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A b s t r a c t .  A simple new family of distributions is proposed which has support the 
unit disc in two dimensions. The density functions of the family are unimodal, mono- 
tonic or uniantimodal. The bivariate symmetric beta distributions, which include the 
uniform distribution, are special cases, but many members of the family are skew. 
The distributions have three parameters, one controlling orientation, one controlling 
degree of concentration and the third controlling skewness, or more precisely off- 
centredness. Importantly, these parameters are globally orthogonal. An illustrative 
example of fitting the model to data is given. Conditional and marginal distribu- 
tions are considered. The new distributions are compared favourably with an earlier 
suggestion of the same author. 

Key words and phrases: Beta distribution, bivariate distribution, circular law, 
Mhbius transformation, Pearson type II distribution. 

i .  Introduction 

How many  probabi l i ty  dis t r ibut ions can you th ink of wi th  suppor t  the unit  disc? Th e  
uniform dis t r ibut ion probably  comes to mind immediately.  Th e  only other  dis t r ibut ions 
with suppor t  the uni t  disc tha t  have any degree of familiari ty are the bivariate spherically 
symmetr ic  be ta  (or Pearson type  II) dis t r ibut ions wi th  densi ty 

(1.1) fir(x, y) = ~ (1  - x 2 - y2) - r -1  ")' > 0, 0 < x 2 + y2 ~ 1. 

These  distr ibutions include the  uniform dis t r ibut ion on the disc (sometimes called the  
'circular law') when V = 1 and  are all spherically symmetr ic  with mode  at zero when 
V > 1 and ant imode at zero when  V < 1. Marginals are symmetr ic  be ta  dis tr ibut ions on 
[ -1 ,  1] with pa rame te r  V + 1/2. See Kotz  (1975), Johnson  (1987) and Fang et al. (1990) 
for details. 

But  these dis tr ibut ions are all spherically symmetr ic .  How about  dis tr ibut ions tha t  
can also exhibit  skewness, i.e., t ha t  do not  exhibit  bivariate  s y m m e t r y  on the disc? Th e  
only specific proposal  tha t  I know of was made  by Jones ((2002), Section 3). Bu t  now I 
can do bet ter!  In this paper ,  I in t roduce  an a l ternat ive  simple family of dis t r ibut ions on 
the disc which has many  skew members  and which also incorporates  the be ta  d is t r ibut ion 
(1.1) as its spherically symmetr ic  special case. In addit ion,  all densi ty functions in the 
new family remain unimodal ,  mono tone  or uniant imodal .  Other  advantages include 
meaningful  pa ramete rs  tha t  are readi ly es t imated  by m ax im u m  likelihood and which 
prove to exhibit  pa ramete r  or thogonal i ty .  
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The new distribution, which I call the MSbius distribution, and its parameters  are 
described in Section 2; an outline derivation of its density is deferred to Appendix A. 
Modal i ty  properties of the dis tr ibut ion are described in Section 3 and proved in Ap- 
pendix B. Some plots of the density are presented in Section 4. Section 5 deals wi th  
parameter  orthogonality. In Section 6, an illustrative example, fitting the model to da t a  
of Johnson and Wehrly (1977), is given. Condit ional  and marginal  distr ibutions are con- 
sidered in Section 7 and the paper closes with Section 8 which gives a brief comparison 
of the MSbius distr ibution and tha t  of Jones (2002). 

2. The MSbius distribution 

The unit  disc is most natural ly  parametr ised in terms of polar coordinates or, equiv- 
alently, complex numbers. (That  said, I work explicitly in terms of complex numbers 
only in this paragraph and a little in Appendix A!) So, write z = (x, y) and  w = (u, v) 
as complex numbers with, in particular,  w = re  ~~ 0 < r < 1, -Tr < 0 < 7r. The MSbius 
t ransformat ion is defined as 

w - c  z + c  
z = M e ( w )  - 1 - ~w with inverse w = M _ c ( z )  = 1 + ~z  

where c = ae  TM, 0 < a < 1 and the bar denotes complex conjugate. The MSbius 
t ransformat ion is essentially the only conformal mapping from the uni t  disc to itself 
(e.g., Krantz  (1999), Section 6.2.2). I t  is natural ,  therefore, to apply either the MSbius 
t ransformat ion or its inverse to a random variable with the symmetr ic  be ta  dis tr ibut ion 
to obtain the new class of MSbius distributions. I choose to apply the inverse MSbius 
t ransformat ion to z, so tha t  then the MSbius distr ibution can be shown to have density 

