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A b s t r a c t .  We consider the problem of estimating the discriminant coefficients, 
= ~ ' ~ - - 1 ( 0 ( 1 )  - -  8 (2)) based on two independent normal samples from Np(O (*), ~) 

and Np(0 (2), ~E). We are concerned with the estimation of rl as the gradient of 
log-odds between two extreme situations. A decision theoretic approach is taken 
with the quadratic loss function. We derive the unbiased estimator of the essential 
part of the risk which is applicable for general estimators. We propose two types of 
new estimators and prove their dominance over the traditional estimator using this 
unbiased estimator. 

Key words and phrases: Unbiased estimator of risk, linear discriminant function, 
posterior log-odds. 

1. Introduction 

Let  Xl i  (i = 1 , . . . , n l )  and X2i (i = 1 , . . . , n 2 )  be two samples of t ra ining da ta  
which were drawn from popula t ions  P1,Np(O(1),~E) and P2, Np(O(2),~) respectively. 

T he n  ~E -1 (0 (1) - 0 (2)) is called the discriminant  coefficient. Fisher 's  linear discriminant  

funct ion of x,  a p-dimensional new da t a  set, is given by x t ]E-1  (0(1) _ 0(2)). 
As Haft  (1986) observed, the discriminant  coefficient is the  gradient  of poster ior  log- 

odds, which itself is a meaningful  subject  of est imation.  We briefly ment ion  here how 
the discriminant coefficient can be pract ical ly used. In the "discr iminant  analysis" in its 
original or strict meaning,  we are given two mutua l ly  exclusive groups and the  interest  is 
in the  classification of a new data ,  where some examples of possible questions are: "Which 
species does this iris belong to?";  "Is this t umor  malignant  or benign?";  "Who wrote  
this document ,  James Madison or Alexander  Hami l ton?" .  On the  o ther  hand,  we often 
encounter  the si tuations where a new da ta  can hold a posi t ion anywhere  between two 
ex t reme groups. Consider for example  two ext reme groups such as: financially excellent 
companies  and those which went bankrupt ;  s tudents  who g radua te  cum laude and those 
who drop out. In these si tuat ions the main concern would be the  relat ive closeness of 
a new da ta  ( company / s tuden t )  to the two ex t reme groups. Tempora r i ly  we call it a 
"placement"  problem in order  to distinguish it from the "discr iminat ion" problem in the 
strict  sense. Since the stat is t ical  tools are quite similar for the two problems,  they  have 
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been treated uniformly under the same name such as classification or discrimination. 
Actually in many texts on multivariate analysis, examples of the two problems are taken 
as an application of the discriminant analysis. See for example Johnson and Wichern 
(1998). 

However the interpretation or usage of a discriminant function is naturally different 
in the two problems. In the "discrimination" problem, it is used as a tool for the 
classification of a new data, while in the "placement" problem it is used for the placement 
of a new data between two extreme groups. We will illustrate this point with Altman's 
Z-score. Altman (1968) applied Fisher's lineal" discriminant function to the financial data  
from two groups of companies: companies which had gone bankrupt and those which 
still existed in a particular year. The updated version of Z-score for a private company 
(Altman (1993)) is given by 

Z = 6.72Xl + 3.26x2 + 6.56x3 + 1.05x4, 

where Xl = (earnings before taxes + interest)/ total  assets, x2 = retained earnings/total 
assets, x3 = working capital/ total  assets, x4 = market value of equity/total  liabilities. 
(See also Grice and Ingram (2001) for Altman's Z.) The coefficients xi, i = 1 , . . . , 4  
are discriminant coefficients calculated from the sample of the two groups of companies. 
Originally Z-score was proposed to "discriminate" the two groups, bankrupt and non- 
bankrupt firms. However, it has been practically used by many financial analysts to 
assess bankruptcy potential of firms. (You can find hundreds of Web Pages to provide 
consultant service using this score.) In other words, Z-score is the indicator of a com- 
pany's financial healthiness. The two groups of companies, "excellent" companies and 
those filed a bankruptcy petition are two extreme groups (training data) and a company 
of concern is evaluated by its Z-score, the relative closeness to those points so that  the 
company is "placed" somewhere between the two groups. The relative closeness can 
be given by the likelihood ratio between the distributions of each group. If we assume 
these distributions are Np(0(1),E) and Np(0 (2), E), the log-likelihood ratio equals to 

