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A b s t r a c t .  Given a sample from a discrete compound Poisson distribution, we con- 
sider variants of plug-in and likelihood estimators for the corresponding base distri- 
bution. These proceed recursively with an intermediate truncation step. We discuss 
the asymptotic behaviour of the estimators and give some numerical examples. Both 
procedures compare favourably with the straightforward and the naively projected 
plug-in estimator that  we introduced in Buchmann and Grfibel (2003, The Annals of 
Statistics, 31, 1054-1074). 
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I. Introduction 

Poisson counting processes with bulk arrivals appear  in various appl icat ion areas 
such as queueing theory.  T h e y  are one of the s tandard  tools in s tochast ic  modelling. 
If a process of this type  is observed at evenly spaced t ime intervals then  we obta in  a 
sample from a discrete compound  Poisson distr ibution.  Formally, let p = (Pk)keN be 
a probabi l i ty  dis t r ibut ion on the  positive integers and let A > 0. W i th  ' , '  denot ing 
convolut ion we call the d is t r ibut ion  q -- (qu)ker% on the  non-negat ive  integers given by  

r ~rn 
e-A q = ~p~m 

m! rn~0 

the  discrete c o m p o u n d  Poisson d is t r ibut ion  with  ra te  p a r a m e t e r  )~ and  base  d is t r ibu t ion  
p. Dis t r ibu t ions  of this type  arise quite general ly as r a n d o m  sums: If  N ,  X1, X2, X 3 , . . .  
are independent ,  N Poisson wi th  p a r a m e t e r  ~ and p the p robabi l i ty  mass  funct ion of the  

N 
X-var iab les ,  t hen  q is the  p robab i l i ty  mass  funct ion for )-]m=l Xm.  T h e  q-values can  
be ob ta ined  f rom A and p by  an a lgor i thm known in insurance  m a t h e m a t i c s  as Pan je r  
recursion,  

~JPiqk-i for all k C N. qo = e-A, qk = 
j= l  

Continuing the investigations in Buchmann  and Grfibel (2003), to which paper  we also 
refer for a more detai led discussion of the  problem and its applications,  we consider two 
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new estimators for the base distribution associated with a discrete compound Poisson 
distribution. These are introduced in the next section, which contains four theorems 
on their asymptotic behaviour. In Section 3 we give some examples with real data, one 
the canonical horse kick data, the other taken from the ecological literature. Section 4 
investigates the finite sample behaviour of our estimators for some specific distributions 
by simulation. 

2. Results 

We first recall the definition of the plug-in estimator. In Subsections 2.2 and 2.3 
respectively we explain and discuss the new proposals. In the final subsection we describe 
a connection between the three estimators. 

2.1 The plug-in estimator 
In Buchmann and Griibel (2003) we introduced an estimator which is based on the 

following inversion of the Panjer recursion, 

k - 1  
1 qk 

z..., ~ "  jp jqk- j  for all k E N. A = - logq0, Pk - )~qo kqo j=l 

Given a sample Y1, . . . ,  Yn of size n from such a distribution let (~n = (qn,k)kENo, 

q~,k:= 1 # {  l < - m < n : Y m = k }  
n 

be the associated empirical probability mass function. The plug-in estimators An and 
^PI ^PI Pn = (Pn,k)k~N for A and p are then constructed by replacing the q-entries in the above 
inversion formula by the corresponding relative frequencies q~,k; in particular, 

An := - log qn,0. 

Here and in the sequel we assume that  ~n,0 > 0 which in view of our general assumption 
A > 0 will be satisfied if n is large enough. In Buchmann and Griibel (2003) we obtained 
consistency and asymptotic normality for these estimators, but we also pointed out 
that  the estimate for the base distribution is in general not a probability mass function 
as it may contain negative entries. One popular if crude remedy consists in replacing 
such negative entries by 0 and then renormalizing to sum 1, we will refer to this as 
the projected plug-in estimator Pn~PPI = \lJn,k/s eN (in all estimators considered in this 

paper An will be the same, so we do not need a distinguishing superscript for the rate 
parameter). Note that  we risk an ambiguity in order to keep the notation compact: q with 
a single subscript refers to the components of q and ~ with the further subscript n refers 
to the empirical probability mass function. Below we will also use A0, P0 = (Po,k)k~N 
and q0 = (q0,k)ker% for the true parameters. 

2.2 The truncated plug-in estimator 
The first of our new proposals uses the above recursion but inserts a truncation step 

in order to insure that  the entries are nonnegative and that  their sum does not exceed 
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the  value 1. Formally, we define the t runca ted  plug-in es t imator  Pn̂ TP = (Pn,k)keNo^TP by 

^TP ^TP 
Pn,k :=- max  0, min Xn,k, 1 -- Pn,j , 

j = l  

with  
k - 1  

�9 ̂ T P  ^ qn,k 1 E JPn  j q n , k - - j .  
x~,k . -  i , ,O~,o  k~),,,o 

j = l  

By definition, pn^TP is a (sub)probabi l i ty  mass function. Also, Xn,k ~_ 0 whenever  q~,k = 0 
which shows tha t  the suppor t  of the t runca ted  plug-in es t imator  is conta ined in the 
suppor t  of ~ .  In part icular ,  ^TP P~,k = 0 for k > Mn := m a x { Y 1 , . . . , Y n } ,  so tha t  the 
recursion can always be s topped after  a finite number  of steps. 