V ( 1 -  a2)~+1r(1 r2) ~-1 
(2.1) f ( r ,  0) = f-r,~,~(r, 0) = 7r(1 - 2 a r  cos(0 - #) + a2r2) "r+l 

wi th  p a r a m e t e r s v > 0 , 0 < a < l a n d - T r < # _ < z r o n 0 < r <  1 , - T r < 0 < T r i n p o l a r  
coordinates, or equivalently 

V(1 - a2)~+1(1 - u 2 _ I/2)'-r 

(2.2) /~,=,~(u, v) = 7r(1 - 2au cos # - 2 a v s i n #  + a 2 ( u  ~ + v2)) "r+l 

on 0 < u 2 + v 2 < 1 when t ransformed to Cartesian coordinates. An outline of the 
derivation of (2.1) from (1.1) is given in Appendix A. Note tha t  application of the 
MSbius t ransformat ion itself to (1.1) would simply result in a rota t ion of the MSbius 
distr ibution through rr radians. Note also the simplicity of the form of (2.1) and (2.2), 
including the normalisat ion constant:  not even a g a m m a  function is involved! The 
symmetr ic  be ta  distributions, including the uniform, are recovered when a = 0. 

The parameter  # controls the orientat ion of distr ibution (2.1). The s tandard  form 
of the dis tr ibut ion takes # = 0, in which case (2.2) reduces to 

3,(1 - a2)V+l(1 - u 2 _ v2)'r-1 
f-~,a,o(U, v) = 7r((1 - a u )  2 + a2v2)~ +i 

It is envisaged tha t  much the most useful members of family (2.1) or (2.2) will be those 
for which 3' > 1, whose densities are unimodal  (Section 3). Speaking in broad general 
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terms, the parameter  ~/is a concentrat ion parameter ,  in the sense t ha t  the greater the 
value of ~/ the less the variability of the distribution, and the parameter  a controls 
the skewness of the distribution. More precisely, a controls the off-centredness of the 
distribution, the distance of the mode from the centre of the disc (or ant imode when 
7 < 1) being a monotone increasing function of a (Section 3). The fact tha t  these 
parameters  are measuring quite different aspects of the dis t r ibut ion is borne out by the 
theoretical  likelihood calculations of Section 5: it is very appealing to find tha t  p, 7 and 
a are orthogonal parameters.  

3. Unimodality 

Humans  look at distributions in (x, y)-space (Section 4) and hence the modal i ty  
questions of interest concern the distr ibution in form (2.2), a l though it still proves clearer 
to give the results in terms of polar coordinates. 

For "y r 1, the MSbius dis tr ibut ion (2.2) is unimodai  wi th  its mode at  (0, r) = (#, r_)  
when 7 > 1 and is uniant imodal  with its ant imode at (0, r) = ( ( p +  rr)mod(27r), r+)  when 
7 < 1. Here, 

(3.1) r •  = 
V / ( 7 - 1 ) 2 + S a 2 ( 7 + l ) - + - ( 7 - 1 )  

4a 

This is so for all 0 _< a < 1; it is proved for 0 < a < 1 in Appendix  B and has already 
been asserted for a = 0 in Section 1, when r• = 0. Note tha t ,  for 7 > 1, r_ increases 
monotonically from 0 to i as a increases from 0 to 1 and, for a > 0, reduces monotonical ly 
from 1 to a as ~ increases from 1 to oo; for 7 < 1, r+ increases monotonical ly from 0 
to (~, + 1)/2 as a increases from 0 to 1 and, for a > 0, reduces monotonical ly from 1 
to (x/1 + 8a 2 - 1) /4a as ~, decreases from 1 to 0. When 7 = 1, the dis tr ibut ion has no 
modal  point in the interior of the disc; its maximum,  for a > 0, is then  at  (0, r) = (p, 1). 
These properties tie in wi th  the fact tha t  

0 if ~/> 1, 

f (1  0 ) =  "r(1-a2)2 
, 7r(l_2acos(O_tt)q_a2)2 if 7 = 1, 

OO if V <  1. 

4. Pictures of densities 

Withou t  loss of generality, take # = 0. The four frames of Fig. 1 show the essential 
behaviour of distr ibution (2.2) for the most impor tan t  case of 7 > 1. For given ~ />  1, 
increasing a moves the distr ibution off-centre (in the direction specified by 0 = p, here 
0). For given a, increasing 3' ' t ightens up' the dis tr ibut ion about  its mode. 

