin ( ( m  + ~ )  u )  
K i n ( u )  = m c N. 

27r sin u 

If p = 1 this is not uniformly bounded, but  we can use Fejer's kernel estimators. 
�9 Fejer estimators in Lp([-rr, 7r]), 1 < p < ec, with 

2 

1 ( s i n ( ( r n  ~ ) u ) )  

Kin(u) -- 27c(rn + 1) 

There are many other examples, for a review see Butzer and Nessel (1971) and 
Devroye and GySrfi ((1985a), Chap. 12). The next result is an application of Theorem 
2.2, which provides universal asymptotic unbiasedness for these estimators. 

P R O P O S I T I O N  2.4. Assume that, 
S.1. {Krn}mE~ C Ll(Rd,]~d,~). 
S.2. : K,~(u)du = 1, V m e  ]I. 
S.3. lim.~e~ f llul[IK.,(u)[du -- 0. 
Then A.1 to A.4 holds in np(~d,]~g,~), with 1 <_ p < e~, for the generalized kernels 

{Kin  (z  - x ) } m : .  

2.2 Histogram 
The class of histogram estimators is defined by means of measurable partitions. Let 

I[ be the set of all measurable Borel partitions of R g in sets with finite and positive A- 
measure. The set I[ is ordered by the partial preorder rnl _< m2 if rn2 is thinner  than  ml  
almost everywhere, in other words VA1 C ml ,  A2 c rn2 then A2 C A1, or A2 A A1 = 0, 
except for a set of A-measure zero. Then  ]I is a directed set. Often, we take a regular 
subset ]Io C ]I of partitions of finite diameter, such that  the maximum diameter of the 
parti t ion tends to zero as partitions become thinner, and all subsets form a Vitali system 
(the definition can be found in, e.g., Shilov and Gurevich (1997)). 

Define the partit ioning approximator by the generalized kernel, 

(2.3) Km(x,z) : E IA(X)IA(z) 
Aem A(A) ' 

with corresponding linear approximator, 

am(f)(x)- ( fA f(z),X(dz) ) IA(X). 
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The histogram estimator of f E Ll(]~d,]~ d, A) is, 

X (Ei=I lA( i) ~ }niX)---- E \ -~-~  ) IA(X)" 
AErn,~ 

This is the oldest nonparametric estimator (Graunt (1662) is an early reference) which 
has been studied by R~vesz (1971, 1972, 1973, 1974), Tukey (1977), Scott ((1979), (1992, 
Chap. 3)) and Freedman and Diaconis (1981), among others. Universal consistency of 
the histogram has been established by Abou-Jaoude (1976a, b, c) and Devroye and 
GySrfi (1985a). The following proposition illustrates the use of Theorem 2.2, although 
it is a well-known result in the literature. 

PROPOSITION 2.5. Consider a regular partitions set, ~o. Then A.1 to A.4 hold for 
the generalized kernels in (2.3). 

The following result, which is based on Theorem 2.1, avoids the use of regularity 
condition on the partitions. 

PROPOSITION 2.6. Consider the space Lp(]l~d,~d,p), with 1 < p < co. I f #  is 
absolutely continuous with respect to the Lebesgue measure A, then the net of integral 
operators {C~m}me~, with partition kernels defined by equation (2.3), is an approximate 
identity. 

2.3 Estimators based on orthonormal Hilbert space bases 
Here, we consider the particular case where f E L2(Rd,~d,p). This is a Hilbert 

space with the inner product 

<f, g>L2(~,) = / f(z)g(z)#(dz).  

The set {ek(z)}~_ 1 C n2(I~ d, ~d,#)  is said to be orthonormal if <ek, es>L2(~) = I{k=s}. 
The orthogonal projection of an arbitrary f E L2(]~ d, ]~d ~) into the linear subspace 

spanned by an orthonormal set {ek(z)}r~_l, can be expressed as, 

(~m(f)(x) : E < f ,  ek>/2(,) �9 ek(x) : f (z)ek(z)p(dz)  �9 ek(x). 
k = l  k = l  

Note that, if we define, 

(2.4) 
m 

Km(x,z) = e (x)ek(z), 
k = l  

then, the projection can be expressed as 

= f Km(x, z)f(z).(dz). 

oo Thus, we say that a sequence {ek(z)}k= 1 of orthonormal functions is an orthonormal 
Hilbert space basis if the sequence of projections { a~} ~= l  is a linear approximate iden- 
tity on L2(Ne,~ a, #); or equivalently, if and only if the span of {ek(z)}~=~ is dense in 
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L2(]Rd,~ d,lt). Using Zorn's lemma, it can be proved that every Hilbert space has an 
orthonormal Hilbert basis (see Kreyszig (1978), p. 212). 

Notice that the corresponding density estimator is just 

(2.5) 

n 

1 E Km(x,  Xi)  fn(X)=ni=l 
n 

1 E ek(Xi). 

m 
: E s  

k=l 

This estimator was first considered by Cencov (1962) and Bosq (1969). The literature 
about density estimation by means of orthonormal basis is discussed in Devroye and 
Gyhrfi ((1985a), Chap. 12). 

PROPOSITION 2.7. Assume that, 
O.1. {ek(Z)}~_ 1 is an orthonormal set in L2(I~d,]~d,p), such that 

meNSup / sup[]IfHL2(.)~I / mek(x)ek(Z) L2(tt) } f ( z )p (dx )  < oa. 

O.2. There exists a ko C N such that eko(X) -- 1, a.s. [#]. 
0.3. For all compact sets C, p(C) < cx). 
0.4. V5 > 0, and all compact sets C, 

sup ek(x)ek(z  IIx-- z[]tL(dz) = O. mEN 

Then A.1 to A.4 hold for the generalized kernel (2.4), and {ek(z)}~_ 1 is an or- 
thonormal basis in n2(I~d,]~ d, p). 

In the particular case that we use Fourier series, this method is equivalent to use 
the previous result on singular integral estimators. 

A useful method for obtaining an orthonormal basis in L2(~d,~d,#) ,  consists of 
applying the Graham-Schmidt orthonormalization algorithm to some dense subset of 
linearly independent functions (see Davis (1975) and Cheney (1982)). For example, 
if the monomials {xk}~_l belong to L2(IRd,]~ d, p), the associated orthonormal basis is 
known as the basis of orthonormal polynomials. 

3. Universal convergence of the variation term 

Most of the literature on universal consistency is based on Stone's (1977) theorem, 
whose conditions are usually difficult to check. Empirical process theory has also been 
applied in order to establish uniform consistency, see e.g., Silverman (1978), Stute (1982) 
and Pollard ((1984), pp. 35-36). Vapnik (1982), Devroye et al. (1996b) and Gyhrfi et el. 
(2002) consider universal consistency of series estimators by means of sieve-estimators 
theory (see, e.g., van der Vaart and Wellner (1996), p. 321). Here, we present an alter- 
native approach, providing sufficient conditions which are fairly easy to verify. In order 



800 JOSE M. VIDAL-SANZ AND MIGUEL A. D E L G A D O  

to establish the almost everywhere, or in probability, convergence of the variation term, 
we use probability theory on Banach spaces. The universal convergence, 

(3.1) [[f'~- E[f'~]LIL,(,)= Zn#- aA o, 
i = 1  Lp(~u) 

with Zn# : Kmn (x; X~), can be established applying a Law of Large Numbers (LLN) 
for triangular arrays in separable Banach spaces. If the convergence holds for every 
probability distribution P << p, with f = dP/d#  E Lp(R d, ]~d, #), the result is universal. 
The case L1 requires a separate analysis. 