The  following two theorems deal with the asympto t ic  behaviour  of ^TP Pn �9 Th e  first 
of these shows tha t  the t runca ted  plug-in es t imators  are s t rongly consistent .  

THEOREM 2.1. Let Ao be the true rate parameter and let Po = (Po,k)kcN be the true 

*TP for  all k E N almost  surely as n ~ oc. base distribution. Then An -~ Ao and Pn,k ~ Po,k 

PROOF. We proceed by induction.  Since qn,o --~ q0,o = e -)'~ and 

~n, 1 qo, 1 "~oPo, 1 qo,o 
Xn,1 = qn,o log On,O qo,o logqo,o qo,o(--AO) PO,1 

almost  surely, ~n and the first component  of 15 TP are consistent .  Generally,  

Xn,k ~Ok(~n,O ' ^ ^TP ^TP . . . .  , qn ,k;Pn,1 ,  �9 �9 �9 , P n , k - 1 )  

with  

~ k ( Y 0 , . - . , Y k ; Z l , . - . , Z k - 1 )  .-- 
Yk 

Yo log Yo 

k - 1  

1 E j z j Y k _ j .  
kyo j=l 

For yo > 0 (an assumption tha t  is satisfied in our  setup since Y0 corresponds  to e -x~  
this is a continuous function, hence consis tency of qn,j for j . . . .  0, , k and Pn,ĵ TP for 
j ---- 1 , . . . ,  k - 1 implies tha t  xn,k converges almost  surely to 

P0,k = ~k(q0 ,0 , . . . ,  qO,k;PO,1,... ,P0,k-1),  

wi th  the  equali ty a consequence of Pan je r  inversion. T h e  t runca t ion  step is cont inuous 
and leaves the  limit invariant,  hence ~WP n,k --* PO,k as desired. [] 

We next  consider the dis t r ibut ional  asymptot ics  of the t runca t ed  plug-in es t imator .  
In contras t  to the s i tuat ion in B u c h m a n n  and Griibel (2003) this new es t imator  is not  
a differentiable function of the empirical  mass funct ion qn as the  t runca t ion  introduces 
a cont inuous bu t  non-differentiable step. As a consequence we still have the  desirable 
'parametr ic '  ra te  n -1/2 but  the limit will in general not  be a Gaussian process. Fur ther ,  
we only obta in  (weak) convergence of the f ini te-dimensional  dis tr ibut ions,  which we 
abbrevia te  a s  '---~fidi'. This  is a consequence of our m e th o d  of proof,  which relies on the 
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recursive structure of the estimators. The truncation step in these recursions prevents 
the use of the canonical approach of transferring tightness by local linearization. 

To define the limit process let V = (Vk)k~No be a sequence of centred Gaussian 
random variables with cov(Vk, Vj) -- ~kjqo,k -- qo,kqo,j. We define Z TP : (Z  kwP)kCNo 
recursively in terms of V, using an intermediate process W = (Wk)kEN. For this, put  
Z [ p  = -Vo/qo,o and, for k C N, 

k-1  k - 1  
qo,k 1 1 

Wk .-- 2 2 V o -  - -  E ( k -  j )po,k_jVj  + . 1 Vk E j q o , k - j z  TP. 
Aoqo,o kqo,o j=o Aoqo,o kqo,o j=l 

Then 

[ W k ,  if Po,k > 0 and ~ k  
min{Wk, k-1 {=1 P0,k < 1, 

- - E / = I  zTP}'  if Po,k > 0 a n d  ~=1Po,k =- 1, 
zTP := max{0, Wk},  if Po,k ---- 0 and 2~,~=1Po,k < 1, 

max{0, min{Wk, k-1 
- Y~j=I zTP}}, if Po,k 0 and 2_.,j=lPO,k = 1. 

The truncation step in the definition of the estimator leads to a truncation step in the 
construction of the limit process that depends on the support of the true base distribu- 

( Z k ) k e n  = (Wk)kEN and Z TP is a tion. In particular, if PO,k :> 0 for all k E N then TP 
Gaussian process. For the next theorem, we combine the rate parameter A and the base 
distribution p into a single sequence (A, p). 

THEOREM 2.2. Let Ao be the true rate parameter and let Po = (Po,k )kEN be the true 
TP defined above, base distribution. Then, with Z TP = (Z  k )keNo as 

^ ^TP z T P  V / - n ( ( ) ~ n , P n  ) - -  ()~o,Po))  ---+fidi as n ~ c~ .  