x t E  -1 (0 (I) - 0 (2)) + ao with some constant a0. Then the estimation of the discriminant 
coefficient and a0 is needed. Especially the discriminant coefficient, the gradient of the 
log-likelihood ratio is important, since the variation over a certain time span (like annual 
or quarterly movement) is determined by the gradient. 

In this paper we consider the estimation of the discriminant coefficient in a "place- 
ment" problem. It is most reasonable to evaluate an estimator of the discriminant coef- 
ficient by the probability of misclassification, if the case is the "discrimination" problem. 
However for "placement" problem, there is no such reasonable criteria. Therefore we use 
the risk with respect to a quadratic loss function for the evaluation of estimators. Our 
aim is to present new estimators which dominate a traditional estimator with respect to 
the risk. 

By the usual canonical reduction of the problem, we can assume that  Y = (Yl , . . . ,  
yp)t and S = (s~j) are independently distributed as 

Y ,.~ Np(O, E), S ~ Wp(k ,  E), 

where 0 = m(0 (i) 0 (2)) with m = (n ln2 / (n l  + n2)) 1/2 and k = nl + n2 - 2. We 
assume k > p + 1 unless otherwise stated. We estimate ~? -- m~J- l (0  (1) - 0 (2)) -- ~ - 1 0  

instead of Z -1 (0 (1) - 0  (2)) for simplicity, based on Y and S. We evaluate an estimator 
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-- (~1,- . . ,  ~p)t in view of its risk using the loss function 

P 

( 1 . 1 )  - r i l l  2 - - - -  - - = - 2 

i = I  

Hereafter we use the notation, R(~; 0, E) for the risk of ~, i.e., R(O; 0, E) = E[IIO- nil21. 
Haft (1986) originally considered the estimation of ~7 under the loss function (1.1). 

Later Dey and Srinivasan (1991) considered the estimation of rl in the same framework. 
Sarkar and Krishnamoorthy (1991) and Rukhin (1992) also deal with the same problem 
from a decision theoretic point of view, but  they used another type of loss function, 

(1.2) (~ - n)t2](0 - n)- 

Sarkar and Krishnamoorthy (1991) proved the dominance result of Stein-type estimators 
over a traditional estimator and Rukhin (1992) derived generalized Bayes estimators. 

A traditional estimator, which is commonly used in practice, is the unbiased esti- 
mator, 

(1.3) 0 (~) = ( k - p -  1 )S -1Y.  

Haft (1986) (see Lemma 4.4) and Dey and Srinivasan (1991) (see Solution 2) proved 
that a simple shrinkage estimator, 

(1.4) 0 (H1) = a S - 1 Y ,  k - p -  5 < a < k - p -  1 

dominates O (~) w.r.t, the loss function, (1.1). Haft proposed another estimator of the 
form 

(1.5) 0 (H2) = (k - p - 1)(S + ut (u) Ip) - lY ,  

where u = 1 / t r  S -1 and t(u) is a positive valued absolutely continuous function of u. 

He proved that o(H2) dominates ~('*) w.r.t, the loss function (1.1) if (k - p -  5)t2(u) - 
4t(u) + 4ut'(u) < 0, Vu > 0 and some conditions are met for the application of Stokes' 
theorem. 

Dey and Srinivasan (1991) (see Solution 3) proposed an estimator of the form 

(1.6) ~(DS) = a S - 1 y  + b(tr S ) - I Y  

and proved that o(DS) dominates O(u) w.r.t, the loss function (1.1) if k - p - 5 < a < 
k - p - 3, 0 < b _< 2(k - p - 1 - a) - 4 and some conditions are met for the application 
of Stokes' theorem. 