3.1 Convergence in Lp(#), 1 < p < oc 
There exists a large literature on probability theory in Banach spaces, see, e.g., 

Xia (1972), noffmann-J0rgensen (1974, 1976), Woyczyfiski (1978), Vakhania (1981), 
Schwartz (1981), Araujo and Gin~ (1980), Linde (1986), Pisier (1986, 1989), Vakhania 
et al. (1987) and Ledoux and Talagrand (1991), among others. Some LLN for Banach 
spaces have been considered by Taylor and Hu ((1987), Th. 4) and Hu and Chang ((1997), 
Th. 2.1). The row independence assumption has been weakened by Patterson and Taylor 
((1997), Th. 3.2) by assuming weakly negative dependence and that the random elements 
have a compact and convex support. Patterson and Taylor ((1997), Th. 3.3) provide an 
additional LLN for triangular arrays in B-spaces with Schauder basis, using a negative 
dependence assumption. Other results for weighted sums of random elements in B-spaces 
have been provided by Ordofiez-Cabrera (1994), Hong et al. (2000) and Hu et al. (2001). 

The asymptotic results for sums of random elements depend crucially on the geo- 
metric properties of the considered spaces. We say that a Banach space (B, H" liB) is of 

Z n type-3,, if 3c~ > 0 such that, for all finite sets { i}i=l of independent random elements 
on B, it is satisfied that, 

E _< c~. E[IIZ~H~ 1. 
i=1 i=1 

Note that, by the triangular inequality, every Banach space is of type-1. Thus, the only 
relevant case is 3, > 1. On the other hand, the only spaces of type-',/for 3, > 2 is the space 
{0}. Hence, the type-3, property is useful for 1 < 3, < 2. There exist many examples of 
type-7 spaces. For instance, all the Hilbert spaces are of type-2. 

THEOREM 3.1. Weak LLN for triangular arrays. Let (B, I]" lIB) be a separable 
Banach space of type 3' e [1,2] and (Zn,i : 1 < i < n}ner~ a triangular array. Assume that 
the row elements are independent and E[IIZn,i]]B ] < oo (then, the Bochner expectation 
E[Zn,i] exists). Consider the centered sum, 

n 

(3.2) Sn = ~-~.(Zn,i - E[Zn#]). 
i=1 

f,  
B.1. l i m n ~  n -'y f ] i ~ l  E[lIZ #l[ ] = o, 

then n -1 HSnI]B L~ O, and therefore converges in probability. 
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Remark 1. A sufficient condition for B.1 is 

max  E[llZn#ll~] = o(nW-*) .  
l < i < n  

and if {Zn,i} are i.i.d, by rows, E[IIZ~,11173] -- o ( n ~ - b .  

Assume tha t  # is a a-finite measure on (IR d, Bd), then: (a) every Lp(R d, Bd  #) space, 
with 1 _< p < 2 is of type-p; and (b) every Lp(Rd,]~d,p) space, wi th  p _> 2 is of type- 
2. For a proof see e.g. Araujo and Gin4 ((1980), Th. 7.2, p. 158). Therefore, taking 
Zn# = K , ~  (x, X~), the condition 

E[IIKm~ (x, x)I)~(,)] -- O(TtP-1), 

is sufficient for the weak consistency of the variation term of del ta  est imators in 
Lp(]~d,]~d,p), as {Xi} are i.i.d. 

Example 1. Histogram. Consider the histogram in Lp(]~ d, ~ d  A), 1 < p _< 2, with 
kernel defined by equation (2.3). Notice tha t  

E IA(X)IA(z) p IA(X)IA(z) p 
A~m A(A) = AcmE A(A) = 

since the part i t ions are disjoints. Define 

x(m) = inf A(A). 
AErn 

Hence, if x(mn) -* 0 with n.  x(rnn) -* ~ ,  

1 1 
np_lE[llKmn(x, P 

1 

rip-1 

iA(x) ia ( z )  

aem A(A)v ' 
a.e., 

-- - - E  A(A)p_ 1 _ np_lx(mn)p_l  

1 
- -*0 .  

In. X(mn)] p-1 

The universal consistency property  in Lp follows from Theorem 3.1. 

Example 2. Orthonormal basis estimators. Consider the or thonormal  basis esti- 
mator  of density functions in L2(]~d,]~ d,/k), with kernel defined by equat ion (2.5). As- 
sume tha t  mn --* cr with mn = o(n). Applying Fubini 's theorem, 

-- ek(x) . ek(X) dx n E [ l I g ' ~ ( x '  n 

_ _ 1_ Z ~ ekl(x)ek2(x)dx �9 EIek l (X)e~(X) ]  
n 

k l = l  k2=l  

1 rn,~ 

= - E max E[lek(X)121 ~ O, n E[lek(X)12] < m .  
- -  n l < k < m  

k= l  
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w h e n e v e r  maxk>l E[lek(X)l 2] = m a x k > l  f lek(z)12f(z)dz < c~. We get u n i v e r s a l  consis- 
tency when this holds for any f > O, iiflJL2 <-- 1. 

The following result can be useful in order to check the conditions of the previous 
theorem. 

PROPOSITION 3.1. Let {Km.(x,  Xi)} be a triangular array in Lp(IRd,]~d,#) with 
1 _< p <_ 2 and # a a-finite measure. Assume that E[NKmn(X, X)NLp(tt) ] p  < co, then 

= i . 

Therefore, if 

f IKmn(x, z)lPf(z)tt(dz) = o(np-1), 
Ll  (tt) 

for all f > 0 with IlfilL~(~) <- 1, the variation term of delta estimators converges uni- 
versally to zero in probability with respect to II " IiLp(,) norm. This condition is readily 
checked for kernel estimators in the following example. 

Example 3. Kernel estimators. Consider the kernel estimator in Lv(IRd,~d,A), 
with 1 < p < 2, defined by 

1 
KHn (x, z) -- det(Hn) K(H~I  (z - x)). 

It can be proved that Yf non negative with [[fiiLp(X) --< 1, 

i lK(u)]Pf(x + Hnu)A(du) = 0(1). 
LI(A) 

Hence, 

1 S ]KH,~(x, z)lPf(z)A(dz) 
r i p -  1 LI(A) 

I i LI ---- np_l det(H~)p_l Ig(u)lPI(x + Hnu)),(du) (~') 

1 --~176 
The sufficient condition is n .  det(Hn) --~ oc, applying Proposition 3.1. Universal consis- 
tency of kernel density estimators was originally proved by Devroye (1983). 

Note that,  the above results are not useful when p = 1, because in this case, 

f ~ = o(1), E[lIZn,il[Ll(.) ] = [gm. (x , z ) [  (z)t t(dz) LI(.) 

so that  the sufficient condition maxl<i<~ E[IIZ,~,ilILI(,)] = o(1) is not satisfied. The next 
subsection is devoted to the L1 convergence of the variation term. 
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3.2 Convergence in LI (#) 
In this section we provide an alternative approach, which is specially useful in order 

to deal with Ll-spaces. 