PROOF. The central limit theorem for multinomial distributions implies that  
x/~(0n - q0) --~fidi V, with V -- (Vk)kCNo as given above. Using a suitable construc- 
tion we may even assume that the convergence holds pointwise for the respective ran- 
dora variables. (This step together with the subsequent local linearizations appears in 
many proofs of distributional convergence, see, e.g., Section 4 in Buchmann and Griibel 
(2003).) Since An = - l o g ~ , o  is a differentiable function of (ln,o and ,Xo = - logqo,o  we 
then obtain 

- Zo - i v 0 .  
q0,0 

Assume now that we have already shown that 

^ ^TP ^TP 
V/"n((qn,o, . . .  , q n , k ;  P n , l , ' ' ' ,  P n , k - 1  ) - -  ( q o , o , . . . ,  qo,k; Po,1,.- . ,  Po,k-1)) 

converges pointwise to the random vector (Vo,. Vk; Z T  P TP . . ,  , . . . , Z k _ l ) .  Let ~k and x~,k 
be as in the proof of Theorem 2.1. Then a standard calculus argument yields the point- 
wise convergence of 

v (xn,k - p0,k) 
V / - ~ ( t ~ k ( ~ n , O  ' ^ ^ T P  ^TP . . . .  ,q~,k;Pn,1,"" ,  Pn,k-1) - kOk(qo,o,""", qo,k;PO,1,.-. ,PO,k-1)) 
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to 

'~ 0',I'k 
E ~ ( q 0 ' 0 ' ' ' ' ' q 0 ' k ; p 0 ' l ' ' ' ' ' p 0 ' k - 1 ) V j  
j = 0  

k -1  

-~- E CO~k (qo,o,..., qO,k;Po,I,...,Po,k-1)zTP. 
j = l  OZj 

A straightforward computa t ion  shows tha t  this is equal to 

k -1  
qo,kVo 1 Vk 1 k -13qo ,k_ jZ  j , 

q2,o(log qo,o) 2 kqo o E ( k  - j )po ,k - jV j  j=o qo,o log qo,o kqo 0 E " TP 
' ' j = l  

hence V / - n ( X n , k  - -  Po,k) --* Wk with Wk as given above. The definition of p,~̂ TP implies 

{ { }} ^WP --X/npo,k,min V"-n(zn,k PO,k) ~ 1 E P o , j  Yn,k V'~(Pn,k -- PO,k ) = max  -- , -- -- 
j = l  

k-1 v,~(pn,j  _ Po,j). This representat ion can be used for a proof  by with  Yn,k := Y]j=a ^TP 
induct ion tha t  the sequences (Yn,k)k~N are bounded for all k C N. Hence, if Po,k > 0 

k 
and ~ j = l  P0,k < 1 then  the right hand side wilt be equal to vY~(X~,k -- Po,k) for n large 
enough and therefore converge to Wk. A similar check of the other three cases shows 
tha t  

^TP z I P .  v (p.,k - p0,k) 

Put t ing  pieces together  we obtain tha t  

V/-n((qn,0, ., qn,k+l ^TP ^TP �9 " ; P n , 1 , " " " ,  Pn,k) -- (qo,o, �9 �9 �9 qO,k+l;PO,1,..., Po,k)) 

converges to (V0, Vk+l; Z TP TP . . . ,  , . . . ,  Z k ). Switching back to the original variables we 
see theft this completes the proof of the induct ion step for the convergence of the finite- 
dimensional distributions. [] 

Theorem 2.2 shows tha t  we get a complicated limit process, but  the result has some 
statist ical  significance. This rests upon two observations: First ,  the finite-dimensional 
distributions s I A, p), k E N0, of the limit process depend on the unknown 
parameter  (A, p) in a continuous manner,  as is obvious from its construction. Hence we 

An,pn ) to est imate c a n  ' s tudentize' ,  i.e., u s e  / ~ ( ( z T P ) j =  0 ..... k I ^ ~TP TP c((zj ) j : 0  ..... k l A ,  p) .  
In view of Theorem 2.1 this will lead to asymptot ical ly correct confidence regions for finite 
sets of parameter  components  if the construction of these regions allows the application 
of the continuous mapping theorem. Still, it remains to find, e.g., the quantiles of 
c(z  P I ^ AT. An, Pn )" For this, the second observation is useful: A centred Gaussian process 
(Vk)ker~o with covariance s t ructure  

var(Vk) = qk(1 - qk), cov(Vt, Vk) = --qlqk for all k, 1 E No with  k 7 ~ l 

can be obtained recursively from a sequence (~k)keNo of independent  centred normal  
random variables wi th  

o~ 

v a r ( ~ )  = qktktk+l,  tk := E qJ for all k E No 
j=k 



748 BORIS BUCHMANN AND RUDOLF GRUBEL 

as follows: 1/o := ~o, 

j = 0  

for all k E N with tk > O, Vk = 0 if tk = 0. Together  with the above const ruct ive  
descript ion of Z TP this makes it easy to generate  values from some initial segment  of 
the limit process so tha t  numerical  approximat ions  for quantiles etc. can be ob ta ined  by 
simulation. Similarly, we can const ruct  critical regions for tests  of simple hypotheses  if 
these involve a finite set of parameters  only; see also Subsect ion 3.3 below. 