The  two frames of Fig. 2 exhibit some of the other behaviour of dis tr ibut ion (2.2). 
In Fig. 2(a) is a case in which 7 = 1, resulting in a monotone density across the disc. 
Figure 2(b) exhibits a single ant imodal  case corresponding to ~ /<  1. 

5. Maximum likelihood estimation 

Write a random sample of da ta  in polar form as (ri ,Oi),  i = 1 , . . . , n .  Based on 
density (2.1), assuming a r 0, max imum likelihood estimators/2t and 5 of p and a satisfy 
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Fig. 1. Dens i ty  (2 .1) / (2 .2)  for # = 0 a n d :  (a) 3 ' =  2, a =  0.1; (b) 3 , = 2 ,  a = 0 . 5 ;  (c) 3 ~ = 6 ,  
a = 0.1; (d) 3' = 6, a = 0.5. 
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Fig. 2. Density (2.1)/(2.2) f o r ~ = 0 a n d :  ( a ) ' y =  1, a = 0 . 5 ;  (b ) " /=0 .5 ,  a = 0 . 1 .  

while -~ is given by 

n n 

.~-1 _-- n - 1 E  log{1 _ 2~ri cos(0i - / 2 )  + &2r2} - log(1 - (i 2) - n - 1 E  log(1 - r2). 
i=1 i=1 

In practice, the only log-likelihood terms involving # and a are V + 1 times 

n 

(5.1) n log(1 - a  2) - E l o g { 1 -  2aricos(Oi- #)+ a2r~}. 
i = l  

I can therefore make a contour  plot of the function (5.1) on the finite parameter  space 
-Tr < # < r ,  0 _< a < 1, to great ly assist the search for the  global max imum over # and 
a. Having ascertained the approximate  posi t ion of the max imum visually, any s tandard  
(local) optimizer can be used to home in on the precise value of the maximum.  Also, 
because 

^2 2 ( a  2 1 - 2&ri cos(0i - / 2 )  + a r i 
( 1 - 5 2 ) ( 1 - r  2) _> 1+ (1 -&2) (1 -r  2) >- 1, 

Further  differentiations o f  the likelihood equat ions immedia te ly  show tha t  the non- 
diagonal terms of the expected information matr ix  are all zero. Assuming a ~ 0, this 
implies tha t  the three parameters  of dis t r ibut ion (2.1)/(2.2) are globally orthogonal,  and 
hence tha t  their max imum likelihood es t imators  are asymptot ica l ly  independent  (by the 
s tandard  theory of maximum likelihood est imation,  e.g., Cox and Hinkley (1974)). The  
diagonal terms of the expected information mat r ix  can readily be  seen to be  n times: 

[R{(1  + a2R2) cos(O - p) - 2 a R } ]  7_  2 

and 
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( 1 +  a2 [R2{l+2aRcos(O-P)-2cos2(O-P)-a2R2}]) 
~a~ = 2(7 + 1) (1- -- ~ ) 2  + E {-i - -2--a-R~o~-(Oi2p-)~a-ff~ " 

The asymptotic variances of ~, ~/and & are, of course, n -1 times 1 / ~ ,  1 / ~  and 1/~aa, 
respectively. Note, in particular, that  the asymptotic variance of x/is proportional to 7. 

The case of uniformity, a = 0, 7 = 1, is on the boundary of the parameter space 
and corresponds to indeterminate #. If it is desired to test for uniformity on the basis 
of 6 and ~, then the approach of Davies (1977) could be used. 

6. Example 

For a brief illustrative example, the small dataset, size n = 19, given in Table 1 
of Johnson and Wehrly (1977) is considered. These data  consist of values, ri, of ozone 
concentration which, for the purposes of this example, are divided by a maximal value 
taken to be 120, and wind direction, 0i, converted from degrees to radians. The data  
were collected at a weather station in Milwaukee, U.S.A., in 1975, and are plotted in 
Fig. 3. They are clearly not uniformly distributed on the disc. 

The contour plot (not shown) of that  part of the log-likelihood dependent only on 
# and a exhibited a clear single maximum a t / t  = 0.648, 6 = 0.284. The corresponding 
value of ; / - -  4.494. The fitted model is shown in Fig. 4. Given the small sample size, the 
model appears to fit reasonably well. However, one might alternatively argue that there 
is a hint of clustering in the data  and that the fitted model is something of a compromise 
solution. Without  more data, it cannot be told whether the single component model 
would really prove adequate or whether, perhaps, a mixture of MSbius distributions 
might be better. 