THEOREM 3.2. Let {Zn# = Km~(x, Xi)} be a triangular array in Lp(Rd,~d,#) 
with 1 < p < 2, and consider ~n(X) defined as in equation (3.2). Assume that: 

(1) n - 1  maxl<i<n E[IKm~ (x, Xi)l 2] ~ 0 a.e. [#]. 
(2) f supn E[In-lSn(z)lP]p(dx) < c~. 

Then Iln-lSn[]L,,(~,) ~ O. 

If conditions (I) and (2) are satisfied for all probability distributions P << #, with 
f = dP/d# E Lp(#), the weak universal Lp-convergence of the variation term follows. 

Remark 2. Condition (2), is satisfied when, 

[Ifl[Lp(•)<_l,f>O \ m d 

Define the maximal operator in  np(]l~ d, ~ d ,  p) ,  

ap(f ,  x) = sup f [Km(x, z)lPf(z)p(dz), 
mC~ J 

which is a sub linear operator (i.e., ap(f  + g) E ap(f) + ap(g) for all f ,g  C Lp). Then, 
in order to establish condition (2) universally, we have to check that there exists some 
c > 0 such that, 

(3.3) Ilap(f,x)llL~(~) < cllfllLp(~), 

for any f C Lp, with f _> 0. 

This result is particularly useful to prove weak universal consistency on 
LI(Rd,]~ d, ..~). In this context, expression (3.3) means that  for all non negative f E L1, 

f a~(f,x)dx = fsup [alm(f,x)dx < cllfllLl(),). 
mall 

This kind of properties often can be proved using the Hardy-Litt lewood-Paley theory. 
The Hardy-Littlewood maximal operator on Lp(]~ d, ~d, ~), 

/ 3 * ( f , x )  = s u p  1 /B f(z)dz, 

satisfies for some Cp,d > 0, that ][/3*(f, x)HipO, ) <_ Cp,dllfllip(~,) for all f c Lp. For details, 
see Stein (1970), de Guzman (1975) and Wheeden and Zygmund (1977), among others. 

Example 4. Consider the kernel estimator in Ll(~d,  ]~d,/~) ,  defined by means of, 

1 
KH~ (x, z) -- det(Hn) K ( H ~ I ( z  - x)). 
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Hence, for a.e. x E ]~d, and all densities f ,  

1 S IgH"(X' z)12f(z)A(dz) n-IE[IKH"(x'X)]2] = n 

' i ( 1 )  -- ndet(H,~)2 [g(u)i2 f(x + Hnu)du = 0 n .  det (Hn) 

If K( ')  has compact support C, and there exist constants Cl, c2 > 0 such that  CliO(u) <_ 
IK(u)l _< c2Sc (u )  then, 

i sup f [KH(Z -- x)lf(z)dzdx ~ cllfl[L~(~,), 
H>O J 

for all integrable non negative f .  Assuming n .  det(Hn) ---+ oo, the Ll-universal consis- 
tency property follows from Theorem 3.2. 

Example 5. Consider the histogram in L1 (]~d, ]~d, A), with regular partitions and 
kernel defined by equation (2.3). For regular partitions, the uniform boundedness con- 
dition 

= f s u p  
IA(X)Py(A), 

"~ A~m ~ a s  <<_ cJlYlfL,(~), d 

is satisfied. This is because the Hardy-Littlewood maximal function, 

~ * ( f , x )  = sup  Pf(B(x,~)) 

satisfies ]]~* (f,  x)]] L1 (~) <-- Cd[] f []LI(),). Furthermore, by the Lebesgue density theorem, 

A~m Pf(A) lim IA(X) ---- f(x), a.e. 
memo A(A) 

Next, define x(m) -- infAem A(A) > 0, which depends on the dimension d exponentially, 
as A is the Lebesgue measure on I~ d. Condition n. x(m) ---+ oo implies that  

 IAI 1  IAI 
= - S a ( x )  < - -  n ~ n. x(m) A(A) IA(X) 

fl*(f,x) 
< -~ O, a.e., 
- -  n .  X ( m )  

as/7* (f, x) < oo a.e. by Fubini's theorem. The Lx-universal consistency property follows 
applying Theorem 3.2. 
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3.3 Strong convergence 
In order to obtain strong convergence, we will use boundedness conditions tha t  are 

usually satisfied in the nonparametr ic  framework. The argument  is based on Devroye 
(1991). 

THEOREM 3.3. Strong consistency. Let {Km~(x, Xi)}  be a triangular array on 
Lp(N d, IB d, p), with 1 < p < co, and f , ~  = n -1 Ei~=l Km~ (x, Xi).  I f  there exists an 
M > 0 such that, 

IIKm~(x, XdllL, <_ M, a.e., for i e {1 , . . .  ,n},  Yn E N, 

then the following assertions are equivalent, 
(i) Ilfmn -- E[fm,~JIIL,, compl__etely O, 

( i i )  117ran --  E[Tm~]IIL~ a~ O, 
( i i i )  II f~ ,~  - -  E[fm,]llL, ~ O. 
The boundedness condition can be weakened to []K,~.(x, Xi)llL~ < Mn, a.e., with 

En~176 e x p { - n / M ~ }  < oo. 

Define, 

Mn = esssup HKm,~(X,Z)HLp(. ) = esssup ]Km~(X,z)lP#(dx) 
Zc~.d,P ZCv_~.d,P 

(The essential supremum with respect to P) .  In order to s tudy  strong consistency, we 
have to consider the behavior of this sequence. 

Example 6. 

In the case p > 1, 

The kernel es t imator  trivially satisfies tha t ,  

Mn = sup f IKl~(z- x)ldx = II/~IILI(~) < o ~ .  zCR d 

( i  )lip ( i  )lip Mn --- sup IKH.~(Z -- x)lPdx = IKH.~(x)IPdx zCN d 

( d e t ( H n l ) p / l K ( H n l x ) l P d x )  1/p = = det(ggl)(P-1)/PllgllLp(~), 

so tha t ,  it is sufficient tha t  y'jn~=l e x p { - n / d e t ( H $ 1 )  2(p-1)/p} < oo. 

Example 7. The  his togram satisfies, for p = 1, tha t ,  

M n = e S s s u p  f A~Cm IA(X)IA(z) dx= sup E IA(Z) 
zERd J n ~ zERO ACmn 

---- 1 < a ~ ,  

and for p = 2, 

M~ = esssup f E IA(X)IA(Z) 
zeRO a Ae-~  A(A) 

= sup E IA(Z) 1 

2dx=esssup/ E Ia(x)Ia(z) 
zeR~ Aem,, ,k(A)2 dx 
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so that,  it is sufficient that x(mn)  ~ 0, with ~-~__, e x p { - n x ( m n ) }  < oc. 

4. Final remarks 

In order to establish the universal consistency of a delta estimator in  Lp(]l~ d, ]~d,p) 
with 1 < p _< 2, two conditions should be verified, 

(1) The net {am}m~ is an approximate identity in Lp, and {ran}nON is a divergent 
sequence in ]I. 

(2) E[[IKm ~ (x, X)liP (u)] = o(n p-l) ,  universally. 

