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A b s t r a c t .  In carcinogenici ty  exper iments  with animals  where the  t umor  is not  
pa lpab le  it is common to observe only the  t ime  of dea th  of the  animal ,  the  cause 
of  dea th  (the t umor  or ano ther  independent  cause, as sacrifice) and  whether  the  
t u m o r  was present  a t  the  t ime of death .  These last  two indica tor  var iables  are 
evalua ted  after an autopsy.  A weighted least  squares e s t ima to r  for the  d i s t r ibu t ion  
function of the  disease onset  was proposed.  A s y m p t o t i c  p roper t ies  of t ha t  e s t ima to r  
a re  es tab l i shed  here. We demons t r a t e  i ts s t rong uniform consistency. A min ima x  
lower bound  for the  es t imat ion  of the disease onset  d i s t r ibu t ion  is ob ta ined ,  as well 
as the  local a sympto t i c  d i s t r ibu t ion  for the i r  es t imator .  

Key  words and phrases: Asympto t i c s ,  interval  censoring, survival-sacrifice, weighted 
least  squares,  disease onset es t imat ion.  

1. Introduction 

Suppose that in an experiment for the study of onset and mortality from unde- 
tectable moderately lethal incurable diseases (occult tumors, e.g.) we observe the time 
of death, whether the disease of interest was present at death, and if present, whether 
the disease was a probable cause of death. Defining the nonnegative variables T1 (time 
of disease onset), T2 (time of death from the disease) and C (time of death from an un- 
related cause), we observe, for the i-th individual, (Yi, At#, A2#), where Yi -- Ci A T2#, 
A1,i = I(T1,i _~ 6'/), A2# ---- I(T2# _~ Ci), and I(.) is the indicator function. Variables TI# 
and T2,i have an unidentifiable joint distribution function F such that P(TI,i ~_ T2,i) = i, 
Ci has distribution function G and is independent of (TI#,T2#). Current status data 
can be seen as a particular case of the survival-sacrifice model above when the disease is 
nonlethal, i.e., A2,i = 0, i = i,..., n. In this case, Yi -- Ci, and ~'2 - 0 for any estimator 

F2 of F2 (the marginal distribution function of T2). Right-censored data are a special 
case of the survival-sacrifice model above when a lethal disease is always present at the 
moment of death, i.e., AI# ---- i, i ---- I,..., n. In this case, F1 -= 1 for any estimator/~1 
of F1 (the marginal distribution function of TI). 

An example of a real data set can be found in Turnbull and Mitchell (1984). It 
contains the ages at death (in days) of 109 female RFM mice. The disease of interest 
is reticulum cell sarcoma (RCS). These mice formed the control group in a survival 
experiment to study the effects of prepubertal ovariectomy in mice given 300 R of X- 
r a y s  ( H o l l a n d  et al. (1977)) .  
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The parameter space for the survival-sacrifice model can be taken to be 

(~ = {(F1, F2) : F1 and F2 are distribution functions with F1 <s F2}, 

where F1 <s F2 means that  Fl(a~) > F2(x) for every x e ]R and Fl(x)  > F2(x) for some 
x E 1R. The loglikelihood function for this model is 

(1.1) 
n 

s F2) = E { ( 1  - A1,i)(1 - A2#)log(1 - F1 (Y/)) 
i=1 

+ Al,i(1 - A2,i) log(F1 (Yi) - F2(Y~)) 

+ (Al , iA2 , i ) log f2(Y i ) }  + / ( ( g ,  a )  

where f2(Y) = F2(y) - F 2 ( y - )  and K(9,  G) is a term involving only the distribution 
function G and the probability density function g of C. We will assume without loss of 
generality that Y1 <_ I72 <_ "'" < Yn. 

Kodell et al. (1982) also studied the nonparametric estimation of $1 = 1 - F1 
and S2 = 1 - F2, but  their work is restricted to the case where R(t)  = S l ( t ) /S2( t )  is 
nonincreasing, an assumption that may not be reasonable, for example, for progressive 
diseases whose incidence is concentrated in the early or middle part  of the life span. 

Turnbull and Mitchell (1984) proposed an EM algorithm for the joint estimation 
of F1 and F2 which converges to the nonparametric maximum likelihood estimator of 
(F1, F2) provided the support of the initial estimator contains the support of the maxi- 
mum likelihood estimator. 

Gomes et al. (2001) used a faster primal-dual interior point algorithm to calculate 
the nonparametric maximum likelihood estimator of (F1, F2). 

Another possible way of estimating F1 is by plugging in the Kaplan-Meier estima- 
tor F2,~ of F2 in (1.1) and cMculating the nonparametric maximum pseudolikelihood 
estimator of F1. 

A weighted least squares estimator for F1 making F2 =/~2,n was proposed by van 
der Laan et al. (1997). Gomes et al. (2001) compared the efficiency of the weighted 
least squares and nonparametric maximum likelihood estimators of F1. Their simula- 
tion studies showed evidence that  the local performance of the weighted least squares 
estimator is superior when F1 - F2 becomes larger. The authors also pointed out that  
when IIF1 - F211o~ = 1 all the estimators of F1 and F2 mentioned above coincide. 

The weighted least squares estimator proposed by van der Laan et al. (1997) is 
described in Section 2 and its consistency is established in Section 3. Results about the 
rate of convergence and the local limit distribution of their estimator are established in 
Sections 4 and 5, respectively. 

The global asymptotic behavior of the weighted least squares estimator is still to be 
determined as well as that  of the joint nonparametric maximum likelihood estimator of F1 
and F2. The weighted least squares and nonparametric maximum likelihood estimators 
of F1 are believed to be asymptotically equivalent, but  that  still remains to be proved. 