In the next section we describe the unbiased estimator of (a part of) the risk, 
R(~; 0, 2]). In Sections 3 and 4, we present new estimators and prove the dominance 

result of these estimators over ~(~) using the unbiased estimator of the risk. 

2. Unbiased estimator of risk 

First we derive the unbiased estimator of an essential part of R(O; 0, E) for a general 
estimator O(Y, S). Haft (1986) derived the same kind of risk formula for the estimator 
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of the form ~ ~ - I ( s ) Y .  We present a new formula which is applicable for a general 
class of estimators. 

For the purpose of risk comparison between two estimators, the last term, ~Tt~/ of 
the expanded loss function, 

A t A  - , l l  2 = , - + 

is irrelevant. Therefore we focus on the first two terms. Let 

n (~!, O, ~)  E[~t~] - 2E[~/t~]. 

Before stating the formula on E[~lt~] in Lemma 2.1, we enumerate all the conditions 
required for the proof. Most of these conditions are concerned with the evaluation of the 
integrals on boundaries that naturally arise in the application of Stokes' theorem. Haft 
(1986) and Dey and Srinivasan (1991) does not mention these conditions explicitly, but 
we think it is better for further usage of Lemma 2.1 to describe them explicitly. Let 

d Y  ~ = dyl . . .  dyi -  l dyi+ l ""  dyp, 

OSl(c,d)  = {S > 0 [ t r S  = c and g e t S  > d}, 

082(c,d) -- {S > 0 [ t r S  < c and d e t S  = d}. 

Then the conditions are as follows: 
(1) ~i (i = 1 , . . . , p )  is a C 1 function of Y and S; 
(2) lim(c,d)--.(oo,0) los ,  (c,d) exp(-- 1 tr E -1S) lS i (k -p -  1)/2~j ( y ,  S)  A(l,m)r (i,j)dslm = 

0, VYE~R p, 1 <Vi_<Vj_<p;  
(3) lim(c,d)--.(~,0) fos~(~,d) exp(-- 1 tr  E - 1 S ) ] S  I(k-v-1)/2~J ( y ,  S) A(z,m)#(i,j)dstm = 

0, VYE~R p , l < V i < v j < p ;  
(4) limc__.o~ f ~ _ ~ [ e x p ( - l ( Y  - O ) t E - I ( Y  - O ) ) ~ i ( Y , S ) ] ~ : - ~ d Y ;  = 0, VS > 0, 

1 _ Vi _ p; 
(5) In the following proof of Lemma 2.1, the left side integrals in (2.2) and the 

subsequent limit operation are exchangeable. The exchangeability also holds between 
the integral on the left side of (2.5) and the subsequent limit operation. 

where 

and 

LEMMA 2.1. 

EW ] = E 

D = (dij), 

2 y t D ~  + ( k - p -  1 ) y t s - I ~ -  E ' 
i=l Oyi J 

dij = ~(l  q- ~iJ) o~ij 

1 p 

D ~  -- E ( I  + ~1,] 0-~1 j 
j=l 

1 p ,q . ] O ~ j ~  t \ 

- - " " ' 2  E ( I +  / j = l  '~P3 ] 08pj 

PROOF. 

E[~Tt~] = Es[Ey[~lt~ [ S]] 
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and the inner expectation equals to 

(2.1) Ko /~ exp ( - ~ ( Y - O ) t E - l ( y - o ) )  ~?t~dY 

= Ko~pexp( -1y t ]E-1y+~l ty - lo tE- lO)~Tt~dY,  

where K0 is some constant. Since 

0 
Oy~ 
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--exp(-~Yty]-lyw~ty- 20ty]-lo ) 

: (--fio'ijYj ~-~i) eXp <-lYt~]-lY'k=~tY- 
(o-iJ ~_ (~"] - - l ) i j ) ,  

we have, by integral by parts, 

(2.2) /~p__l /_;exp (-~Yt~]-lY~-~tY- lot~]-lO) 