2.3 The truncated maximum likelihood estimator 
Our second es t imator  uses likelihood ideas, but  otherwise the approach  is very simi- 

lar. Suppose tha t  we base the es t imat ion of A0 on qn,0 and tha t  ofp0,k on qn ,0 , . . . ,  0,~,k as 
we have done in the various forms of plug-in est imation.  We obta in  the recursive step by 
assuming when es t imat ing P0,k tha t  the est imates for Ao and P0,1 , . . - ,P0,k-1  are exact .  
Note  tha t  this is only a heurist ic mot ivat ion for the following formal  definition. Again, 
i n  = - log 0n,0- If the original da t a  are t runca ted  at k + 1 in the sense tha t  we replace 
Y~ by min{Y~, k + 1} for l = 1 , . . . ,  n then the likelihood associated wi th  ( )%Pl , . . .  ,Pk) is 
given by 

L~,k()~,pl,. . . ,pk) = E O n , j l o g q j +  1 - - Z q n , j  log 1 - - E q j  ' 
j=O j=O j=O 

where q0, . .  �9 qk are the corresponding compound  probabilit ies,  re la ted to the arguments  
of Ln,k by Partier recursion. We now define the t runca ted  m ax im u m  likelihood es t imator  
^TL ^TL Pn = (Pn,k)kC• recursively: Given An and Pnĵ TL for j = 1, . . .  , k - 1 let Pn,kAWL be the value 
tha t  maximizes the funct ion 

^ ^ T L  -~TL X ~ X H Ln ,k ( )~n ,Pn ,1 , . . .  ,Pn ,k-1 ,  } 

on the interval [0, 1 - ~-]~-~ isWL]. This  a rgmax  exists, is unique and can be given ex- 
plicitly. To see this, we first consider the case k -- Mn = max{Y1 , . . .  ,Yn}. Th en  the 
second par t  of Ln,k vanishes. In the remaining sum only qk depends  on Pk, qk is a 
s tr ict ly increasing funct ion of Pk and qn,k ~" 0, hence Pk has to be chosen as large as 

possible. T h e  unique maximizer  is therefore  given by 1 - ~--~__-: ifi TL. This  also implies 

tha t  Pn̂ TL, j __ 0 for j > Mn; in part icular ,  the  t runca ted  m ax im u m  likelihood es t imator  
is a (proper)  probabi l i ty  mass funct ion and the recursion can be s topped  after  a finite 
number  of steps. For k < M~ we rewrite the funct ion tha t  has to be maximized as 
follows, 

g(X) ~- C 1 Jr- 6 2  log (C3  • C4x)  "]- C5 log(1 - C6 - C3 - Cax) 

with  

~.  k -1  
�9 ̂TL ^TL 

C2 : qn,k, Ca ~- 2_.r C4 ~- AnOn,O, 
j=l  

k 

C5 = 1 - Z O,~,j 
j = 0  

and C6 = }-]~_~ O WL. Here O WL denotes  the compound  dis t r ibut ion with rate  pa rame te r  

A,, and base dis t r ibut ion ^TL Pn �9 None of the constants  C1,.  �9 �9 C6 depend  on x and we 
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may assume tha t  C4 > 0. If C2 = 0 then  g is s t r ic t ly  decreasing, which leads to x = 0. 
If C2 > 0 then s tandard  calculations show tha t  the p re - t runca t ion  a rgmax  of the s tr ict ly 
concave funct ion g is uniquely given by 

C~ - C2C3 - C2 C6 - CaC5 
x~,k = C2C4 + C4C5 

k - 1  ^TL k--1  
On,k 1 - Y'~j=o 1 _ _  qn,j ~ �9 ̂ TL  ~TL 

~-- ~n(tn,O 1 -- E k 2 1 0 n , j  k(tn, 0 2 - ~ ' ) P n ' J q n ' k - J '  
j = l  

so tha t  finally 

^TL ^TL  Pn,k = max  0, min xn,k, 1 -- Pn,j �9 
j = l  

It  may  be  interesting to note tha t  the auxil iary quant i ty  xn,k reduces to the  one tha t  we 
in t roduced in connect ion with the t runca ted  plug-in es t imator  if we replace {~TL by 0n,k. n,k 
As in the plug-in case we have tha t  the suppor t  of/5 TL is a subset of the suppor t  of 0~. 

THEOREM 2.3. Let ~o be the true rate parameter and let Po = (PO,k)kcN be the true 

base distribution. Then ~n ~ )~o and $T~ ~ PO,k for  all k C N almost surely as n --~ oc. 

PROOF. We proceed as in the proof  of T h e o r e m  2.1; indeed, the induct ion s ta r t  
remains unchanged as ~n, xn,1 and therefore  the es t imator  for P0,1 are the same for 
t runca ted  plug-in and t runca ted  max imum likelihood. For the induct ion step we use 
Xn,lz ~le(qn,O, ", qn,k; ^TL ^TL  = " Pn,1,--- ,Pn ,~- l )  with 

k - 1  
r  :---- Yk 1 -- ~-~--1 qJ 1 E j z j q k _ j  

Yo log Y0 1 - y ~ - i  YJ kyo j=l 

where the functions qk are given recursively by qo(Yo) = Y0, 

k 

qk = q k ( y o ; z l , . . ,  zk) - logyo  jz qk-j(yo;zl,... 
' k 

j = l  

Again, ~k is continuous at the t rue pa rame te r  value, which provides the  basis for the 
induct ion step. [] 

For the corresponding dis t r ibut ional  limit result  we again give the cons t ruc t ion  of 
the limit process first. We need the auxil iary sequences ao = (ao,k)kcr~ and bo = (bo,k)keN 
defined by 

k k - 1  

ao,k := E P O , j q o , k - j ,  bo,k := ~-~,jPo,jao,k-j for all k C N. 
j= l  j = l  

Note  tha t  ao = Po*qo is a probabi l i ty  mass function. Fur ther  let (to,k)keNo and (co,k)keNo 
denote  the tail  sequences associated wi th  qo and ao respectively, i.e. 