2. T h e  w e i g h t e d  least  squares  e s t i m a t o r  

A possibility for the estimation of F1 is to calculate a weighted least squares esti- 
mator as suggested by van der Laan et al. (1997). They showed that estimating $1 can 
be viewed as a regression of (1 - A1)S2(C) on the observed Ci's under the constraint of 
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monotonicity. If we substitute S2 by its Kaplan-Meier e s t i m a t o r  S2,n, we automatically 
have an estimator for $1 minimizing 

n 

1 ~ [ ( 1 -  A~,i)S2,n(Y~)- $1(Yi)]2(1 - A2,i) 
n i=1 

under the constraint that  S 1 is nonincreasing. This minimization problem can be solved 
by using results from the theory of isotonic regression (see Barlow et al. (1972) or 
Robertson et al. (1988)) with weights inversely proportional to 

Var[(1 - -  I c = c,T= > C] = SE(c)R(c) [1  - R(c)]  

which depends on $1 and would imply the use of an iterative process. However, if we 
use weights wi = (1 - A2#)/S2,n(Yi ) instead, we have an estimator with a closed form, 
as suggested by van der Laan et al. (1997). 

Using algorithms for isotonic regression problems, their estimator $1,~ will be given 
by the slope of the least concave majorant of the cumulative sum diagram determined 
by the points (0, 0), (W1,1/1), . . . ,  (Wn, Vn), where Wj = ~i=lJ wi and 

Vj = ~ w i ( l _  tl,i)S2,n(Yi): ~ (1-Z~I, i)(1 - /~2,i) : ~-~ (1 -  t l , i )  

d - -  

P, 

I I I I I 

0 200 400 600 800 

T ime (in days) 

Fig. 1. Weighted least squares estimate of F1, Kaplan-Meier estimate of F2, and nonparametric 
maximum likelihood estimates of F1 and F2. 
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So, Sl,n(t) is the mentioned slope at Wj if t e (Yj-1, Yj], and we can w r i t e  

(2.1) 
k E~=z(1 - AI,j)/S2,n(Yj) 

SI,,(Ym) = minmax 
t<m k_>m E~=Z(1_ A2j)/S~,.(Yj)' 

for m = 1 , . . .  ,n. It is easy to see that  (2.1) reduces to the expression of the nonpara- 
metric maximum likelihood estimator of F - F1 for current status data  (Groeneboom 
and Wellner (1992)) when A2,i = 0, i = 1 , . . . ,  n, since in this case S2,n - 1. 

The weighted least squares estimator of F1 and the Kaplan-Meier estimator of F2 
do not coincide with the nonparametric maximum likelihood estimators of F1 and F2, 
respectively. Figure 1 shows those estimators for the real data  set in Turnbull and 
Mitchell (1984). The smoother picture for the estimates of F2 is a consequence of the 
n 1/3 rate of convergence for the estimation of F1 (as shown in Section 4) compared to 
the x/~-rate for the estimation of F2. 

3. Consistency 

In this section we present a theorem establishing the strong uniform consistency of 
the weighted least squares estimator proposed by van der Laan et al. (1997). In the proof 
of Theorem 3.1 (in the Appendix) we will use a general method used by Jewell (1982) 
to prove consistency of the nonparametric maximum likelihood estimator for the mixing 
distribution in scale mixture of exponential distributions. The same method was used by 
Groeneboom and Wellner (1992) to prove consistency of the nonparametric maximum 
likelihood estimator of the disease onset distribution function for interval censoring, cases 
1 (current status data) and 2. 

THEOREM 3.1. Suppose C, T1 and T2 have continuous distribution functions G, 
F1 and F2, respectively, such that PF1 << PG, where PEt and PG are the probability 
measures induced by functions F1 and G, respectively. Then 

l l f 1 , ~  - F111oo = s u p  I f l , n ( t )  - F l ( t ) l  - ~  o 
tCR 

almost surely. 

The proof is given in the Appendix. 

4. Minimax lower bound 

We determine here a minimax lower bound for the estimation of Fl(to). When n 
grows, the minimax risk should decrease to zero. The rate 6n of this convergence is the 
best rate of convergence an estimator can have for the estimation problem posed. 

Let T be a functional and q a probability density in a class G with respect to a a-finite 
measure # on the measurable space (~,.4). Let Tq denote a real-valued parameter and 
{Tn}, n > 1, be a sequence of estimators of Tq based on samples of size n, X1 , . . .  ,Xn,  
generated by q. 

E~,q[g(ITn - Tq])] is the risk of the estimator Tn in estimating Tq when the loss 
function is g : [0, c~) -~ ]~ (g is increasing and convex with g(0) = 0). En,q denotes 
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the expecta t ion with respect  to the product  measure q| associated with the sample 
X 1 , . . . ,  X~. For fixed n, the minimax risk 

inf sup E~,q [g([T~ - Tq])] 
Tn q6G 

is a way to measure  how hard the es t imat ion problem is. 
Lemma 4.1 below is quite  helpful in deriving asymptot ic  lower bounds  for minimax 

risks (see Groeneboom (1996), Chapter  4, for the proof).  It will be used to prove 
Theorem 4.1. 

LEMMA 4.1. Let G be a set of probability densities on a measurable space (~ ,A )  
with respect to a a-finite measure #, and let T be a real-valued functional on ~. Moreover, 
let ~:  [0, cx~) --~ N be an increasing convex loss function, with ~(0) = O. Then, for any 
ql, q2 E G such that the Hellinger distance H(ql,  q2) < 1, 

infr~ max{En,q, [e(IT~ - Tql ])], E~,q~Ie(IT~ - Tq2l)]} 

> e (�88 - Tq2[[1 - H2Cql, q2)]2n). 

In our case, let Xi = (Yi, AI, i ,  A2,i),  and 

q0(y, zxl,  zx2) = {g(~)[1 - F l ( y ) ] }  (1 -~1) (1-~2)  

• { g ( ~ ) [ F l ( y )  - F2(y)]}  ~ 1 ( 1 - ~ )  

• {f~(y)[X - a ( y ) ] }  ~ ' ~ 2 ,  

# = A • m, where A is the  Lebesgue measure and m is the counting measure  on the set 
{( 0, 0), ( 0, 1), (1, 1)}, Tqo -- F1 (t0), and qn is equal to the densi ty corresponding to the 
per turba t ion  

Fl(X) if x < t o - n - I / a t  

F l ( t o - n - t / 3 t )  if x C  [ t o - n - 1 / a t ,  to) 
(4.1) Fl,n(x) = F l ( t o + n _ l / 3 t  ) if x C  [to, to+n-1/3t)  

Fl(X) if x >_ to + n-1/3t 

for a sui tably chosen t > 0. 
Using the per tu rba t ion  (4.1) we show in the proof  of Theorem 4.1 tha t  

H2(qn, qo) ~ n - l  g(to) f2(to)t3S2(to) / { Sl (to)[S2(to) - Sl(t0)]}. 