Continuing with the model as fitted and using values of the observed information, 
approximate 95% confidence intervals for it, a and ~ are (0.200, 1.097), (0.162, 0.406) and 
(2.473, 6.514), respectively. 
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Fig. 3. A scatterplot of the ozone concentration/wind direction data from Johnson and Wehrly 
(1977). 
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Fig. 4. The  version of densi ty  (2.1)/(2.2) fi t ted to the  d a t a  of Johnson  and Wehrly (1977): 
/2 -- 0.648, & = 0.284 and  ~ ---- 4.494. 

7. Conditionals and marginals 

The conditional distribution of O I R -- r is 

f.r,a,~(O [ r) = {27rP~(z)(z- V ~ -  1 cos(O-/~)),),+1}-1 

where z -- (1 § a2r2)/(1- a2r 2) and P~(z) is the associated Legendre function 
(Abramowitz and Stegun (1965), Chapter 8). This is the subset of the wide class of 
symmetric unimodal circular distributions proposed by Jones and Pewsey (2004) corre- 
sponding to their parameter r = -1/(~,  + 1) c ( - 1 , 0 ) - - a  set of distributions 'bridging 
the gap' between the von Mises distribution (r  = 0; ~ = co) and the wrapped Cauchy 
distribution (r  -- -1 ;  ~/= 0) (see, e.g., Mardia and Jupp (1999) for the latter two dis- 
tributions). Formulae for the conditional trigonometric moments of e given r are given 
in terms of ratios of associated Legendre functions by Jones and Pewsey (2004). This 
set of distributions also arises as the conditional distribution of twice the angle given a 
fixed radius in a bivariate spherically symmetric t distribution on 2~f degrees of freedom 
with nonzero location (Shimizu and Iida (2002)). 

The marginal distribution of R is then immediately 

(7.1) f(r) = 2~/(1 - a2)'~+1 (lr(1--a2r2) "YTlr2) ~'-1 p~y ( 11 -- a--~r2/+ a2r2"~ 

on 0 < r < 1. It can be confirmed, using 7.137.9 and 8.755.2 of Gradshteyn and Ryzhik 
(1994), that f3 f(r)dr = 1 and that  formula (7.1) covers the symmetric beta case a -- 0 
because P.y(1) = 1. 

The conditional density of R I O = 0 does not have a particularly attractive or 
recognisable form, nor have I managed to obtain its normalising constant or, therefore, 
the marginal distribution of O. Neither is there anything very interesting to be said 
about the conditional or marginal distributions of U or V. Seshadri (1991) applies 
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a real univariate Mbbius transformation to the univariate symmetric beta  distribution 
to obtain an interesting class of univariate distributions with density proportional to 
(1 - t2)~- l / (1  - a t )  2~ on - 1  < t < 1, for a certain parameter a. It is perhaps surprising 
that this distribution does not figure in this section. 

8. Comparison with alternative distribution 

The alternative suggestion of Jones (2002) has density 

(8.1) (1 -~- x ) b l - ~ - ( 1 / 2 )  (1  --  x ) b 2 : ' I - ( 1 / 2 )  (1  --  X 2 - -  y2)~-I  

251+b2-1B(b1,  b2)B(7, 1/2) 

on 0 < x 2 + y2 _< 1 with parameters bl,b2,~/ > 0. Here, B(. , . )  is the beta  function. 
The distribution has a Beta(b1, b2) X-marginal and a (rescaled) Beta(% ~/) conditional 
distribution for Y I X. It was proposed as a special case of a general method for skewing 
multivariate distributions and hence does not have especially strong affinity with the 
polar nature of the disc. Indeed, (8.1) has a specific orientation and therefore, to allow 
general orientation, needs the addition of a fourth parameter. 

Distribution (8.1) has equally pleasant modality properties as distribution (2.2), 
but  is not so simple in terms of interpretation of parameters. In particular, the two 
parameters bl and b2, or rather a complicated function of them involving their difference, 
drive skewness, while in (2.1)/(2.2), a does the skewness job in an immediately appealing 
way; bl and b2 are not orthogonal parameters. 
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Appendix A: Outline demonstration of veracity of (2.1) 

Write s and ~ for the polar coordinates of z. If (x, y) has density (1.1), then the 
density of (s , r  is ~/s(1 - s2 )~ - l /T r .  Recall that  we are transforming by the inverse 
Mbbius transformation w = M_c(z). Write 

B = 1 - 2 a t  cos(0 - #) + a2r  2. 