O(3 O(3 

to,k := E qo,j, co,k := E ao,j for all k E No. 
j=k  j=k  
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As for Theorem 2.2, let V = (Vk)keNo be a sequence of centred Gaussian r andom variables 
with cov(Vk, Vj) = 5kjqo,k--qo,kqo,j. Again we define Z TL = (z~:L)kcNo recursively, using 
auxiliary variables Wk, k E N: Let Z TL = -Uo/qo,o and, for k C N, 

( q o , k  qO,keO,k bo k ~ qO,k k- i  
Wk := ~ Ao2qo2o Aoq2,oto,k + ~ Vo + E Vj kqo,o J Aoqo oto k 

' ' j = O  

T h e n  

+ " l--~Vk-- ~ (qo'k(1--to'k-J)\ qo,o--to,---k + qO'k-j)zTL'-- 
Aoqo,o j--1 q0,0 / 

Wk, if Po,k > 0 and 
�9 k-1 TL m m { W k , - E j = I  Zj }, if Po,k > 0 and 

z [ L  :~- max{Wk, 0}, if Po,k ---- 0 and 
�9 k-1 max{0, m l n { W k , -  Y-~-j=I zTL}} '  if PO,k -=-- 0 and 

~ = 1  PO,k < 1, 
~-~=1P0,k = 1, 

~-~=1 Po,k < 1, 

E j = I  Po,k ---- 1. 

Note tha t  the t runcat ion step is identical to the  one tha t  we used in connection with the 
limit process for the t runca ted  plug-in est imator.  

THEOREM 2.4. Let Ao be the tr~ue rate parameter and let Po = (Po,k)keN be the true 
base distribution. Then, with Z TL = (zTL)keN o as defined above, 

^ ^TL zTL V/-n((An,Pn ) -- (A0,P0)) --+fidi as n ~ oo. 

PROOF. Let (I)k and qk be as in the proof of Theorem 2.3. If we regard the 
exponential  function as a non-linear operator  on the space of summable  sequences, a view 
tha t  has been used extensively in Buchmann  and Griibel (2003), then  the convolution 
series tha t  gives q in terms of A and p can be wr i t ten  as q -- exp(A(p - 50)). This leads 
to 

Oqk No o; / -- log(qo,o)qo,k-Z, if k > l, 
(u ,  P0 ,1 , . . - ,P0 ,k )=  t 0 '  if k < l .  

Alternatively, this can be verified by induct ion on using the  recursive definition of qk. 
The convolution series representat ion of q also gives 

1 
cgYoOqk (q0,0;Po,1,... ,Po,k) ---- -}--1 (qO,kqo,o - (P0 * qo)k) = ~O,o(qO,k -- ao,k). 

Note tha t  qj(qo,o;Po,1,... ,Po,j) = qoj. From these we obtain, with Ao = - logqo ,o  and 
( . . . )  abbreviat ing (qo,o,. �9 �9 qo,k; P o , i , . . . ,  Po,k-i) ,  

qo,k qo,k qo,kCO,k bo,k 
, 2 2 + cOyo Aoqo,o Aoqo,oto,k Aoq~,oto,k + kqo, o2 , 

0 q ) k ( . . . ) _  qo,k for j = l , . . . , k - 1 ,  
Oyj Aoqo,oto,k 

O~k( . . . )  _ 1 

cgYk Aoqo,o' 

z j O  -(''Orbk .) = _ qo,k(lqo~ot__~,k-- to,k-j) _ qo,k-~qo,o for j = 1 , . . . ,  k - 1. 
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Using these we see tha t  

k O'I'k (. k-~ O~k ( 
wk = E ) 4  + E ) z ?  

j = 0 0 y j  j = l  

and we can now continue as in the proof  of T h e o r e m  2.2. [] 

The  same remarks  as given after  Theo rem  2.2 apply  in this s i tuat ion too. In fact,  a 
slight simplification occurs as OOk/Oyj for j = 1 , . . . ,  k - 1 does not  depend on j :  W i th  

k - 1  

~k := qo,k ~ y~ + to,k Vk, 
j = 0  

which produces a sequence of independent  centred normal  r andom variables wi th  
var(~k) -- qo,kto,kto,k+l, we obtain  

( qo,k qo,kco,k bok~ 
Wk = ~/~2q~, ~ )~oq2,0to,k + ~ j ~0 

1 ~k - Ek-l(qo'k(1--to'k-J)------ + qo'k-J) ZTL" 
+ Aoqo,oto,k \ qo,oto,k qo,o j = l  

Wri t ten  in this form the recursion is driven by independent  r andom variables, which is 
convenient  in connect ion with simulations. 