So, as pointed out  by Groeneboom (1996) for current  s ta tus  data,  we could say tha t  the 
Hellinger distance of order n -1/2 between qn and qo corresponds to a dis tance of order 
n -1/3 between Tqn = Fl,n(t0) and Tqo = Fl(to). 

The per tu rba t ion  (4.1) is the worst  possible. When  maximizing in t, we are taking 
the worst  possible constant .  

THEOREM 4.1. 

n 1/a infp,,~ max{E~,qo [I/~l,n(to) - F1 (to)[], En,q. [I/~l,n (t0) -- Fl,~(to)lit 

>_ lnl/3lFl,~(to ) - Fl(to)l[1 - H2(qn, qo)] 2n 

--~ �88 { -  2S2(t~176176 
S~ (to) [82 (to) - S~ (to)1 
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and the maximum value of this last expression is 

(4.2) k { f l  (t0)S1 (to)[$2 (to) - $1 (to)]~IS2 (to)g(to)]} 1/3 

where k = (1/4)(3e/2) -1/3 does not depend on f l ,  F1 or g. 

The proof is given in the Appendix. 
Groeneboom (1987) applied Lemma 4.1 to obtain a minimax lower bound of the 

form 
(4.3) c{f(to)F(to)[1 - F(to)]/g(to)} U3 

for the problem of estimating F with current status data. We can easily see that  up to 
the constants k and c, (4.2) reduces to (4.3) if we make F1 = F ,  f l  -= f and $2 -= 1, 
which are the changes that reduce the survival-sacrifice model studied here to current 
status data. 

5. Local limit distribution 

Theorem 5.1 below gives the local asymptotic behavior of the weighted least squares 
estimator of F1 proposed by van der Laan et al. (1997). 

THEOREM 5.1. Suppose C, T1 and T2 have continuous distribution functions G, 
F1 and F2, respectively, such that PF1 << Pc. Additionally, let to be such that 0 < 
Fl(to) < 1, 0 < G(to) < 1, and let F1 and G be differentiable at to, with strictly positive 
derivatives f l( to)  and g(to), respectively. Suppose also that to is such that for some 5 > 0 
and some M > O, S2(to + M) >5.  Then 

(5.1)  n 1/3 S l ' n ( t 0 )  -- S l ( t ~  ,~ 1/3 --* 2 Z  

1 f l  ( t0)S1 ( to ) [S2 ( t0 )  - S1 (to)]/[g(to)S2(to)] 

in distribution, where Z -- arg maxh{lt~(h)-h2}, and 1~ is a two-sided standard Brownian 
motion starting from O. 

The proof is given in the Appendix. 
Groeneboom (1989) studied the distribution of the random variable Z, and 

Groeneboom and Wellner (2001) calculated its quantiles, allowing the construction of 
confidence intervals for F1. 

As noticed in "Introduction", current status data is a particular version of the 
present problem when we have A2,i = 0, i = 1 , . . . , n .  This is equivalent to have 
S2(t0) - 1 in the expression above, which would reduce it to the well known result about  
the limit distribution of the nonparametric maximum likelihood estimator of F1 when 
we have current status data  (Groeneboom and Wellner (1992)). 

Notice that the expression in the denominator of (5.1) is proportional to that  in the 
minimax lower bound in Theorem 4.1. 
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A p p e n d i x  

PROOF OF THEOREM 3.1. Let (TI,I,T2,1,C1),. . . ,(Tl,n,T2,n,Cn) be a sample of 
random variables in 1R 3, where Ci is independent  of (Tl,i,T2,i) and Ci,Tl,i,T2,i have 
continuous distribution functions G, F1 and F2, respectively, satisfying PF1 << Pc (the 
probabili ty measure PEt, induced by F1, is absolutely continuous w.r.t, the probabil i ty 
measure Pc, induced by G). 

The est imator  Fl,n minimizes the function r under  the constraint  of monotonicity,  
where 

[ {I( t i  > c)[1 - F 2 , n ( C ) ] -  [1 - F l ( c ) ] I 2 I ( t 2  > C)di?~(ti,t2,c) r  
I1 - 

1 @ {(1 -- AI,i)[1 - F2,n(Ci)]  - [1 - Fl(Ci)]}2(1 - A2,i) 

= n 2_,i=1 [1 - &,n(Ci)]  2 

Here Pn = �88 ~-]in=l 6(T~.~,T2.,,C,) is the empirical probabil i ty measure.  

The  fact tha t /~ l ,n  minimizes r  implies tha t  for any 0 < ~ < 1, 

r  - c)-#1,,, + eF1) - r  > 0. 

Dividing by c > 0 and taking the limit as r $ 0 this yields 

lira 1[r  -e) /ml ,n  + eF1) - r _> 0. 
r 

But 

r  - + , F , )  

= .La{I ( t l  > c)[1 -- F2,n(C)] - [1 - (1 -- C)Fl,n(C) - cFI(C)]} 2 

x {I(t2 > c)/[1 - [22,n(C)]2}d][~n(tl , t2, c). 

So~ 

(A.1) - +  F1) I =o s t~l,n 

---- .La 2{I( t l  > c)[1 -/P2,n(C)] - [1 - Fl,n(c)]}I(t2 > c) 

X {[FI(C ) -- ~'l,n(C)]/[1 - -  F2,n(c)]2}d]V~n(tl, t2, C) > O. 