(p ) • - EaiJyJ +Th ~idyidY~ 
j = l  

+ f~p-l fC exp ( - ~ Y t E - l g  + ~?tg- lo tE- lo)  -c yi 

= / ~ _ l [ e x p ( - ~ ( Y - O ) t E - l ( Y - O ) ) ~ ] ; ; ; i c d Y l "  

Consider the limit values of both sides of (2.2) as c goes to infinity. Then conditions (4) 
and (5) gives 

E ~ [ ~  I s] : E~ ~, E ~%J - ~ s . j=l 
Hence 

and 

(2.3) 

P @i ] 
Ey[~t~ I S] = Ey y tE - l~  _ E ~ S 

i=1 

E[~Tt~] = E YtX-I~- E " ~=x Oyi J 

Now we evaluate Es[ytE-I~ I Y] using Stokes' theorem. The same result would be 
gained by the straightforward application of Haff's Wishart identity (See Haft (1982)), 
but in order to make clear the conditions to be satisfied by the estimator, we describe 
how Stokes' theorem is applied to the evaluation of Es[ytE-I~ I Y]. 



762 YO SHEENA AND ARJUN K. GUPTA 

With some constant K1, we have 

(2.4) Es[a'J~j [Y] 

= Kl jfs>o eXp ( - l  tr lE-1S) [Sl(k-P-1)/2~jaiJ dS, 

Note that 

-(1 + ~ i J ) ~  exp ( 1 ) os~j - ~ tr 5-].- 1S 

= -(1 + 5ij) exp - 5i--~.sij 

=exp - .  . l ~-5ij sij a '3. 

By Stokes' theorem, we have 

0 (exp (-~ltrlE-1S),s,(k--p--1)/2~j) l<_mA dslm (2.5) ~(c,d) OSij 

: 4S,(c,d)exp (_1 tr ~ - 'S ) ,S , (k -P- ' ) /2~y  A 
(z,m)--C(M) 

l<i<j<_p.  

((~ij: Kronecker's delta) 

q- fos2(c.d) exp (--l tr ~-l  s )  IsI(k-p-1)/2~j 

dS lrn 

A dslm, 
( l,m)7~( i,j ) 

Prom (2.4) and (2.6), we have 

~ , ~ ,  ~ = ~ [~_~_ ~ + ~1 § o~ i~ ] l <_Vi,Vj <_p, 

lead us to 

(2.6) ~s>o eXp ( - l  tr lE-1S) lSl(k-P-1)/2~jaiJ dS 

= ( k - p - i ) /  e x p (  1 ) J S > O  - 2  tr ]E-1S Is[(k-p-1)/28ij~JdS 

q- (1 q- 5ij) ~ exp(-ltrE-1S)]S,(k-P-1)/20~Jd,. 
>o Osij 

where 
S(c,d) = {S > 0 ] t rS  _< c and de tS  _> d} 

and OSi(c, d), i = 1, 2 was already defined when we stated the conditions of the lemma. 
Take the limit on both sides of (2.5) as (c, d) ~ (~ ,  0). The conditions (2), (3) and (5) 
and the fact 

OlSl 2 - 1 ~ 6 ,  - ' ' j l s l +  ('~J = (s - i ) ' J )  Osij 
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and 

Es[YtY,-IO [ Y] 
p p 

= ~_,  ~ Es[YiaiJ~j [Y]  
i=1 j=l 

=- Es[(k - p - 1)Y tS - IO  + 2YtDO I Y]. 

Therefore we have 

(2.7) E [ y t E - ' 0 ]  = E[(k - p - I ) y t s - I ~  + 2ytD~] 

and from (2.3) and (2.7), we get 

E [ r / t O ] = E  2 g t D O + ( k - p - 1 ) Y t S - ' O - E  " [] 
i=1 Oyi J 

Further from Lemma 2.1, we have 

(2.8) n * ( ~ ; o , ~ )  = E ~ - 4Y~D~ - 2 ( k -  p -  1 ) V ~ S - ' ~  + 2 z 0~,] 
i=10yiJ  " 

3. N e w  es t imator  I 

In this section we consider a simple shrinkage estimator that  dominates the unbiased 
est imator ~(~). The coefficient a in ~(H1) is constant. We propose a new estimator which 
shrinks ~(~) according to Y and S, i.e., 

(3.1) ~(1) = (~(11) , , . . ,  A(pl))t = a(Y,  S ) S  - 1 Y .  