2.4 Backwards compatibility 
In Buchmann  and Griibel  (2003) we regarded the plug-in es t imator  ^PI ^PI Pn = ( P n , k ) k e N  

as a point  in a sui table sequence space and we direct ly  analyzed its dependence  on the 
sequence (point) qn = (qn,k)keNo. Alternatively,  and in the style of the present  paper ,  
we can write 

^PI ^ ^PI ^PI 
Pn,k = ~'k(~n,0, �9 �9 � 9  �9 �9 �9 , P n , k - 1 )  qn,k ; Pn,1 

and prove consistency and convergence of the f ini te-dimensional  dis tr ibut ions of v~(~5 P I -  
P0) as n --* oo, using arguments  from the proofs of Theorems  2.1 and 2.2. Apar t  from 
providing an a l ternat ive  me thod  of proof  (leading to a weaker dis t r ibut ional  result)  the 
recursive s t ruc ture  of the unadorned  plug-in es t imator ,  as displayed above, also leads to 
the following two observations: First ,  if 

k 

�9 p0 ,1  > 0 , . . . , p 0 , k  > 0 and E P o , i  < 1 
i=1 

then  the (strong) consistency of the plug-in es t imator  implies tha t  there  exist an no C N 
and a set of probabi l i ty  zero such tha t ,  outside this set and for all n > no, 

k 
^PI ^PI E ^PI Pn,1 ~ 0, ~ 0 and < 1. 

�9 �9 �9 , Pn,k  Pn,i  
i=1 

A t runca t ion  then  does not  occur  in the  first k steps and therefore Pn,î Pl = Pn,î TP for 
i ---- 1 , . . . ,  k. Essential ly the same arguments  apply  to  the  t runca ted  max imum likelihood 
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est imator .  Indeed,  as we will see in the  numerical  examples in the  next  section, the 
three est imates  will typical ly coincide for the first k components  and then  bifurcate.  If 
t runca t ion  occurs  at tha t  stage because of v-,k ^PI 2_~=1Pn,i -> 1, then  the t runca ted  plug-in and 
the t runca ted  max imum likelihood est imates will be identical. 

Secondly, in the special case with P0,k > 0 for all k E N (an assumpt ion  tha t  holds for 
some popular  paramet r ic  families, see Subsect ion 3.2 below) we can use this argument ,  
together  with the  familiar fact tha t  the finite-dimensional dis t r ibut ions de te rmine  the 
dis t r ibut ion of a s tochast ic  process with countable  index set, to show that /:(Z wp) 
~(Z TL) : ~(W), with W the Gaussian limit process ob ta ined  in B u c h m a n n  and Griibel  
(2003) for the plug-in est imator .  

3. Examples 

We consider two real da t a  sets in the  first two subsections. In Subsect ion 3.3 we 
discuss the applicabil i ty of our  results to tests  of two hypotheses  tha t  arise in these 
examples.  

3.1 The horse kick data 
As in Buchmann  and Griibel  (2003) we first apply  our  procedures  to  the t ime- 

honoured  Pruss ian  horse kick data;  see, e.g., Quine and Sene ta  (1987). Of the  200 
observations 109, 65, 22, 3 and 1 respectively are equal to k = 0, 1, 2, 3 and 4. Table 1 
displays the various estimates,  for reference we also give the plug-in and pro jec ted  plug- 
in es t imates  in the second and th i rd  line. In contrast  to our  new proposals  these have 
unbounded  suppor t .  We use the heuristic a rgument  tha t  Y-values smaller t han  some 
k cannot  possibly contain any informat ion about  Po,l for 1 > k and stop the recursion 
under lying the plug-in es t imator  at the largest observed value; this is also used as the 
basis for the projec t ion  in the th i rd  line. Next are the t runca ted  plug-in and the t runca ted  
likelihood estimates;  we see tha t  bo th  axe closer to the t radi t ional  in te rpre ta t ion  of 
these d a t a  as being from an ord inary  Poisson distr ibut ion.  Also, b o t h  are identical,  as 
announced  in Subsect ion 2.4. 

T h e  next  three  lines give the respective q-values, beginning wi th  the  relat ive frequen- 
cies. By construct ion,  these are equal to the q-values for the  s t ra ight  plug-in est imate.  
The  final line contains the result  of the usual Poisson approximat ion ,  with A es t imated  
by the mean 0.61 of the da t a  (all decompounding  es t imators  considered in this paper  

use ~n -- - log qn,~ -- - log 0.545 --- 0 .606969. . . ) .  We see tha t  the t runca t ion  es t imators  

Table 1. The horse kick data. 

k 0 1 2 3 4 
^PI 
Pn,k 
~PPI  

n,k 
^TP ^TL 
Pn,k ~ Pn,k 
an,k, 0 PI n,k 

o PPI 
n,k 

~TP ^TL 
qn,k~ qn,k 
Poisson 

0.9825 0.0396 -0.0365 0.0207 
0.9422 0.0380 0 0.0198 

0.9825 0.0175 0 0 

0.5450 0.3250 0.1100 0.0150 0.0050 

0.5450 0.3117 0.1017 0.0242 0.0112 

0.5450 0.3250 0.1027 0.0227 0.0039 

0.5434 0.3314 0 .1011  0.0206 0.0031 
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give a notably better  fit on the q-side than the naively projected plug-in estimator: 

4 4 

E ^PPI qn,k qn,k[ 0 . 0 3 7 ,  E ^ T P / T L  
- -  = qn,k -- 0n,kl = 0.016. 