Let ~t be the space of all sequences {(Ti,i, T2,~, C~), i = 1, 2 , . . . }  endowed with the Borel 
or-algebra generated by the product  topology on 1-[i~=i l~ 3. Introducing "w E ~" in 
the nota t ion to indicate the dependence on the sequence {(Tl,i,T2#, C~),i = 1, 2 , . . . } ,  
Pn( ' ,  ", "; w) converges weakly to P,  the joint probabil i ty distr ibution of T1, T2 and C, by 
Varadara jan 's  theorem (Dudley (1989)) for all w in a set B C ~2 such tha t  P(B)  -- 1, 
where P = P ~ .  

There  exists B2 C_ B with P(B2) = 1 such tha t  supte[0,r)[F2m(t;w) - F2(t)[ ~ 0 as 
n ---* c~, for every w E B2, where r = s u p { t :  H(t) < 1} and H = 1 - (1 - F~)(1 - G) 
(Wang (1987)). 
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For a fixed 02 e B2, the sequence/" l ,n  (', 02) has a subsequence/~l,,~k (', 02) converging 
vaguely to a nondecreasing right continuous function F {  taking values in [0, 1], by the 
Helly compactness  theorem. 

Fix e C (0,1) and choose b such tha t  F2(b) = 1 - e .  Since ~/'2,n(';02) --~ F2(') for 
02 �9 B2, we have F2,nk ('; 02) ~ F2(.) for 02 �9 B2. Thus,  we may assume 1/[1 - ~'2,n(t, 02)]2 
bounded  for t �9 [0, b] and n sufficiently large. 

By  the convergence in dis t r ibut ion of F2,n(',02) we may also assume that  1/[1 - 
F2(t)] 2 is bounded  for t �9 [0, b]. Hence we assume 

1 1 
(A.2) [1 - F2(b)] 2 -< M and [1 - F2,n(b, 02)] 2 <- M 

for a constant  M > 0 and all n sufficiently large. 
We will need the following lemma. 

L E M M A  A . 1 .  

(A.3) 

Moreover ,  

(A.4) 

Let  b be chosen such that  F2(b) = 1 - e. Then  

k 0o JR2x[0,b] 

= ~ 2  x [0,b] 

2 { I ( t l  > c ) [1  - F2,nk (C)] -- [1 --  &,~k(c)l}I(t2 > C) 

x { [F1 (c)  - • , n k  ( c ) ] / [ 1  - •,nk (c)]2}dlPnk ( t l ,  t2,  c)  

2 { I ( t l  > c ) [1  - F 2 ( c ) ]  - [1 - F{(c)]II(t2 > c) 

x { [ &  (c)  - F {  ( c ) ] / [ 1  - F2(c)]~}dP(tl, t2, c). 

L 2  x [O,b] 
2{I( t l  > c)[1 - F2(c)] - [1 - F { ( c ) ] I I ( t 2  > c) 

x {[Fl(C) - F{(c ) l / [1  - F 2 ( c ) ] 2 I d P ( t l ,  t2, c) > 0. 

PROOF OF LEMMA A.1. Fix 0 < 5 < 1 and take a grid of points  0 = u0 < 721 < 
�9 .. < Um = b on [0, b] such that  m -- 1 + [1/52], where [.] is the integer par t  of a real 
number,  and G(u i )  - G ( u i - 1 )  -- G ( b ) / m ,  i = 1 , . . .  , m .  Let K be the set of indices i, 
i = 1 , . . . , m  such that  

1 1 
- > 5 .  

[1 - F2(ui)] 2 [1 --  F2 (Ui - -1 ) ]  2 --  

The first inequality in (A.2) implies tha t  the  number  of indices of this t ype  is not  bigger 
than 1 + [M/5].  Let L be the remaining set of indices i, i = 1 , . . . ,  m. 

Denoting the interval [u0, Ul] by J1 and the intervals (ui-1,  ui] by or/, i = 2 , . . . ,  m, 
we have 

2{I ( t l  > c)[1 - tlP2,nk (e;02)1 - [1 - Fl ,nk (C;w) l } I ( t2  > c) 
2 x [O,b] 

X { [ F  1 (c) - /~l,nk (c; 02)] / [1 - F2,nk (C; 02)]2}d]~nk ( t l ,  t2 ,  C; 02) 

i=1 2 x J i  

x {[F1 (e) - /~l ,nk (c; co)]/[1 - F2,nk (C; 02)]2}dI~nk (tl,  t2, C; 02). 
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Since [v2,nk(ui;w) converges to F2(u/)  for each i, 0 < i < m,  we get ,  for sufficiently large 
k, 

1 1 
- < 25, i E L.  

[1 - />2,nk (u~; w)] 2 [1 - F2,,~k ( u i _ l ;  w)] 2 

Hence,  

(A.5) JR 2{ I ( t l  > c)[1 - F2,nk (c;w)] -- [1 - ~'l,nk(c;w)l}I(t2 > c) 
2 x [0,b] 

x {[El (c) - Igl,nk (C; 0J)]/[1 -- "F2,nk (C; aj)12}d~nk (t l ,  t2, C; o J) 

E f 2 { I ( t l  > c)[1 -- ~'2,nk (C; W)] - [1 - ~' l ,nk(C;W)]} I ( t2 > C) 
J R  2X iCK Ji 

X { [F1 (c) - -Fl,nk (C; 03)]/[1 -- /~2,nk (C; w)]2}d]Pnk ( t l ,  t2, C; W) 

+/e~L s 2 1 5  2 { I ( t l  >C)[t--P2,n~(C;W)]--[1--Pl,n~(C;CO)]}I(t2>c) 

X {[Ft (c) - Yx,~ (c; w)]/[1 - P2,n~ (c; ~)1~ } d ~  ( t l ,  t2, c; w) 

= f 2{ I ( t l  > c)[1 -/ / '~,nk (c; w)] - [1 - ~'l,nk(C;W)]}I(t2 > C) 
dR 2 x [0,b] 

X {[F~ (c) - Yl,n~ (c; w)]/[1 - ~02,n~ (c; w)12}dP(t~, t2, c) 
+ r;(w) + Op(1), 

where  Ir~(w)l <_ c'5, for a cons tan t  c > 0. This  can  be seen by replac ing F2,nk(t;w) on 
each interval  Ji  by its value /~2,~k(ui;w) at  the  r ight  endpo in t  of  the  interval ,  and  by 
no t ing  t h a t  for large k 

1 1 

[ i  - [1 - _P2,~k (u/;  w)]  2 
< 25, i E L. 