I f  there exists some function ~(m) which tends to zero with m, such that  

( 1 )  E[HKm,~(x,X)[[PLp(~,)] = O ~ ( m ~ ) p _ l  , 

then condition (2) can be replaced by n. ~(mn) ~ ec. The first condition establishes the 
convergence of the bias term, and the second one implies that  the variation term tends 
to zero. Usually there is a trade-off between bias and variance. As mn increases, the 
bias decreases, but the variance increases. An analogous result holds in L1 Ra ,~  d, )~), 
replacing condition (2) by the assumption 

E[IKm ~ (x, X~)I 2] = o(n), 

for a.e. x E ]~d, universally, and an appropriate uniform boundedness condition. 
The equivalence of weak and strong consistency is proved under boundedness condi- 

tions. If {Kmn (x, Xi)}  are positive and integrate one with respect to x, which is usually 
the case in density estimation, the boundedness conditions are usually satisfied in the 
Ll-space. 

We have not covered problems associated to the choice of an optimal smoothing 
parameter, usually defined as 

m n = inf E K,~(x, Xi) - f ( x  . 
me~ i=1 Lp(~,).J 

In this general framework, an optimum m n could not exist. For example, if we consider 
histograms there is not an optimal partition m* C ][ unless we introduce additional 
restrictions on the shape of the partitions. Nevertheless, there are many families of 
nonparametric estimators with optimal smoothing parameter. In the main cases it is 
possible to estimate m* universally, see Devroye and Lugosi (2001) for a monograph of 
this topic. 

5. Proofs 

5.1 Proofs of Section 2 
PROOF OF THEOREM 2.1. First we prove that  conditions (1) and (2) are sufficient. 
Part I: Suj~ficient conditions. Assume that  {am}me~ is uniformly bounded, and 

there exists a dense set G C B, such that  

lim [lam(g) - glib = O, Vg E G. 
mE~ 
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By denseness, Ye > 0 and Vg E B, 3~" E G such that I[g - g[IB --< s- By assumption, 
Vlg" E {~, ~rn0 E ][ such that Vm > m0, [[am(g~ - g [ [ B  ~ s Then, using the assumption 
that ia~,},~E~ is uniformly bounded, the linearity of am and the triangular inequalit% 
it is satisfied th~tt, 

tiara(g) - gil~ < l ibra0)  - , :~m(~l l .  + II m ~ g ) -  ~ l l ,  + I1~ - J I t .  

/l~m(~ - ~)1i~ + ~ + ~ <- M .  IIg - .~flt~ + 2~ ~; ~M + ~)~- 

Since s is arbitrarily small, the result follows. 
Part H: Necessaw conditwns. Assume that {c~m}mc~ is a linear approxmmte 

identity in B. Then, trivially the approximation property holds for dense sets .G c /3. 
Assume that { ~/me~ are bounded operators, but uot mfifbrrnly bounded. By the 

Banach Steinhaus theorem (see, e.g., Rudin (1966)), qC C B that is a dense Gs set, such 
that  

suPll~.~(g)ll~ = o~, vg e c .  
raEl[ 

Furthermore sUPmE~ Ila.,(9) -- gliB = oo, for all 9 E C, since IIglIB < oo and by the 
triangular inequality [[a,,,(9) - g l i b  >- l l l ~ ( g ) l l ~  - i lg l lBI ,  Vg ~_ B. On the other hand, 
Vm EI[ 

libra(g) - glib <_ II~m(g)ll" + IlgllB < o~, 

hence, the supremum is equal to the limit, 

lim ilc~.~(g) - glib = sup lla.~(g) -g[ ]B = oc, Vg ~ (2. 

This contradicts the assumption that {a,~}mE: is an approximate identity. 

PROOF OF COROLLARY 2.1. It is sufficient to consider that SUPmE~ [[aml[B < co. 
Hence, 

II~m(g~) - glib ~ Ilam(gr) - ~m(g) l lU + ll~.~(g) - glib 

< supl}am}}B" lig~ -- gliB + }}am(g) - g}lB. 
rnE~ 

PROOF O THEOREM 2.2. The theorem follows applying Theorem 2.1 and the fol- 
lowing lemmas. 

LEMMA 5.1. Let {am}mE~ be a net of linear operators in Lp(]~d,]~d, tz ) with 1 < 
p < co. Then for all m E ][, the norm of the operator verifies, 

II~mllLp(,) _< Ill~I.~IIL.(,). 

Furthermore, the unifo~'m boundedness of {[Ol[rn}mE~ implies the uniform boundedness of 

PROOF. Consider a Riesz space (B, <), defined as a linear space B endowed with 
a partial preorder <, such that for all pairs { f , g }  c B, their supremum and infimum 
both exist. For any f E B, define If[ = s u p { f , - f } .  We say that (B, [[-tIB,-<~) is a 
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Banach lattice if (B, I1" lIB) is a B a n a c h  space, (B,_<) is a Riesz space and the norm 
tl" [Is is lattice (i.e., lfl -< 191 implies that  IlftlB <-- 119118 for all f , g  E B). 

In particular all Lp(lRd,lBd, p) spaces, endowed with the preorder " f (x)  <_ g(x) 
almost everywhere" are Banach lattices. If f E Lp(R d, IB d, p), then, 

Iozm(f)(x)] < / I K m ( x ' z ) l l f ( z ) l p ( d z )  = ICelm(Ifl;x) a.s.  [p]. 

As the norm [[. ][Lp(~) is lattice, Vf ~ Lp, 

The previous lemma and assumption A. 1 imply that  {Ctm}rne~ is uniformly bounded. 
Note that the space C~(N d) of continuous functions with compact support is dense in 
Lp(Rd,~d,p), with 1 < p < oc (see e.g., Rudin (1966), Th. 3.3.1). By Theorem 2.1, it is 
sufficient to establish that, 

lim I t o ~ m ( f )  - fllL~,(~) = O, V f  E Cc(~d). 
mE]l 

LEMMA 5.2. 

f E Cc(Nd), 
If  the net {C~m},~e~ satisfies the conditions of Theorem 2.2, for all 

lira I]~,,~(f) - fI[LA.) = O. 
mE~ 

PROOF. For any f E Cc(Nd), define h(x, z) = f (z )  - f (x) .  By A.2, 

[lam(f)(x)- f(x)l[n.(.) < f h(x,z)gm(x,z)p(dz) 
L,(,) 

+ I I f ( x ) l l ~ l l ~ m ( 1 ) ( x )  - 1 i lL , ( , )  

(5.1) = llf h(x,~)Km(~,z)p(d~) l~p(, +o(1). 

Since h(x, z) E Cc(N d x N d) we can restrict the measure p to a compact set C. The 
restricted measure is denoted by Pc. Then, the first term in (5.1) is bounded by 

(5.2) _ ~.:ll~-zll<e} Ih(x, z)llgm(x, z)lpc(dz) 
Lp(l~c) 

+ [ h(~, z)K~(x, z)pc(dz) . 
J{ Z: IIx-z ]1 >~} Lp (~c) 

Since f is uniformly continuous, for all e > 0, 35 > 0, such that, if IIx - zll < 6 then 
Ih (x ,  z)f = I f ( x )  - f ( z ) l  < e. Thus, (5.2) is bounded by, 
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By A.1 and A.3 the first term is arbitrari ly small, since 

sup f [K.,(x,z)[t~c(dz) _< sup S IKm(x,z)l " Ic(z)p(dz) L.(.) 
rnE~ J Lp(t~c) mE~ 

sup III~I~IIL.(.). IIScll~.(.) 
mEH 

= sup Ill<milL,(.). p ( c )  tip < ~. 
rnC~ 

The second term is bounded by 

Ilhlloo /(z:ll~-zll>,~} 

by Ilhlloo < oo and A.4. 