k=0 k=0  

3.2 The plant data 
Compound Poisson distributions ('contagious distributions') also appear in the eco- 

logical literature where they are used to model plant and insect populations. In the basic 
model, apparently due to Neyman (1939), it is assumed that ancestor plants or insects 
are distributed in a given area according to a two-dimensional Poisson process with con- 
stant intensity. These have random numbers of offspring, independent and identically 
distributed, which stay close to their respective ancestors. Dividing a given (sufficiently 
homogeneous) area into subareas of equal size and ignoring edge effects one then regards 
the counts for the subareas as a sample from a compound Poisson distribution. This 
may be seen as a two-dimensional variant of our motivating example of queues with 
bulk arrivals. Neyman (1939) advocated the use of a Poisson base distribution, the re- 
sulting family of compound distributions is also known as the Neyman Type A family. 
In the case of a geometric base we similarly arrive at the P61ya-Aeppli distributions; 
see Chapter 9 in Johnson et al. (1992). (Atoms at zero of the base distribution can be 
incorporated into the rate parameter.) A third popular parametric family in this area is 
the family of negative binomial distributions. These are also of the compound Poisson 
type, the special case of geometric distributions is used below in one of the simulation 
examples. 

In an effort to find out which of these three families is appropriate for plant or 
insect populations Evans (1953) collected and analyzed a variety of data sets. For plant 
populations he generally regards the Neyman Type A distributions as appropriate, but  
for one of his data  sets (14c in the paper) the PSlya-Aeppli distribution results in a 
better  fit. In Table 2 we give this data set together with our estimates for the base 
distribution. Again, the plug-in estimate has a negative entry and the truncated plug- 
in and truncated likelihood estimates are identical. The data  here are such that the 
truncation step in the definition of Pn,k,̂ TP Pn,k̂ TL first takes effect with k = 8, hence both 

are equal to/~PI for k = 1, 7. As a consequence these estimates give a perfect fit of 
n ~ k  " " " ' 

observed and expected frequencies in this k-range, which cannot be obtained with any 
of the parametric models mentioned above. On the other hand a parametric model, if 
correct, could be used to extrapolate beyond the range of the observations, for example 
by providing an estimate for high quantiles of the offspring distribution. 

For data such as these our procedures provide a partly nonparametric alternative to 
the classical approach. In effect, we estimate the offspring distribution directly, without 
any parametric assumptions, but the assumptions on the spatial distribution of the 
ancestors remain in force. 

Table  2. T h e  p lan t  data .  

k 0 1 2 3 4 5 6 7 8 9 10 11 12 
Counts  274 71 58 36 20 12 10 7 6 3 0 2 1 

~PI - -  .431 .296 .137 .049 .023 .029 .018 .018 .002 --.011 .009 .003 
^ T P  ^ T L  P,~,k, Pn,k - -  .431 .296 .137 .049 .023 .029 .018 .016 0 0 0 0 
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3.3 Significance tests 
The  numerical  examples in the previous two subsections are mainly  meant  to il- 

lus t ra te  the es t imators  tha t  we in t roduced  in Section 2 and to  compare  them with the 
plug-in est imators  in Buchmann  and Griibel  (2003). Of course, the quest ion arises as to 
what  extent  our  asymptot ic  results can be used in connect ion with formal  significance 
tests, for example of the hypothesis  t ha t  we do have a s t ra ight  Poisson dis t r ibut ion in 
the  first example or whether  the deviat ion from a geometr ic  dis t r ibut ion is significant in 
the second. 

In the first case the hypothesis  can be wr i t t en  as P0,1 = 1 and the procedure  men- 
t ioned at  the end of Subsection 2.2 can be applied. For the  test  s tat is t ic  Tn := v/-n(1 - 
^PI Pn,1), for example,  Theorem 2.2 leads to the dis t r ibut ional  approximat ion  - Z  wP - 
m a x { - W l ,  O} with W1 "- N(O, a2(A)) and 

1 - A + A  2 - e  -~  
a2(A) = A2e_:, 

Insert ing An = 0.606969 we arrive at the  approximate  p-value 0.4058 for the observat ion 
2x~-~(1 - 0.9825) = 0 .2474 . . .  of T=. 

The  hypothesis  of a geometr ic  base dis t r ibut ion in the second example  does not  have 
this simple form and the familiar problems with goodness-of-fit  tests  using es t imated  
paramete rs  arise; see Pollard ((1984), pp. 99 and 159) for a classical case. A m o d e rn  
approach to problems of this type  circumvents  the explicit  dis t r ibut ional  approximat ion  
by  est imat ing the dis t r ibut ion of the test  s tat is t ic  directly, using a combinat ion  of the 
plug-in principle and Monte  Carlo approximat ion  (boots t rap  tests).  In this context  an 
extension of our  results to  the case of a converging sequence of ra te  paramete rs  and base 
dis tr ibut ions would be of interest.  