On  the  intervals  Ji  wi th  i C K we use the  second inequal i ty  in (A.2).  
Le t t ing  P(]R 2 x J{) = f I(O <_ tl <_ t2)I(c C J{)dP(tl, t2, c), not ice  t h a t  }-~ieK P (  ]R2 x 

J{) ---* 0, if 5 $ 0, since P ( R  2 x J~) is of order  0 (52) ,  while the  n u m b e r  of in tervals  J~ 
such t h a t  i C K is of order  0(1/5). 

D o m i n a t e d  convergence  implies 

(A.6) 
P 

l im / { I ( t l  > c)[1 - /~2 ,nk(c ;w)]  - [1 - Fl,nk(c;w)]}I(t2 > c) 
k--.oo JR2 x [0,b] 

x {[F: (c) - -#l,n~ (c; w)]/[1 - F2,n~ (c; w)]2}dP(t:, t2, c) 
P 

~- / { / ( t l  > c)[1 -- g2(c ) ]  - [1 - F~(c)]}I(t2 > c) 
JR 2 x [O,b] 

x {[Fl(c)  - F;(c)]/[1 - F2(c)]2}dP(tl, t2, c). 

Combin ing  (A.5) and  (A.6) we ob t a in  

j f  2{I ( t l  > c)[1 - F2,nk (c;w)] - [1 - ~'l,nk(c;w)]}I(t2 > c) 
2x[O,b] 



692 ANTONIO EDUARDO COMES 

• {[F1 (c) - -Pl,nk(C;CO)]/[1 - F2,nk(C;co)12}d]Pnk(tl,t2,c;co) 
f 

= / 2{/ ( t l  > c)[1 - F2(c)] - [1 - F{(c)]II(t2 > c) 
JR 2 • [0,b] 

• {[FI(C) - F~(c)]/[1 - F2(c)]2}dP(tl, t2, c) + rk(w) + Op(1), 

where Irk(w)[ < c6. 
Since 6 can be made  arbitrari ly small, (A.3) now follows, and relation (A.4) follows 

from (A.3) and (A.1). [] 

By monotone  convergence and (A.4) we obtain 

(A.7) . ~  2{I( t l  > c)[1 - F2(c)] - [1 - FC(c)]}I(t2 > c) 

x {IF1 (c) -- F~ (c)]/[1 - /72  (c)]2}dP(t~, t2, c) 

= lim [ 2{I( t l  > c)[1 - F~(c)] - [1 - F{(c)]}I(t2 > c) 
b--*~ JR2 • [0,b] 

• {IF1 (c) - F;(c)]/[1 - F2(c)]2}dP(tl, t2, c) >_ O. 

This, however, can only happen if F{ = F1, since we have 

jfR3 2{I( t l  > e)[1 -- F2(c)] - [1 - F;(c)]}I(t2 > c) 

x {[FI(C) - F{(c)]/[1 - F2(c)]2}dP(tl, t2, c) 

fR [F, (c) - F{(c)] ---- 2 3 I(tx > c ) [ 1 -  F2(c)] [ ~  ~(-~)]2 dP(tl ,  t2, c) 

JfR I(t2 > c) -dP(tl, t2, c) - 2 3 [1 - FI* (c ) ]  [F1 ( c )  - FI* (c ) ]  [1 - F 2  ( c ) ]  2 

{s  " "[Fx(c)- F (C)]dC(c) 
= 2 [1  - Fl C)j 1 - F,2(c) 

- s - F~* (c)l [F1(r -F2_~Fl* (c)] dG(c) } 
= - - 2 ~  [Fl(C)l --F2F;(c)12dG(C)(c) - < O, 

and the lat ter  expression is strictly negative, unless FI* = F1, since by the monotonic i ty  
of F{, the monotonici ty  and continuity of F1, and the absolute continui ty of PF~ w.r.t.  
Pc ,  we have FI* ~s F1 ~ FI* (t) r F1 (t) on an interval of increase of G, which implies 

- 2 ~  [Fl(c) - F~(c)12dG(c ) < 0 

if F{ # F1, which contradicts  (A.7). 
Thus  we have proved tha t  for each w outside a set of probabil i ty zero, each subse- 

quence of the sequence /Wl,n('; W) has a vaguely convergent sequence, and tha t  all these 
convergent subsequences have the  same limit F1. This proves tha t  the sequence /01,~ 
converges weakly to F1, with probabil i ty one. Since F1 is continuous, this is the  same as 
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saying tha t  /~l,n converges with probabili ty one to F1 in the supremum distance on the  
set of distr ibution functions, i.e., 

I? kn-~oo ( lim sup [~ ' l , n ( t ) t~  - Fl(t)]  = 0 )  = 1 

or 
IlFl ,n - F111~  --~ 0 

almost surely. [] 

PROOF OF THEOREM 4.1. 
A2 = 1, we have 

Take g(x) = Ix I. Since q~ and qo coincide when A 1 = 

~ o 
H2(qn, qo) = g(c){[Sl(to - n-1/3)] 1/2 - [$1 (c)]1/2}2dc 

_n--l~3 
to-Fn-1/3 

+ f g (c ) { [S l ( to  + n-113)1112 - [S i (c)] l l2}2dc  
J to 

+ g(c){[S2(c)  - $1 (to - n -1 /a t ) ]  1/2 - [$2(c) - s l (~) ] l /~}~a~ 
_n-1/3 

to+n-t~ 3 
+ f g(c){[S2(c) - Sl(to + n-1/3t)] 1/2 - [$2(c) - $1(c)11/2}2dc 

J to 
g(to) { IS1 (to -- ~--1/3t)] 1/2 __ [$1 (to)] 1/2 }2 n -  1/3t/2 
+ g(to){[Sl(to + n-1/3t)] 1/2 - [S1(to)]1/2}2n-1/3t/2 
+ g(to){[S2(to) - $1 (to - n-1/3t)] 1/2 - [S2(to) - $1 (to)]1/2}2n-1/3t/2 

~ 2g(to) {f l ( tO)Tt--1/3t}  2 Tt-1/3t I fl(tO)_n--1/3t }2 n--1/3t 
2[St(to)]1~2 - - 7  + 2g(to) [ 2[$2(to) - Sl(to)] 1/2 2 

= g(to)f21 (to)rt-lt3s2 (t0)/{4S1 (to)[$2 (to) - S1 (to)] }. 