We have the following result for this type of estimator. 

LEMMA 3.1. Suppose ~(1) satisfies all the conditions from (1) to (5). Then we 
have 

R *(~ O ) ;0 ,~ )  = E[(a 2 - 2 ( k - p -  2 ) a ) Y t S - 2 Y -  2 Y t A * S - ' Y  
+ 2a(tr S - a ) Y t S - a Y  + 2(grad a ) tS -aY  + 2a tr S-a] ,  

where 
(A*)ij = (1 + 6 i j ) ~  and grada  = (Oh  Oa ,~t 

~j ~ ' " " ayp ) " 

PROOF. From (2.8), we have 

(3.2) R*(~(1); O, ~E) 

= E (~(1))t~(1)_4YtD~l(1)_ 2 (k -  p -  1 ) y t s - I ~  (1) + 2 E 0~}1)] ,= -~-y, j '  
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Since 

(3.3) 

we have 

(3.4) 

while 

(3.5) 

D S - '  = - l ( ( t r S - 1 ) S - 1  + S -2) (see Lemma 6 (i) of Haft (1982)), 

0 @  1) = ( D a l p ) S - 1 Y  + a ( D S - 1 ) Y  

= 1-A 'S-1  Y _  2 ( ( t r S - 1 ) S  -1 q- S - 2 ) Y ,  
2 

E Oyi ~ a Ym 
i=1 i=1 

v Oa P P P 9v_ 

i=1 ~Yi 8 yrn ~- a 8 zm 
m = l  i=1 r a = l  

= ( g r a d a ) t S - 1 y  + a t r S  -1. 

If we substi tute (3.4) and (3.5) in (3.2), we have the result. [] 

Now we consider more specific estimators. Suppose a(Y ,  S) of ~(1) depends on Y 
and S only through z = Y t s - 1 Y ,  i.e., 

(3.6) ~(1) = a ( z ) S - 1 y .  

We prove the dominance of ~(1) given by (3.6) over ~(~). The following theorem is the 
extension of the result gained by Haft (1986) and bey  and Srinivasan (1991). 

THEOREM 3.1. Let k > p + 5. Suppose that a(z) and its derivative a'(z) are 
bounded continuous functions of z and that k - p - 1 > a(z) > k - p - 5 and a'(z) < O. 
Then ~(1) in (3.6) dominates @u) w.r.t, the loss function (1.1). 

PROOF. It is not difficult but somewhat tedious to show ~(1) satisfies all the con- 
ditions from (1) to (5) using the fact a(z) and a'(z) are bounded continuous functions. 
Hence we omit it and start  argument with the application of Lemma 3.1 to the est imator 
0 (1) in (3.6). 

Using 
08 lm 1 - _ _ ( s U s Y  m + JYr 
OSij 1 4- 5i s 

we have 

(3.7) 
~ z  

(A*)~ ,  = (1 + ~j)a'(z)Os~j 
= _ d ( z ) y t s ( i J ) y ,  

where S (ij) (1 < i , j  < p) is the p x p symmetric matrix defined by 

081 rn 
( s ( i J ) ) l  m = - ( 1  + 5i j )  _~--=--- = s u e  "~ + s% ~m. 

osij 
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Start ing from (3.7), by straightforward calculation, we have 

(3.8) Y t A * S - 1 y  = - 2 a ' ( z ) ( Y t S - 1 Y ) ( y t s - 2 y ) .  

Furthermore the te rm (grad a(z))tS-1Y turns out  to be 

(3.9) (grada(z))ts-1Y = a'(z) ( Oz Oz ) S - ' Y  
Oyl " " '  Oyp 

= 2a ' ( z )y t s -2y .  