IKm(x, z)lpc(dz) ]L.(,.~) -->0 
mEll 

PROOF OF PROPOSITION 2.1. The proof is similar to Theorem 2.2, noticing tha t ,  

I I ~ . ~ ( f ) ( x )  - :(x)llL.(.) <<_ f h(x, z)Km(x, z)  I t (dz)  
J ip(bt) 

+ IIo+~(1)(x) - I l IL~( . ) "  II/IIL,>(~.). 

PROOF OF PROPOSITION 2.2. 

I1' IILp(z) is lattice, 

f{ IKm(x, z)lttc(dz) <_ 5-~ 
z : l l z - z l l > ~ }  Lp(l~c ) 

thus A.4 is satisfied. 

PROOF OF PROPOSITION 2.3. 
theorem of dominated  convergence. 

Since laim is a monotone operator  and the norm 

i llx - z l F I K m ( x ,  z) l t t (dz)  L.(,.) -+ o, 

This is an immediate  consequence of Lebesgue's 

PROOF OF PROPOSITION 2.4. 

S.i  implies A. 1, as a consequence of the next result. 
We use Theorem 2.2. First  note tha t  assumpt ion 

LEMMA 5.3. Generalized Young's inequality. Set Kin(u) E Ll(]~d,]~ d, ~). 
V f  E Lp(l~d,I~d,) 0 with 1 < p < oc, 

I p "X 1/p 

(i i ,'=.-.,,',z,.. ..: 

Then 

IIK,~IILI(X)IIf]IL.(X). 
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PROOF. Using the integral Minkowski's inequality, Fubini 's theorem and the in- 
variance of the Lebesgue measure under translation,  it is satisfied tha t ,  

( / / .  p )l/p 
Illc~[m(f)(x)lli~(~,) -- IK,~(z - x) l .  f(z)dz dx 

-- ( /  ( f  IKm(u)l . lf(x + ~)ld.) Pdx) lip 

< f ( f  (IKm(u)l " lf(x + ~)lFdx) l/'d~ 

/ IKm(u)] ( /  if(x + u)iPdx) 1/p = du = Ilgm]lLl(a)" IlflILp(a). 

Note tha t  A satisfies A.3. Assumption A.4 is a consequence of S.3. For each compact  
set C, 

/'Km(z-x)[',x-z"Ac(dz)= ~ c  ]Km(z - x)'i'z - x']dz = ~uucC-x ,Km(u),,,u,,du, 

after a change of variable u = z - x. Then, 

f IKm(x - z)lllx - zl l~c(~)  ~p(~c) = f c -x  IKm(~)ill~lld~ Lp(Ac) 
<- /IKm(u)lllulldu" Illlln.(xc) 

= /IKm(u)]i[u[idu. A(C) 1/p ~ O. 

PROOF OF PROPOSITION 2.5. We apply Theorem 2.2. First ,  we check condit ion 
A.1. Note tha t  am is a positive operator,  so am = laim. For all m C ][, 

]]ami]Ll(,) = esssup [ A~m IA(X)IA(Z) zeR~,)~ d A(A) dx = esssup E IA(Z)= i, 
zE[~a'A AEm 

then  {IC~]m}mc~ is uniformly bounded in L 1 (]~d ]~d, ~). 
A.2 is immediate  since, Vm c ][, 

C~m(1)(X) = E ~ ' ~  dz= E IA(X)= 1 a.s. ["~1. 
AEm AEm 

The measure A satisfies A.3. Now we will check A.4. Let h e  be the restriction of 
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to any compact  set C, then,  

lim f [Km(x,z)[~c(dz) 
me~ JD:ll~-zll>+} LI(Ac) 

= l i m f  ~{z:llx_zli>5}(A~m IA(x)IA(z) A(A) Ac(dz)i Ac(dx) 

But  we can take a fine enough par t i t ion  m~ E I[0 with a m ax im u m  diameter  arbi- 
t rar i ly  small, i.e., such tha t  for every A C m~, SUPx,zem []X -- z[[ _~ 6. The  same holds for 
all m > m~. T h e n  

sup f{{z:llx-zll>5}nA} A(dz) _ )~(0) _ O, VA r m, Vm > ms. 
xeA )~(g) )~(A) 

Thus,  Vm _> m~, 

0 
ACm 

and by domina ted  convergence, 

m e ~ J  A(A) 

a.s. [~], 

PROOF OF P R O P O S I T I O N  2.6. First,  notice tha t  the set S of all simple and mea- 
surable functions g, such tha t  # ({x  E ]~d : tg(z)[ > 0}) < oo is dense in Lp(lt~d,lt~,#), 
whenever  1 < p < c~ (see e.g., Rudin  (1966), Th.  3.2.8). 

LEMMA 5.4. The partition net {O~m}mr satisfies the approximation theorem on 
Lp(~ d, ~, / t ) ,  with 1 < p < ~ for all g r 8. 

PROOF. Simple functions g r S,  can be expressed as, 

g(z) = ~ ~r. ~ ( z ) ,  
r = l  

for some finite measurable  par t i t ion  ~ = ( B 1 , . . .  ,Bs)  of R d, with p(Br) < c~ for 
r = 1 , . . .  , s. By  definition, 

Olrn(g)(x) = A~ra (~A) /A g(z)l-t(dz)) IA(X) 

= 1-!- I  (zl (dzl 

~,c (dx) = O. 
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Thus,  using tha t  EAem IA(x) a,e,.~[t~] 1, 

Therefore,  

(x) E ~rlB~ 
r=l Lp(tt) 

N B~) - #(A)IB~(X)]) Id(X) L,(,)" 

l lS~ 1 It(A)IB~(X)IA(X)] Ilam(g)(x)--g(x)llL,(t ') 4-- E It(A) ~[it(A n B~)IA(X) -- 
ACre = Lp(it ) 

which tends to zero when m increases. Namely, if ~ < m, then  VBr E ~ and VA C m, 
we have one of the  following cases: 

(i) A N B~ = 0 and therefore  It(A N B~) = 0, I{AnB~}(x) = Io(x) = 0, or 
(ii) A C B~ and thus It(A N B~) = It(A), I{ANB~}(X) : IA(X). 

This  implies tha t  VB~ C ~ _< m, 

]lit(A N Br)IA(X) -- It(A)I(AnB~} (x)[ILp(tt) 

= (/IIt(AVBr)IA(X)--It(A)I{Ac~B~}(x)'P#(dx)) I/p 

~-0. 

In o ther  words, Vg E S, 3 ~  such tha t  Vm > ~ the approximat ion  error is Ileum(g) - 
g l l r ~ ( , )  = O. 

The  result follows by Theo rem 2.1 and the  following lemma. 

LEMMA 5.5. If It is absolutely continuous with respect to the Lebesgue measure, 
the positive )~, linear operators {am}me~ are uniformly bounded in Lp(~d,]~,it), for 1 < 
p<_cc. 