Then  we have 

n 1/~ inf nmx{E. ,qo[IFl ,~( to  ) - Fl( tO) l] ,E . ,q . []Fl ,~( to)  - Fl,n(to)l]} 
t~l,n 

>_ ln1/31Fl,~(to) - Fl(to)l[1 - H2(qn, qo)] 2n 

~ l n l / 3 f l ( t ~  { 1 - -  S2( t~176176 

} 
2S1 (to)[$2 (to) - $1 (to)] 

- bt exp( -a t3 ) .  

The last expression is maximized over t by t' = (1/3a) 1/a, yielding the  rninimax lower 
bound 

bt'e -1/3 = k { f  l (to)Sl (to)[S2(to) - Sl (to)]/[S2(to)g(to)]} 1/3 
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where k = (1 /4) (3e /2)  -1/3 does not depend on f l ,  F1 or g. [] 

PROOF OF THEOREM 5.1. In the proof  of Theorem 5.1 we will use the approach 
of Groeneboom and Wellner (1992) in establishing the asymptot ic  dis t r ibut ion of the 
nonparametr ic  maximum likelihood es t imator  of a dis t r ibut ion function F with case 1 of 
interval censoring data.  We show also tha t  replacing F2 by i t s  Kaplan-Meier  es t imator  
F2,~ does not affect the asymptot ic  behavior  of Fl,n since its n l /3- ra te  of convergence is 
slower than the v/-n-rate of convergence of F2,~. 

In Section 2 we saw that  Sl,~(t)  is given by the slope of the  least concave majoran t  
at Wj if t E (Yj-1, gj]- With  D = {(tl ,  t2) C N 2 : 0  _< tl < t2}, I ( D  x (u, t]) will denote  
the indicator function of the set 

{(t l ,  t2, c) C R 3 : 0 _< tl < t2 < 00, u < c < t}. 

Let A = { ( t l , t2 , c )  E R 3 : 0 < c < t l}  and B = { ( t l , t 2 , c )  C 1R 3 : 0 < c < t2}, and 
P f  = f f d P  for any probabi l i ty  measure P .  Define the processes 

and 

(l(U)Z(n • (O,t])) ~ot/fo I(t2 > C) d~n(tl t2,c) 
Wn(t)  = ~n ~, ~--~-F2~c)--~ = <t,<t2 [i--~F2i~)] 2 ' 

1 f i  I(T # > CdI(C  < t) 
n i=1 [1 F2(Ci)] ~ = Wj for t e [Yj, Yj+I), 

( I (A)_I (D_x  (_0, t]) ) fot  f r o  
Vn(t)  = ~n \ 1 -- F2(C) = <t~<t2 

1 ~ I(Tl , i  > Ci ) I (Ci  <_ t) 
= n i = l  1 - ~  = V j  for 

I(t  > c) 
-~ ~ ~2 (-~) clFn ( t l , t 2 , c) 

t 

Then the function s H V~ o W ~ l ( s )  equals the cumulat ive sum diagram in Section 2. 
Since Sl,n(t) is given by the slope of the least concave majoran t  of the cumulat ive  sum 
diagram defined by (Wn,V~) ,  we have that  if S~,~(t) _< a then a line of slope a moved 
down vertically from +c~  first hits the cumulat ive sum diagram to the  left of t (see 
Fig. 2). The point  where the line hits the diagram is the point  where Vn is farthest  
above the line of slope a through the origin. Thus,  

Sl,~(t) _< a r ~n(a) = a rgmax{V~(s )  - aWn(s )}  < t 8 

and we can derive the limit dis t r ibut ion of Sl,n(t)  by s tudying the locations of the 
maxima of the sequence of processes s ~-* Vn(s)  - aWn(s)  since 

p(nl /3[Sl ,n( tO) - Sl(tO)] ~ x) = P(sn(S1  (to) + x n  -1/3) ~ to). 

Making the change of variables s --, to + n -1 /3 t  we obta in  

 n(sl(to) + xn -1/3) - to 
= n -1/3 arg max{Vn(to + n-1/3 t )  -- (S 1 (to) ~- x n - 1 / 3 ) W n ( t o  + n -1 /3 t ) }  

{f'~ = n -1/a arg mtax I ( t l  > c)I(t2 > c) dPn( t l ,  t2, c) 
JO J JO<tl<t2 1 - F2(c) 
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Fig. 2. 

i I I 

s _ n ( a )  t 

A cumulative sum diagram and the corresponding least concave majorant. 

-- (S1 (t0) -I- Xn -1/3) 

• I(t2 > C) d~n(tl t2, c)'} 
.,o ., jo<,,<<~ [ i - ~ s  , 

, /  

: n -1/3 argmax{ IP~( I (A) I (D  x (0, to + n-1/3t])/[1 - g2(c)]) 

- S ~ ( t o ) F ~ ( I ( B ) I ( D  x (0,t0 + n - 1 / 3 t ] ) / [ 1  - F2(c)] s) 
- -  xn-1/3]Pn(I(B)I(D x (0, to -t- n-1/at]) /[1 - F2(c)]S)}. 

The location of the maximum of a function does not change when the function is multi- 
plied by a positive constant or shifted vertically. Thus, the argmax above is also a point 
of maximum of the process 

(A.8, n 2/3 {(~n-P)([I(A)Ss(c)__:I(B)SI(to)]s2(c) j I (Dx (to,to-Fn-1/3t])) 

+p ([,(A)ss(c)_= •  S~(c) 1 I(Dx (to,to +n-U3t])) 
xn_l/3]~n \( I ( g ) i (  D x ~2 (~))(t~ t O Jr- n-'/3t]) ~] } 

= nS/~(M1 + M s  + M3) .  