If we subst i tute  (3.8) and (3.9) in the equation of Lemma 3.1, we have 

(3.10) R*(~(I) ;0 ,  E)  = E [ ( a 2 - 2 ( k - p - 2 ) a ) y t s - 2 y + 2 a ( t r S - 1 ) Y t S - 1 Y  
+ 4a ' (Y tS -2Y ) (Y tS -1Y  + 1) + 2 a t r  S-1] .  

If we subst i tute  a and a'  with co = k - p - 1 and 0 respectively, we have 

(3.11) n*(~(~) ;0 ,  E)  = E[(c~) - 2(k - p - 2)co)YtS-2y 
+ 2co(tr S - 1 ) Y t S - t Y  + 2co tr  S-1] .  

The risk difference between ~(1) and ~(u) is given by 

= E[{(a 2 - 2 ( k -  p -  2)a) - (cg - 2(k - p -  2)co)}y ts -2Y 
+ 2(a - Co)(tr S - 1 ) y t s - 1 Y  
+ 4 a ' ( y t s - 2 Y ) ( Y t S - 1 Y  + 1) + 2(a - co) t rS-1] .  

Since a < co and ( t r S - 1 ) Y t S - 1 Y  > Y t S - 2 Y ,  we have 

0, - 0, X) 

E[ ( ( a  2 - 2 ( k -  p -  3)a) - (Co 2 - 2 ( k -  p -  3)CO)}Yt:~-2Y 
+ 4 a ' ( y t s - ~ Y ) ( Y t S - 1 Y  + 1) + 2(a - co) t r  S-1].  

If co > a > k - p - 5 and a '  _< 0, then  the following inequalities hold almost surely; 

( (a  2 - 2 ( k -  p -  3)a) - (Co 2 - 2 ( k -  p -  3)co)}y ts -2Y <_ O, 

2(a - co) t r  s - ;  < 0 

and 
4 a ' ( y t s - 2 Y ) ( Y t S - 1 Y  + 1) _< 0. 

Obviously R(~fl) ;  0, E)  < R(~(") ;0 ,  E).  [3 

The est imator  (3.6), including ~(u) as a special case, is invariant w.r.t,  the transfor- 
mat ion with  any nonsingular matr ix  B ,  

(0, E)  ~ (BO, BEBt) ,  
~7 ~ (Bt)-x~/,  

(Y, S) ~ (BY ,  BSBt) ,  
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i.e., 
~(1) ( B Y ,  B S B  t) = (B  t) --1~(1)(y, S). 

The loss function (1.2) is invariant. Therefore on the risk comparison w.r.t, the loss 
function (1.2), Theorem 3.1 leads to the following inequality. 

E[(~ (1) - -  ~-]-10)t~-~(~(1) - -  E-tO)I O, E] 
= E[(~ (1) - -  ~-]-1/20)t(~(1) 

= R(~(1); )-]--1/20, Ip) 

< R(~(u); E-1/20,  Ip) 

= _ 

= _ 

-- E - -1 /20 )  I E - l / 2 0 ,  Ip] 

-- Z - 1 / 2 0 )  [ E - l / 2 0 ,  Ip] 
__ ~-]-10) [ 0, ~-]]. 

We state this result as a corollary. 

COROLLARY 3.1. Suppose all the conditions of Theorem 3.1 are satisfied. Then 
~(1) dominates O(u) w.r.t, the loss function (1.2). 

We conclude this section by giving an example of a(z) that  satisfies the conditions 
of Theorem 3.1. 

4t~ 
(3.12) a(z) = k - p -  5 + - - ,  a > O. 

Z+(~ 

4. New estimator II 

(4.1) 

where 

In this section we present another type of estimators which is given by 

= 0 (~) - b (w)Y  

= ((k - p - 1)S -1 - b(w)Ip)Y ,  

w = y t y .  

(See e.g., Gupta and Nagar (1999) for the distribution of w and z in Section 3.) 
As in the next theorem, this estimator also dominates ~(~). 