PROOF. Firs t  notice tha t  in L1 (]~d, ]~d, It), the  norm of oL m satisfies, 

llO~mllL1 = esssup / I K m ( x , z ) , i t ( d z ) =  esssup [ A~rn IA(X)IA(z) 
xe~ ,~ ,  xeRd,~ J it(A ) It(dz) 

= esssup E IA(Z) = sup 1 = 1. 
xER~,tt AEm $E~d 

Also, in Loo(~ d, ~4 It), noticing tha t  Km(x, z) is cont inuous a.e. (since It << A the  
discontinui ty points  have measure null), and 

[IoLmi[Loo • esssup f IKm(x,z)l#(dx) = esssup f A~m IA(X)IA(Z) zCRd,~ j ze~d,~ j It(A) p(dx) 

= ess sup E IA(Z) = sup 1. 
zERd'tt AErn zeta 
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For 1 < p < oc, the Lp boundedness follows from the Riesz-Thorin interpolation 
theorem. 

PROOF OF PROPOSITION 2.7. Assumption O.1 implies that A.1 holds. Note that  
the projection operators {am}me~ have norm 

H OLra ]'L2 (it) sup ( ~ , ( f ,  ek}L2(u),2) 1/2 = < Ill~lmllL,(.)- 
IlfllLa(,)_<X k=l 

We only need to check A.2 to A.4. Note that, since eko(x) = 1, a.s. [#], then 
Vm > k0, 

am(1)(x) = 1 a.s. [p], 

because 1 belongs to the space span ({e~}km__,), and its projection is just equal to itself. 
Assumptions A.3 and A.4 are a consequence of O.3 and 0.4, respectively. 

5.2 

c~ > 0 such that  

:] E -- E ( Z n , i -  E[Zn,i] ) 
n i= l  

Proofs of Section 3 
PFOOF OF THEOREM 3.1. As the space (B, I1" liB) is of type 7 C [1, 2], there exists 

n 

c.y . -~ ~-] E[lIZn # - E[Zn,i]ll~B] 
i=l 

< C,~" 2 "~-1 k E [ l l Z n # l l ~ ]  + IIE[Z,~#]II~ 
- -  n ,  ~ i= l  

by the triangular inequality and the Cr inequality. On the other hand, the Bochner 
integral satisfies IIE[Zn#] [1~ -< E[IIZn,ilIB] ~ --< Sill Zn,i 117~] (see Araujo and Gin@ ((1980), 
Prop. 2.2) and apply Jensen's inequality). Thus, 

E ~ ( Z n #  - E [ Z n , d )  < E[llZn,i l l~] ~ o. 
- -  n V  

i=1 

PROOF OF PROPOSITION 3.1. By Fubini's theorem, 

= IIi,(u)l = E IKmn(x, Xi)lPp(dx) 

= fE[lKmo(x,X~)lP]p(dx)= f [f [Km.,(x,z)lP~(z)#(dz)] #(dx) 

= f l K . ~ o ( x , z ) l P ~ ( z ) . ( d z ) L l ( .  ) �9 

PROOF OF THEOREM 3.2. Notice that for each x C ]~d the family {Kmn(x, XO} 
is an R-valued triangular array. Notice that  l~ is a Hilbert space and, therefore a type-2 
space. Applying Theorem 3.1, condition (1) implies that,  

1 n 
n-lan(X) := - ~ ( K m ~ ( x ,  x ~ ) -  <Kmo(x, x~)]) ~ 0, 

n 
i=1 
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and therefore E H n - I S ~ ( x ) N  ---. 0 for any p c [1, 2], that is 

E[ lfi( )l) = - Km~(x ,  X i )  - E [ K ~ ( x ,  X i  ~ O. 
n i = l  

This result holds for a.e. x E R d, with respect to # (by assumption 1). Notice also that  
condition (2) states that, 

sup Cn(X)#(dx) < o o .  
n_>l 

Hence, by Fubini's theorem and Lebesgue's dominated convergence theorem, 

= i E[l'-lS'(x)l']v(dx)= S r o. E[[]n-lgn(X)]lPL,(, )] 

Then, Markov's inequality implies Hn-lgn(x) l[L,( , )  24 0; that is, the weak Lp-conver- 
gence for the variation term. 

PROOF OF THEOREM 3.3. It is well known that  complete convergence implies 
almost sure convergence which implies convergence in probability. We will prove that  
convergence in probability implies complete convergence. 

LEMMA 5.6. Under conditions of  Theorem 3.3, then, for  all 5 > 0, 

P(LIIfm~ - E[f~..]IIL. -- E[Llfm.. - E[fm..]llL~]l >-- 5) < e x p { - n A 2 / 4 M 2 } .  

PROOF. The result is a consequence of McDiarmid's (1989) inequality. Consider 
a real function g ( X 1 , . . .  , Xn)  where X~ are independent real variables. If g satisfies for 
each io C {1, . . .  ,n}, 

sup Ig(Xl . ,X~o, .. ,X~ )  - g(X1,  , X  ~. ,Xn ) l  <_ ' . . . . . .  z o  ' " " " Cio 
X '  EB 

~0 

with probability one, by McDiarmid's inequality, 

-A2 } 
P r [ [ g ( X l , . . . ,  X , ~ ) -  E [ g ( X 1 , . . .  ,Xn)ll > "Xl ___ e x p .  

EL-- 4 
9 

k 

Devroye (1991) and Devroye et al. ((1996b), p. 136) provide an introduction to 
McDiarmid's inequality. 

Consider the function 

n - 1  n (X, X ) ]  g ( X l , . . .  , X n )  -= E K m n ( x ' X i )  - E [ K m .  = Ilfm. - E[fm.I]IL.. 
i=1 Lp 

For any a, b belonging to a normed space, [[[a][- [Ibl][ < [la - b][ is satisfied. Thus, for 
each i0 E {1, . . .  ,n}, 

sup [g(Xl , .  �9 . , X i o ,  . . .  , X n )  - g ( X l ,  . . .  ,Xio,: . .  , X n ) I  
X ~  E R  d 

~0 

1 ~.e. 2 M  
_ < -  sup I I K m . ( x , X , o ) - K m ~ ( x , X : o ) [ ] L  ~ <_ 

n x. ~ eRd n 
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Therefore, 

Pr[Ig(X~,... ,Xn) -  E[g(X1,..., Xn)]l > ~] ___ exp [ - ~ - ~ - j ,  

applying McDiarmid's inequality. 

The proof of the theorem is now immediate, considering the centered sums of the tri- 
angular array. Notice that under the boundedness condition, convergence in probability 
implies that 

E[llfm~ - E[fm~]llL,} = o(1), 

by the dominated convergence theorem. 
Therefore, W C (0,5) and 6 > 0 there exists an n(e) E 5I such that Yn > n(e), 

E[tl mo - E [ Y ' m n ] l l L ~ ]  < ~, and by the triangular inequality, 

P ( l l f m ~  - E[]'mo]IIL~ >_ 6) < P( l l l f ' -~ , ,  - E [ ] ' m n ] l l L p  -- E[ l l f ' -~n  - E [ f m ~ l l l L p ] l  _> 6 -- ~) ,  

with 5 - z > 0. By the previous lemma, the right-hand side of last expression is bounded 
by exp{ -n (5  - r  Thus, complete convergence holds. The extension to the case 
of increasing constants Mn > 0 is trivial. 