So the probability of interest is 

+ xn -1/3) ~_ to) = P ~(argm~x{n2/3(M1 + Ms + M3)} _~ 0)./ P(~n(Sl(to) 
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Notice that F2 is unknown and should be substituted by F2,n. We will rewrite the 
arg max of (A.8) as 

{ ([I(A)S2,n(C)-I(B)SI(to) 
ar g mta x n 2 / 3 ( ]~n -- P) [ -~222 , 7( ~ 

_ I(A)S2(C)_sT(_~)- I(B)S1 (to) ]I(D x (to,to + n-1/3t])) 

+ (I?n- P) ([I(A)S2(c)---I(B)SI(t~ I(D x (to, to + n-1/3t])) 
\ [ (c) j 

+ p([I(A)S2,n(C)zI(B)SI(t~ 
\ t (c) 

I(A)S2(c) - I(B)SI(to) ] ) - -S~2(7) ) I(D x (to,to + n-1/3t]) 

+P ([I(A)S2(c)-I(B)SI(t~ I(D• -S~(-~) n-1/3t])) 

( [ 1  ] ) 
- xn-1/3(l?n - P) I(B) S~,-~(c) S~c) I(D • (to,to + n-1/at]) 

-xn-1/ap~(I(B)I(Dx(t~176 

-xn-1/3P I(B) ~2n(c ) S~2(c) 

(A.9) = argmaxn2/3{I1 + I2 + I3 + I4 + I5 + I6 + It}. 
t 

We will now analyze each of the terms in the arg max expression separately. For term 
/1 we have 

( [  1 1 .]i(D• ) n2/a(en - P) I(tl > c) S2,n(C) $2(c) 

+ n2/3(Fn - P) I(t2 > c)Sl(to) ~,n(C ) $2(c ) 

and each term converges uniformly in probability to 0. In fact, 

sup n2/a(P~- P) I(A) g2,~(c) $2(c) O<t<to+M 
( [ 1  1 

-+- o<t<to+MSUp n2/a(]~n - P) I(B)SI(to) ~,7(c ) S~(c) 

x I(D x (t0,t0 + n-1/at])) 

m S2 (C) -- $2,~ (C) ] 
= 0<t<to+MSUp nl/2(F~ -- P) nl/6I(A) ~2(c~2~(c) J 
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+ sup 
O<t<to+M 

S /C ~llt~ < n l /21 lg2 ,n (C) - -  JH0 

- S2,~(to + M)S2(to + M) 

n l l 2 1 1 ~ , n ( C  ) - s~(~)ll~)O +M 
+ 

S~,~(to + M)ST(to + M) 
= Op(1)Op(1) + Op(1)Op(1) 

since the rate of convergence of $2,~ is x/~. 
Cons ide r /2  now. Taking 

>< I(c C (to, to -~- n-1/3t])) 
/ 

nl/2(~ n _ P) (n l /6 i (B)S l ( to)  S~(c)s~(c)S~,n(C) S~,n(C)] 

x I(c e (to, to + n-I /at]))  
\ 

nl/6Sl(tO)(]~n -- P)I(c  E (to, to + n-1/3t]) 

nl/6(Fn - P)I(c  E (to,to + n-1/3t]) 

fn,t(tl, t2, o) ---- nl/6{[I(A)S2(c) - I(B)S1(to)]/S22(c)}I(D • (to, to + n-1/3t]) 

and Fn(tl, t2, c) = (nI/6/52)I(D x (to, to § n-I/at]) we have, by Theorems 2.11.23 and 
2.7.11 in van der Vaart  and Wellner (1996), 

n 2 / a ( ] ] : D  n - -  P)({[I(A)S2(c) - I(B)S1 (to)]/S~(c))I(D • (to, to + n-1/at])) 

converging to a mean zero Gaussian process with covariance function (for 0 < s < t) 
given by 

(n2/3/nl/2)2E[E({[I(A)S2(C) - I (B)S1  (to)]/S2(C)} 2 

x I (D  x (to + n-1/38, to -~ n-I/at]) I C)] 

~- nl /3E[({[S2(C) - SI (t0)]/~2(C)}2S1 (C) 
+ [SI(to)/S2(C)]2p(T1 < C < T2))I(C e (to + n-I /as ,  to + n-I/at])] 

rto+n-1/at 
= n 1/3 / - si(to)]/s (u)}2si(u) 

Jto+n-1/as 
+ [ S i ( t o ) / S ~ ( u ) ] 2 [ S 2 ( u )  - S i ( u ) ] ) g ( u ) d u  

nl/3({[S2(to) - -  Sl(to)]/S~(to)}2Sl(to) 
+ [SI (to)/S2(to)] 2 [S2(to) - SI (to)])g(to)n-I/31t - sl 

= { [ S 2 ( t o )  - S i ( t o ) ] S i ( t o ) [ S 2 ( t o )  - S l ( t o )  + Sl(to)]g(to)n-I/31t - sl}/S4(to) 

~- [$2 (to) -- S1 (t0)]S1 (to)g(to)It - s l / s a ( t o ) .  