THEOREM 4.1. Suppose that b(w) and its derivative b'(w) are bounded continuous 
functions of w and b 2 ( w ) w -  4 b ' ( w ) w -  2pb(w) < 0, Yw > 0, then ~(2) dominates ~(u) 
w.r.t, the loss function (1.1). 

PROOF. b(w) and b'(w) being bounded and continuous, ~(2) in (4.1) satisfies all 
the conditions (1) to (5) (we omit the proof). From (2.8) and the fact 

D ~  (2) = (k - p -  1 ) ( D S - 1 ) Y  

= - l ( k -  p -  1 ) ( ( t r S - 1 ) S  -1 + S - 2 ) y  
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and 

we have 

p ~^(2) 
u~]i - ( k - p - 1 ) t r S  - 1 - b p - 2 b ~ w ,  

E Oyi 
i = l  

R*(~(2); 0, E)  = E[co(2 - c o ) y t s - 2 Y  + 2co(tr S - 1 ) y t s - 1 Y  + 2Co tr S -1 

+ b2w - 2pb - 4b'w]. 

The risk difference between ~(2) and O(u) is given by 

6 ,  - o ,  5 ] )  = E [ b 2 w  - 2pb - 4 b ' w ] .  

If b2(w)w - 4 b ' ( w ) w  - 2pb(w) < 0, Vw > 0, then R(O(2); 0, 5]) < R(O(~); 0, E) .  [] 

We give an example of b(w) which satisfies the inequality b2(w)w - 4b ' (w)w - 
2pb(w) < 0, Vw > 0. Let 

(4.2) b(w) - - - ,  a > O,/3 > O. 
w + a  

Then bo th  b(w) and b'(w) = - ~ / ( w  + a) ~ are bounded  continuous functions. Besides 

b2(w)w - 4b ' (w)w - 2pb(w) = (w + a ) - 2 ( 3 ( ~  + 4 - 2p)w - 2pa/~) < 0 

if/3 < 2p - 4. We have the following result.  

COROLLARY 4.1. Suppose p > 3. I f  b(w) in (4.1) is given by (4.2) with 0 < ~ < 

2p - 4, 0 < (~, then ~(2) dominates ~(u) w.r.t, the loss funct ion (1.1). 

PROOF. In the case c~ > 0, it is obvious from Theorem 4.1. If we consider the  limit 
value of R (~  (2)', O, N) as c~ goes to zero, the case ct = 0 can be  proved as well. [] 

Note  that  if/3 < p - 2(_-- fl*), then ~(2) defined by (4.1) and (4.2) is domina ted  by 

(4.3) ~(2,) = (k - p - 1 ) S - 1 Y  p - 2 y 
w + a  

which is a special case of ~(2) when t3 of (4.2) is given by/3*,  since 

o ,  5 ] )  - o ,  

= E[(w + a)-2{(t3"(/3 * + 4 - 2p) - /3( /3  + 4 - 2p))w - 2pa(/3* - /3 )} ]  

and 
~*(~* + 4 -  2p) < ~(~  + 4 -  2p). 

Therefore the class of est imators  given by  (4.1) and (4.2) is natural ly  to be  confined to 
the case p - 2 _</3 < 2p - 4 with respect  to admissibility. 
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5. Monte Carlo Simulation 

We carried out a small-scale Monte  Carlo Simulation to compare the following esti- 
mators:  

1. ~(~) given by (1.3); 

2. ~(H1) given by (1.4) wi th  a = k - p - 3; 

v = l , r = 0  

t = 0 Risk 

u 3.271 0 

H1 2.993 9 

H2 3.156 4 

D S  2.897 11 

1 3.214 2 

2 2.223 32 

t = 1 Risk P R I A L  

u 3.557 0 

H1 3.262 8 

/-/2 3.428 4 

D S  3.161 11 

1 3.443 3 

2 3.144 12 

Table  1. Risk of  e s t ima to r s .  