The squared modulus of the Mbbius transformation is 

s 2 --  B - I ( a  2 - 2 a r c o s ( O  - # )  + r 2) 

so that 

and 

O s / O r  = ( sB2) - l (1  - a2){r(1 + a 2) - a(1 + r 2) cos(0 - #)} 

C9S/C98 : ( s B 2 ) - l a r ( 1  - a2)(1 - r 2) sin(O - p). 

It is also the case that,  by multiplying top and bo t tom of the MSbius transformation by 
1 - c@,  

rsinO - a ( 1  + r 2) s in# - a 2 r s i n ( O  - 2 # )  
tan r ---- 

r cos 0 - a(1 + r 2) cos # + a2r  cos(0 - 2#)" 
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Then, 

and 

Or = - ( s B ) - 2 a ( 1  - a 2 ) ( 1  - r 2) sin(0 - #) 

0r  = ( sB) -2r (1  - a2){r(1 + a 2) - a(1 + r 2) cos(0 - #)}.  

The reciprocal of the Jacobian  then reduces to ( sB2 ) - t r (1  - a2) 2, and with 1 - s 2 -- 
B - l ( 1  - a2)(1 - r2), (1.1) can be seen to t ransform to (2.1). 

Appendix B: Proof of unimodality when 0" ~ 1 and a > 0 

Interest  is in the modal i ty  of (2.2) bu t  it will be more convenient to work in terms 
of polar  coordinates,  noting that  this is not the same as s tudying  the modal i ty  of (2.1). 
Consider the derivatives of tha t  par t  of the log densi ty which depends  on r and 0, namely 

(0' - 1) log(1 - r 2) - (0' + 1) log(1 - 2ar cos(0 - p) + a2r2). 

Then Ologf ( r ,  0) /00 = 0 when 0 = #, when 0 equals whichever of # 4- ~r �9 (-Tr, Tr] or 
when r -- 0. Consider, first, 0 = #. Then, 

Ologf(r ,O)  o=u-  2 ( 7 - 1 ) r  2a (0"+1)  9(r) 
Or ( 1 - r  2) + 1 - a r  - ( 1 - r 2 ) ( 1 - a r )  

where g(r) = 2 { - 2 a r  2 - (0' - 1)r + a(0' + 1)}. Now, since g(r) --~ - o o  as r ---* 4-00, 
9(0) = 2a(1 + 0') > 0 and 9(1) -- 2(1 - a)(1 - 0"), only when 0' > 1 is there  a single r in 
(0, 1) such tha t  g(r) = 0, namely r_  given by (3.1). Also, 

02 log002f(r' O) O=u,r=r- = 

02 lOgor 2f(r'O) o=u,~=~- = 

- 2 a r _ ( 0 '  + 1) 
< 0, 

( 1  - ar_) 2 

2 ( V -  1)(1 + r2_) 2a2(v + 1) 

( 1  - r2_) 2 + (1 - ar_)  2 

2(0' - 1)(r 2 _ - 2ar_ + 1) 
(1 - a r_ ) (1  - r2_) 2 

which is negative for V > 1, and 02 logf(r,O)/OOOr 10=U,r=r_= 0. 
V > 1 there is a maximum at (0, r) = (p, r_) .  

Now take 0 = p 4- 7r. This gives 

It follows tha t  for 

02 log002f(r' 8) O=tz• + -- 

02 lOg0r 2f(r' O) o=t~• = 

2ar+(  7 + 1) 
> 0, 

(1 + a r+)  2 

2('), - 1)(1 + r~_) 2a2(7 + 1) 
( 1 -  r~_) 2 + (1 + a r + )  2 > 0  

Since g ( - 1 )  = 2(1 + a)(  7 - 1), there is a single solution of g ( - r )  ---- 0 in (0, 1) when 
7 < 1, and this is r+ given by (3.1). In this case, 

0 log  f (r ,O) o=~+~- 2(7 - 1)r 2a(7 + 1) _ - g ( - r )  
Or 1 - r 2 1 + ar (1 - r2)(1 + ar)" 
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and 02 log f(r,  8) /080r  10=~• = 0. It follows that  for ~ / <  1 there is a minimum at 
(e, r) = • r+) .  

W h e n  r -- 0 solves 0 log f(r,  8) /08 = 0, 8 -- (# + (2n + 1 ) ~ / 2 ) m o d ( 2 ~ ) ,  n -- 0, 1 , . . . ,  
solves 0 log f(r,  8)~Or = O. This can be shown to correspond to a saddlepoint.  
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