Acknowledgements 

We thank Juan A. Cuesta, Gabor Lugosi and two anonymous referees for their 
helpful comments and suggestions, which have led to an improved version of this paper. 
This research has been supported by a Marie Curie Fellowship of the European Com- 
munity programma IHP, under contract number HPMF-CT-2000-00449; and also by 
the Spanish Ministry of Technology (Direccidn General de Ensefianza Superior, DGES), 
reference number BEC2001-1270. 

REFERENCES 

Abou-Jaoude, S. (1976a). Sur une condition n~cessaire et suffisante de L1 convergence presque complete 
de l'estimateur de la partition fixe pour une density, Comptes Rendus de l'Academie des Sciences 
de Paris, Serie A, 283, 1107-1110. 

Abou-Jaoude, S. (1976b). Sur la convergence L1 et Lcr de l'estimateur de la partition al6atorie pour 
une densit6, Annales de l'Institut Henry Poincaird, 12, 299-317. 

Abou-Jaoude, S. (1976c). Conditions n6cessaries et suffisantes de convergence L:t in probabilit6 de 
l'histogram pour une densitY, Annales de l'Institut Henry Poineaird, 12,213-231. 

Araujo, A. and Gin~, E. (1980). The Central Limit Theorem for Real and Banach Valued Random 
Variables, John Wiley & Sons, New York. 

Basawa, I. V. and Prakasa Rao, B. L. S. (1980). Statistical Inference for Stochastic Processes, Academic 
Press, New York. 

Billingsley, P. (1986). Probability and Measure, 2nd ed., John Wiley & Sons, New York. 
Bosq, D. (1969). Sur l'estimation d'une densit~ multivari6e par une serie de fonctions orthogonales, 

Comptes Rendus de l'Academie des Sciences de Paris, 268, 555-557. 
Butzer, P. L. and Nessel, R. J. (1971). Fourier Analysis and Approximation, Voh 1, Birkhs Verlag, 

Bassel and Stuttgart. 
Cencov, N. N. (1962). Evaluation of an unknown density by orthogonal series, Soviet Mathematics 

Doklady, 3, 1559-1562. 
Cheney, E. W. (1982). Introduction to Approximation Theory, Chelsea Publishing Company, New York. 



816 JOSE M. VIDAL-SANZ AND MIGUEL A. DELGADO 

Chung, K. L. (1974). A Course in Probability Theory, 2nd ed., Academic Press, San Diego, California. 
Davis, P. J. (1975). Interpolation and Approximation, Dover, New York. 
de Cuzman, M. (1975). Differentiation of Integrals in ]~n, Lecture Notes in Mathematics, 481, Springer 

Verlag, Berlin. 
DeVore, R. A. and Lorentz, C. G. (1993). Constructive Approximation. Grundlehren der mathemas- 

tischen Wissenschaften, 303, Springer Verlag, Berlin. 
Devroye, L. (1983). The equivalence of weak, strong and complete convergence in L1 for kernel density 

estimates, Annals of Statistics, 11,896-904. 
Devroye, L. (1987). A course in density estimation, Progress in Probability and Statistics, Birkhs 

Boston. 
Devroye, L. (1991). Exponential inequalities in nonparametric estimation, Nonparametric Functional 

Estimation and Related Topics (ed. G. Roussas), 31-44, Kluwer Academic Publishers, Dordrecht. 
Devroye, L. and GySrfi, L. (1983). Distribution-free exponential bound on the L1 error of partitioning 

estimates of a regression function, Proceedings of the Fourth Pannonian Symposium on Mathe- 
matical Statistics (eds. F. Konecny, J. Mogyorodi and W. Wertz), Akad@miai Kiad5, Budapest, 
Hungary. 

Devroye, L. and GySrfi, L. (1985a). Nonparametric Density Estimation, The L1 View, John Wiley &: 
Sons, New York. 

Devroye, L. and GySrfi, L. (1985b). Distribution free exponential bound for the L1 error of the parti- 
tioning estimates of a regression function, Probability and Statistical Decision Theory, Proceedings 
of  the Fourth Pannonian Symposium on Mathematica Statistics (eds. F. Konecny, J. Mogyorodi 
and W. Wertz), 67-76, Reidel, Dordrecht. 

Devroye, L. and Krzyiak, A. (1989). An equivalence theorem for L1 convergence of nearest neighbor 
regression function estimates, Annals of  Statistics, 22, 1371-1385. 

Devroye, L. and Lugosi, G. (2001). Combinatorial Methods in Density Estimation, Springer Verlag, 
New York. 

Devroye, L. and Wagner, T. J. (1979). On the L1 convergence of kernel density estimators, Annals of 
Statistics, 7, 1136-1139. 

Devroye, L. and Wagner, T. J. (1980a). Distribution free consistency results in nonparametric discrim- 
ination and regression function estimates, Annals of Statistics, 8, 231-239. 

Devroye, L. and Wagner, T. J. (1980b). On the L1 convergence of kernel estimators of regression func- 
tions with application in discrimination, Zeitschrift fiir Wahrsheinlichkeitstheorie und ver~vandte 
Gebiete, 51, 15-25. 

Devroye~ L. and Wagner~ T. J. (1982). Nearest neighbor methods in discrimination, Handbook of 
Statistics (eds. P. Krishnaiah and L. Kanal), Vol. 2, 193-197, North Holland, Amsterdam. 

Devroye, L., Gy5rfi, L., Krzyiak, A. and Lugosi, G. (1996a). On the strong universal consistency of 
nearest neighbor regression function estimates, Annals of  Statistics, 22, 1371-1385. 

Devroye, L., GySrfi, L. and Lugosi, G. (1996b). A probabilistic theory of pattern recognition, Applica- 
tions of Mathematics, Stochastic Modelling and Applied Probability, Springer Verlag, New York. 

Dunford, N. and Schwartz, J. T. (1957). Linear Operators. Part L General Theory, Wiley Classics 
Library Edition, 1988. John Wiley & Sons, New York. 

Edgar, G. A. and Sucheston, L. (1992). Stopping times and directed processes, Encyclopedia of Mathe- 
matics and Its Applications (ed. G. C. Rota),  47, Cambridge University Press, Cambridge. 

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator: L2 theory, Zeitschrift 
fur  Wahrsheinlichkeitstheorie und ve~wandte Gebiete, 58, 139-157. 

Graunt, J. (1662). Natural and Political Observations Made upon the Bills of Mortality, Martyn, 
London. 

GySrfi, L. (1981). The rate of convergence of Kn - N N  regression estimation and classification, IEEE 
Transactions on Information Theory, IT-27 ,  500-509. 

Gy5rfi, L., Kohler, M., Krzyiak, A. and Walk, H. (2002). A Distribution-free Theory of Nonparamctric 
Regression, Springer Verlag, New York. 

Hoffmann-Jcrgensen, J. (1974). Sums of independent Banach space valued random variables, Studia 
Mathematica, 52, 159-186. 



UNIVERSAL CONSISTENCY OF DELTA ESTIMATORS 817 

Hoffmann-Jcrgensen, J. (1976). Probability in Banach Spaces, Lecture Notes in Mathematics, 598, 
Springer Verlag, New York. 