v =  1, r = 0 . 9 9  

Risk P R I A L  

u 217.385 0 

H1 198.893 9 

/ /2  206.632 5 

D S  189.995 13 

1 213.477 2 

2 208.468 4 

t = 1 Risk P R I A L  

u 216.827 0 

H1 198.383 9 

H2 206.152 5 

D S  189.508 13 

1 212.442 2 

2 212.481 2 

P R I A L  t = 0 

v =  1, r = - - 0 . 4  

t = 0 Risk P R I A L  

u 6.995 0 

H I  6.4 9 

H2 6.582 6 

D S  6.151 12 

1 6.872 2 

2 5.705 18 

t ---- 1 Risk P R I A L  

u 10.812 0 

H1 10.06 7 

H2 10.193 6 

D S  9.83 9 

1 9.92 8 

2 10.61 2 

t = 10 Risk P R I A L  

u 30 0 

H1 28.04 7 

H2 28.401 5 

D S  27.362 9 

1 27.106 10 

2 29.998 0 

t = 100 Risk P R I A L  

u 2.67 • 103 O 

H1 2.49 x 103 7 

H2 2.51 x 103 6 

D S  2.43 • 103 9 

1 2.44 x 103 8 

2 2.67 x 103 0 

t = 10000 Risk  P R I A L  

u 2.69 x 107 0 

H1 2.52 x 107 6 

/ /2  2.54 x 107 6 

D S  2.46 • 107 8 

1 2.48 • 107 8 

2 2.69 x 107 0 

t = 10 Risk P R I A L  

u 6.73 x 102 0 

H I  6.16 x 102 8 

H2 6.40 x 102 5 

D S  5.88 x 102 13 

1 5.93 x 102 12 

2 6.73 x 102 0 

t = 100 Risk P R I A L  

u 4.42 • 104 0 

H1 4.05 x 104 8 

H2 4.21 • 104 5 

D S  3.87 • 104 13 

1 3.69 • 104 17 

2 4.42 • 104 0 

t = 10000 Risk P R I A L  

u 4.54 x l0  s 0 

H1 4.15 x 10 s 8 

H2 4.31 x 10 s 5 

D S  3.97 x 10 s 13 

1 3.79 • l0  s 17 

2 4.54 x 10 s 0 

t = 10 Risk P R I A L  

u 397.103 0 

H1 379.912 4 

/ /2  375.413 5 

D S  381.137 4 

1 389.153 2 

2 397.137 0 

t = 100 Risk P R I A L  

u 3.88 x 104 0 

H1 3.69 x 104 5 

H2 3.65 • 104 6 

D S  3.70 • 104 5 

1 3.80 x 104 2 

2 3.88 • 104 0 

t = 10000 Risk P R I A L  

u 3.88 • l0  s 0 

H1 3.67 x 10 s 5 

/ /2  3.63 x 108 6 

D S  3.67 x l0  s 5 

1 3.77 x l0  s 3 

2 3.88 x l0  s 0 
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3. 0 (H2) given by (1.5) with t (u )  = 2 / ( k  - p - 5); 

4. ~(DS) given by (1.6) with a = k - p - 4, b = 1; 

5. ~(1) given by (3.6) and (3.12) with a = 1; 

6. ~(2) given by (4.1) and (4.2) with a = 0,/3 = p - 2. 
For p = 3, k = 50, 

O =  ( t , t , t )  t, E =  v 

r 

with  various values of t, r, v, we genera ted  5000 Y ' s  and 5000 S ' s  independent ly  according 
to  the following distributions: 

Y ,~ Np(O, E ) ,  S ,~ W p ( k ,  E ) .  

Table 1 shows simulated risk and PRIAL of each es t imator  ~('). P RIA L defined by 

the risk of 0 (u) - the risk of 0 (') 
x 100 

the risk of ~(u) 

shows the risk reduct ion relative to ~!u). Note tha t  P R I A L  is rounded  into the nearest  
integer. 

We notice tha t  
1. ~(1) records PRIAL up to  1770, while the m a x i m u m  P RIA L of ~(2) reaches as 

high as 32%. 
2. There  is no dominance relat ionship between the es t imators  o ther  t h an  O(u). 
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