For t e r m / 3  we have 

[I(A)S2,n(c) - I(B)S1 (to) 

_ I(A)S2 (C)_s~(_~)-/(B)Sl (to)]j I (D  • (to, to ~- n-1 /3 t ] ) )  
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[ I(A) I ( A )  i (Dx( to , to+n_l /a t ] )  ) =n2/aP Lg~--~(~) S2(c) 

\ [  S~,n(e) $22(c) J I (Dx( t~176  " 

For the first term in the sum above, assuming $1 and g continuous, we have 

rto+n-~/at 
< n2/a/  i {  IS2(~) - ~2,,,(c)1 
- .<o - ~ . < ~ . < ~ 2  ~2, . ( to  + n-llat)s2(to + n-I/at) dF(ti, t~)dG(c) 

rto+n-1/at 
= n2131 $ 1 ( c ) 1 S 2 ( c )  - ~=,n(c)l dG(c) 

"to S2 ,n ( tO  + n-llat)s2(to + n-I/at)  

< n~/a IISI(t)g(t)ll~~ - S~,n(t)ll~ô ~o+M 
S2,~(to + n-llat)s2(to + n-llat) 

- n21aO(n-lla)op(n-ll2) = Op(n -116) = op(1). 
- -  S2 ,n ( tO  -{- n-1/at)s2(to ~- n-1/at) 

Similarly, for the second term, assuming $2 continuous, 

([ (1 1)] ) 
n21ap I(B)Sl(to) ~,7(c ) S~(c) I (D  x (to, to + n-1/at]) 

. , o+n- l ,~ ,  IST(c) - 9L<(c) l  
n2/3 ]to iL<t= S22,n(t 0 ~'n'~'l-ll~t)S~2(to ~ n-1/at) dF(tl't2)dG(C) 

fro-t-n-liar = n2/3 / S2(c) IS~(c) - ~ . ~ ( c )  l 
"to ~22,n(tO + n_ll3t)S~(to + n_llat  ) dG(c) 

n213 ]IS2(t)g(t)II to+M < ~~ - S~,n(t) to 
- ~2,n(t 0 + n-I/at)s~(to + n-1/at) 

= n2130(n-lla)Op(n-ll2) : Op(n -1/6) ~- Op(1) .  

S2,~(to + n-I/at)s2(to + n-I/at) 

The limit of t e r m / 4  can be easily calculated as 

n213E[E({[I(A)S2(C) - I(B)Sl(to)]lS22(C)}S(D x (to, to + n-llat]) I C)] 

= n213E{[SI(C)S2(C) - -  S2(C)SI(to)]I(C e (to, to + n-l lat]) lS2(C)} 
[.to~-n-1/at 

=- n2131 { [ F l ( t o )  - Fl(U)]g(u)lS2(u)}du 
J to 

~__ n2/a l - ( Fl(to) --  Fl(to + n-I lat)  
- 2 \ -S~to ~n--f/-~t) ] g(to + n-I/at)n-1/at 

-n213 fl (to)n-llatg(to)n-Uat/[2S2(to) ] -_ - f l  (to)g(to)t2/[2S2(to)]. 
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The uniform convergence in probabil i ty to zero of terms /5 and /7 in (A.9) have been 
established (up to the constant  S](to)) in the evaluation of the limit of term Ix and in 
the evaluation of the limit of the second part  of t e r m / 3 ,  respectively. 

And finally the limit behavior of te rm 16 is calculated below. 

- n 2 / 3 x n - 1 / 3 F n ( I ( B ) I ( D  • (to, to + n-1/3t])/S~(c))  
= -n213xn- l l3 (p~  - P ) ( I ( B ) I ( D  • (to, to + n-Xl3t])lS2(c))  

- n 2 / 3 x n - 1 / 3 p ( I ( B ) I ( D  x (to, to + n-X/3t])/S2(c)) 

= - - n  1/2 X(~ n - P ) ( i ( B ) I ( D  x [to,to + n-1/'4' _t j ) /S2~c)  ) ,ltx~2 

- nX/3xP(I (B)I (D x (to, to + n-1/h])/S~(c)) .  

Taking Fn(t l , t2 ,  c) = x I ( D  x (to, to + n-1/3t])/(n62),  Theorems 2.11.23 and 2.7.11 in 
van der Vaart and Wellner (1996) imply tha t  the first part  of the sum above converges 
to a mean zero Gaussian process with covariance function given by 

x 2 ( n 2 / 3 / n ) E ( E { [ I ( B ) / S ~ ( C ) ] 2 I ( D  x (to + ?'t-1/38, to q- n-U3[]) [ C}) 

= ( x 2 / n l / 3 ) J ~ [ S 2 ( C ) I ( C  �9 (to -Jr ~t-1/38, to q- ~t-1/3t])/S42(C)] 
to+n-i~3[ 

= (x2/n1/3) f [g(u)/S32(u)]d u ~_ x2n_2/3 g(to) I t  - s l  
J~o+~-"~  s~(to) 

which converges to 0 as n --~ oo. The second part  gives 

-- x n l / 3 p ( I ( B ) I ( D  x (to, to + n-1/3t])/S~(c))  

= - x n l / 3 E { E [ I ( B ) I ( D  x (to,to + n-1 /3 t] ) /S~(C)  [C]} 

rto+n-1/3t 
: --XTt 1/3 / [S2(u)g(u)/S~(u)]du 

J to 

~- - x n U 3  g( to) tn-1/3/S2(to)  = -xg( to) t /S2( to) .  

Exercise 3.2.5, p. 308, in van der Vaart  and Wellner (1996) states tha t  the random 
variables arg maxt{a~( t )  - bt 2 - ct} and (a/b) 2/3 arg maxt{~( t )  - t 2} - c/(2b) are equal 
in distribution, where {l~(t) : t C I~} is a s tandard  two-sided Brownian motion with  
1~(0) = 0, and a, b and c are positive constants.  Thus,  making a = {Sl(to)g(to)[S2(to) - 
Sx(to)]/S3(to)} 1/2, b = fx(to)g(to)/[2S2(to)] and c = g(to)x/S2(to) we have 

p(nl /3[Sl ,n( to)  - Sl(t0)] _< x) -- P ( ~ ( S l ( t o )  + xn  -1/3) <_ to) 

= P (argmtax{n2/3(M1 + M2 + M3)} <_ 0) 

--* P (argmtax{a~(t )  - bt 2 - ct} <_ O) 

= P ((a/b)  2/3 argmtax{~(t  ) - t 2} - c/(2b) <_ O) 

- f l ( to)Sl( to)[S2(to)  - Sx(to)] 

which implies tha t  

p (rt l /3 S l , n ( t o ) -  Sl( to)  ) P ( 2 Z  < z). D 
{f l( to)Sl( to)[S2(to)  - Sl(to)]/[2S2(to)g(to)]} 1/3 <- z -~ _ 
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