Hong, D. H., Ordofiez-Cabrera, M., Sung, S. H. and Volodin, A. I. (2000). On the weak law for randomly 
indexed partial sums for arrays of random elements in martingale type p Banach spaces, Statistics 
and Probability Letters, 46, 177-185. 

Hu, T. C., Ordofiez-Cabrera, M. and Volodin, A. I. (2001). Convergence of randomly weighted sums of 
B-space valued random elements and uniform integrability concerning random weights, Statistics 
and Probability Letters, 51, 155-164. 

Hu, T. H. and Chang, H. H. (1997). Complete convergence and the law of large numbers for arrays of 
random elements, Proceedings, 2nd World Congress of Nonlinear Analysis, Elsevier Science, U.K. 
(Nonlinear Analysis. Methods and Applications, 30, 4257-4266). 

Kantorovich, L. V. and Akilov, G. P. (1982). Functional Analysis, 2nd ed., Pergamon Press, Oxford. 
Kreyszig, E. (1978). Introductory Functional Analysis with Applications, Wiley Classics Library, John 

Wiley & Sons, New York. 
Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes, 

Springer Verlag, New York. 
Linde, W. (1986). Probability in Banach Spaces-Stable and Infinitely Divisible Distributions, John 

Wiley &: Sons, New York. 
Lugosi, G. and Nobel, A. (1996). Consistency of data driven histogram methods for density estimation 

and classification, Annals of Statistics, 24, 687-706. 
Lugosi, G. and Zeger, K. (1995). Nonparametric estimation via empirical risk minimization, IEEE 

Transactions on Information Theory, 41, 677-678. 
McDiarmid, C. (1989). On the method of bounded differences, Surveys in Combinatorics, 148-188, 

Cambridge University Press, Cambridge. 
Ordofiez-Cabrera, M. (1994). Convergence of weighted sums of random variables and uniform integra- 

bility concerning the weights, Collectanea Mathematica, 45, 121-132. 
Patterson, R. F. and Taylor, R. L. (1997). Strong Laws of Large Numbers for negatively dependent 

random elements, Proceedings, 2nd World Congress of Nonlinear Analysis, Elsevier Science, U.K. 
(Nonlinear Analysis. Methods and Applications, 30, 4229-4235). 

Pisier, G. (1986). Probabilistic Methods in the Geometry of Banach Spaces, Lecture Notes in Mathe- 
matics, 1206, 167-241, Springer, Berlin. 

Pisier, G. (1989). The Volume of Convex Bodies and Banach Space Geometry, Cambridge University 
Press, Cambridge. 

Pollard, D. (1984). Convergence of Stochastic Processes, Springer Verlag, New York. 
Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation, Academic Press, London. 
R@vesz, P. (1971). Testing of density functions, Periodica Mathematica Hungarica, 1, 35-44. 
R~vesz, P. (1972). On empirical density function, Periodica Mathematica Hungarica, 2, 85-110. 
R@vesz, P. (1973). A strong law of the empirical density function, Transcations of the 6th Prague 

Conference on Information Theory, 469-472. 
R~vesz, P. (1974). On empirical density function, Probability and Statistical Methods--Summer School, 

Bulgarian Academy of Science, Varna, Bulgaria. 
Rudin, W. (1966). Real and Complex Analysis, 2nd ed., McGraw Hill, New York. 
Schwartz, L. (1981). Geometry and Probability in Banach Spaces, Lecture Notes in Mathematics, 852, 

Springer Verlag, New York. 
Scott, D. W. (1979). On optimal data  based histograms, Biometrica, 66, 605-610. 
Scott, D. W. (1992). Multivariate Density Estimation. Theory, Practice, and Visualization, John 

Wiley & Sons, New York. 
Shilov, G. E. and Gurevich, B. L. (1997). Integral, Measure ~ Derivative: A Unified Approach, Dover, 

New York. 
Silverman, A. N. (1978). Weak and strong uniform consistency of the kernel estimate of a density and 

its derivatives, Annals of Statistics, 6, 177-184. 
Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions, Princeton Univer- 

sity Press, Princeton, New Jersey. 
Stone, C. J. (1977). Consistent nonparametric regression, Annals of Statistics, 5,595-645. 



818 JOSE M. VIDAL-SANZ AND MIGUEL A. DELGADO 

Stute, W. (1982). A law of the logarithm for kernel density estimators, Annals of Probability, 10, 
414-422. 

Taylor, R. L. and Hu, T. H. (1987). Strong Laws of Large Numbers for arrays of rowise independents 
random elements, International Journal of Mathematics and Mathematical Sciences, 10, 804-814. 

Terrell, G. R. (1984). Efficiency of nonparametric density estimators, Tech. Report, Department of 
Mathematical Sciences, Rice University, Houston, Texas. 

Terrell, G. R. and Scott, D. W. (1992). Variable kernel density estimation, Annals of Statistics, 20, 
1236-1265. 

Tukey, J. W. (1977). Exploratory Data Analysis, Addison-Wesley, Reading, Massachusetts. 
Vakhania, N. N. (1981). Probability Distributions on Linear Spaces, North Holland, New York. 
Vakhania, N. N., Tarieladze, V. I. and Chobanyan, S. A. (1987). Probability distributions on Banach 

spaces, Mathematics and Its Applications (Soviet Series), Reidel Publishing Company, Dordrecht 
(translated from Russian, 1985, Nauka, Moscow). 

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with 
Applications to Statistics, Springer Verlag, New York. 

Vapnik, V. (1982). Estimation of Dependencies Based on Empirical Data~ Springer Verlag, New York. 
Vidal-Sanz, J. M, (1999). Universal Consistency of Delta Estimators: An Approximation Theory Based 

Approach, Ph.D. Dissertation, Universidad Carlos III de Madrid, Spain (in Spanish). 
Walter, G. and Blum, J. R. (1979). Probability density estimation using delta sequences, Annals of 

Statistics, 7, 328-340. 
Watson, G. S. and Leadbetter,  M. R. (1963). On the estimation of probability density I, Annals of 

Statistics, 34, 480-491. 
Watson, G. S. and Leadbetter, M. R. (1964). Hazard analysis II, Shankhyg, series A, 26, 101-116. 
Wheeden, R. and Zygmund, A. (1977). Measure and Integral, Marcel Dekker, New York. 
Whittle,  P. (1958). On the smoothing of probability density functions, Journal of the Royal Statistical 

Society Series B, 20, 334-343. 
Winter, B. B. (1973). Strong uniform consistency of integrals of density estimation, The Canadian 

Journal of  Statistics, 1, 247-253. 
Winter, B. B. (1975). Rate of strong consistency of two nonparametric density estimators, Annals of 

Statistics~ 3, 759-766. 
Woyczyfiski, W. A. (1978). Geometry and martingales in Banach spaces--Par t  II: Independent incre- 

ments, Probability on Banach Spaces (ed. J. Kuebs), Advances in Probability and Related Topics, 
Vol. 4, 267-519, Marcel Dekker~ New York. 

Xia, Dao-Xing (1972). Measure and Integration on Infinite-dimensional Spaces: Abstract Harmonic 
Analysis, Academic Press, New York. 