4. Some simulation experiments 

In our  next  two examples we use s imulated data ,  wi th  Ao ---- 2 and P0 the  uniform 
dis t r ibut ion on the set (1 ,4 ,6}  in the first case. Figure l (a)  shows the result  of 50 
simulations with sample size n -- 500. Displayed are the corresponding absolute error  
sums, with o and + for the vectors wi th  coordinates  

IPn,k - Po,k[, ~ ^PPI ^WP - po,, l, Pn,k po,k[ and - [Pn,k Po,kl 
',k=o k=o \k=o  k=0 

respectively. To make the  comparisons easier the plots include the line x H (x, x). The  
figure shows tha t ,  at  least in this par t icu lar  example,  the new est imators  b o th  consid- 
erably  improve upon  the projec ted  plug-in est imate,  and tha t  the  two new es t imators  
show a very  similar performance.  

In the second example  with artificial da t a  we take qo to  be the geometr ic  d is t r ibut ion 
wi th  pa ramete r  a = 0.25. It is known  tha t  this is a compound  Poisson dis t r ibut ion wi th  
ra te  pa rame te r  A = - log(a)  and wi th  the  logari thmic dis t r ibut ion 

(1  - a ) k  
k E N ,  P0,k - k log a ' 

as base distr ibution;  see, e.g., Chap te r  7 in Johnson  et al. (1992). As explained in 
Subsect ion 2.4 the  limit processes are then  the same for all three  est imators ,  which 



DISCRETE D E C O M P O U N D I N G  755 

2.0- 

1.5- 

1.0- 

0.5 

0.0 
0.0 

o 

o 
o 

o 

% o 

0.6- 

0.4- 
o o o  

o 
o o 

O o o  o o o 
o o 

o o ~ o  o ~ 0.2- 
o o o o o 

o oO;  o ~ o 

, , , 0.0 
0.2 0.4 0.6 

(a) unif({1, 4, 6}) 

o 

o o 

Ooo o ~ 
OoO 

o a~~ o /  
o o 0'1 0:2 0:3 0'4 0:5 

(b) logarithmic distribution 

Fig. 1. Error  comparisons for simulated data.  o: PPI  vs. TP, +: TL vs. TP. 

Table 3. Suppor t  results with unif({1, 4, 6}). 

n - - -500 ,  A = 2  n = 1 0 0 0 ,  A = 4  

k 2 3 5 7 8 >9 2 3 5 7 8 >9 

TP  50.2 62.9 48.0 71.0 86.3 88.7 51.1 68.1 42.7 62.5 85.4 93.9 

TL 50.2 75.4 47.7 64.5 81.9 76.3 51.1 77.2 35.2 52.0 76.0 74.9 

PPI  50.2 47.4 47.8 52.0 48.1 0.0 51.1 43.6 33.3 43.8 44.7 0.0 

leads us to suspect that  the projected plug-in estimate can compete with the truncation 
estimates. To some extent this is confirmed by Fig. l(b). 

In our last experiment we consider the performance of the truncated plug-in, the 
truncated likelihood and the projected plug-in estimators with respect to a structural 
property of the base distribution such as its support. Again, the base distribution is 
uniform on the set {1, 4, 6}. Table 3 gives the percentages of the correct results in 1000 
simulations for two different sample sizes and rate parameters. For example, the last 
value 93.9 in the first line means that  the truncated plug-in estimator gave the correct 
value c~ ~k=gP0,k = 0 in 939 of the 1000 runs with n = 1000, A -- 4. (The values in the 
table remain essentially unchanged if we replace the condition x = 0 by Ixl < 0.001.) 
It appears that  the truncated plug-in procedure is slightly superior to the truncated 
maximum likelihood variant for large k-values, with the order reversed for k = 3. Again, 
both outperform the projected plug-in estimator. 

In the degenerate case, with data  from an ordinary Poisson distribution, getting the 
support right means that  the base distribution is estimated with zero error. Interestingly, 
the limiting probability that  this occurs is equal to 1/2, irrespective of the rate parameter: 

^TP ---- P(Pn,1 = 1)  P(P,~,I  1) = ^TL 

= P(0n,1 _> s 
= P(v/-n(Cln,1 - q0,1) - q n , o v / - n ( ~ n  - "~0)  - * ~ o v / - n ( q n , o  - qo,o) >_ O) 
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P ( y l  + (1 -  o)Yo > o) 

= 1/2. 

as n ---+ oo 

T h e  suppor t  results  m a y  seem to be  a bit  d i sappoin t ing  but  they  can be regarded  
as ano the r  ins tance  of a b o u n d a r y  effect famil iar  in order- res t r ic ted  s ta t i s t ica l  infer- 
ence. A canonical  example  is provided by  a sample  X 1 , . . . , X n  f rom the  no rma l  dis- 
t r ibu t ion  where we know tha t  the  t rue  mean  # is nonnegat ive .  If  we e s t ima te  # by  
/~n := m a x { X n ,  0}, -~n :-- n -1 ~-]in_-i Xi ,  t hen  we have P(/~n -- #) = 1/2  a t  the  b o u n d a r y  
/J = 0 of  the p a r a m e t e r  space; see also the  d is t r ibut ional  app rox ima t ion  for the  tes t  
s ta t i s t ic  Tn in Subsect ion 3.3. 

As a final c o m m e n t  we ment ion  a d rawback  of the  es t imators  considered so far: 
T h e y  do not  provide  a sensible result  if no zero values are observed.  Ord ina ry  m a x i m u m  
likelihood es t ima to rs  do not  have this d rawback  bu t  have some others  instead,  as will be  
discussed in a s epa ra t e  paper .  
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