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A b s t r a c t .  Observation of lifetimes by means of cross-sectional surveys typically 
results in left-truncated, right-censored data. In some applications, it may be as- 
sumed that  the truncation variable is uniformly distributed on some time interval, 
leading to the so-called length-biased sampling. This information is relevant, since it 
allows for more efficient estimation of survival and related parameters. In this work 
we introduce and analyze new empirical methods in the referred scenario, when the 
sampled lifetimes are at risk of Type I censoring from the right. We illustrate the 
method with real economic data. 

Key words and phrases: Censoring, cross-sectional, length-biased sampling, station- 
arity, truncation. 

1. Introduction 

Observat ion of lifetime da ta  is often affected by sampling issues, such as t runca t ion  
and censoring. Much l i terature  is devoted  to the problem of es t imat ing a d is t r ibut ion 
funct ion (df) from lef t - t runcated and r ight-censored data .  Under  le f t - t runcat ion  and 
right-censoring,  one observes the r andom vector  (T, Z, 6) iff Z > T. Here, Z ---- min(Y, C) 
and 6 -- l { y < c } ,  Y is the lifetime of u l t imate  interest,  C is the r ight-censoring time, and 
T is the t runca t ion  time. 

P u t  F for the df of Y and in t roduce the associated cumula t ive  hazard  

L Y F(du )  
AF( ) = 1 - F ( u - ) "  

P u t  (T~, Z~, 6~), 1 < i < n, for independent  observations equally d is t r ibuted  as (T, Z, 6) 
condit ional ly on Z ~ T. Under  the model  assumption 

(1.1) Y independent  of (T, C)  

the  condit ional  nonparamet r ic  maximum-l ikel ihood es t imator  (NPMLE)  of AF(y)  is 
known to equal 

i ~ 64 
AF, n(y)  = n i=1 Cn(Z i )  l{z~<y}, 
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where 
n 

1 E I{T~<u<Z~}" = _ _ 

i = 1  

The (unique) empirical df associated to AF,~ is given by 

(1.2) Fn(y) = 1 _ 1~ [1 5il{z~<_y}] 
i=1 nCn(Zi) ' 

the NPMLE of F under (1.1). See Tsai et el. (1987), Lai and Ying (1991), Gijbels and 
Wang (1993), Zhou (1996), and Zhou and Yip (1999) for further motivation and results 
on these empiricals. Without censoring, the study of Fn goes back to Woodroofe (1985) 
(see also Stute (1993)). Without truncation, Fn reduces to the Kaplan-Meier estimator 
(Kaplan and Meier (1958)). 

Wang (1991) showed that (1.2) is indeed a conditional NPMLE, in the sense that the 
function that Fn maximizes is the conditional likelihood that would have been obtained 
had each subject's censoring time been available even had failure occurred before cen- 
soring. The referred paper also provides some interesting discussion on the limitation as 
well as the interpretation of assumption (1.1). In contrast, the unconditional approach, 
pioneered by Vardi (1982), proceeds under (partial) knowledge on the truncation distri- 
bution. This information on the truncation variable is available in special applications. 
Conditional and unconditional approaches for estimating F under left-truncation are 
reviewed and well-discussed in Asgharian et al. (2002). 

As mentioned, in some applications, the df L of the truncation variable T may be 
assumed to take a given form. Indeed, some authors have found motivation in renewal 
processes, Economics, and Epidemiology, for the stationarity (or length-bias) assumption 

L .-~ Uniform(0, TL) 

for some TL > 0. See for example Winter and Fbldes (1988), Lancaster (1990), Wang 
(1991), and van Es et al. (2000). The connection between left-truncated data  and cross- 
sectional data  (as considered by Wang (1991)) is clearly seen by noting that, in applica- 
tions with cross-sectionM sampling, the truncation variable will be defined as the time 
elapsed from onset to the sampling date. More details are discussed below. 

Knowledge of L is relevant, since the NPMLE of F is no long.er (1.2) and estimates 
more efficient than Fn become available (Wang (1989); de Ufia-Alvarez (2001)). When 
(0, ~-L) contains the support of F,  it is easily seen that  the df of Y conditionally on Z >_ T 
equals the so-called length-biased df (of F) 

// (1.3) F*(y) = P(Y < y I Z > T) = ~ t F  1 uF(du), 

where #F denotes the expectation of Y (assumed to  exist). Derivation of (1.3) requires 
not only the uniformity of L, but also some extra assumption such as the independence 
between Y and T, together with the restriction P(C _> T) = 1. The nice thing regarding 
(1.3) is that  it leads to the "reverse equality" 

- -1  

(1.4) F(y) : #F ~oYU-lF*(du), #F = [/u-lF*(du)] 
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Then, estimation of F is easily introduced by means of an appropriate estimator for its 
length-biased version F*. 

In the uncensored case, estimation of F* is given by the ordinary empirical df of the 
recorded lifetimes, say F~, and the natural estimator of F becomes 

(1.5) FV (y) = f~ u - l  Fn(du) 
/ u-11   (du) ' 

see Vardi (1982, 1985) and Horvs (1985). However, under right-censoring estimation 
of F* is no longer such a simple issue. Since, conditionally on Z > T, each lifetime will 
heavily depend on its corresponding censoring time (just because Y/ and Ci will share 
the truncation or backwards recurrence time Ti), Kaplan-Meier estimator based on the 
available (Zi, 5i)'s will not converge to F*. 

In this work we propose an extension of (1.5) under censoring from the right. We 
consider a cross-sectional sampling scenario, as defined in Wang (1991). The truncation 
variable is the time elapsed from onset to the sampling point, so individuals failing "too 
soon" cannot be observed. The new estimator is derived in the special case of Type 
I censoring (see Lawless (1982)), that  is, the case in which C = T + T for a known 
fixed positive constant T. This ~- represents the duration of the follow-up period after 
recruitment. Note that  this model is suitable when censoring is uniquely provoked by 
the end of the follow-up. This happens to be true in many data sets; Section 2 reports 
an application with unemployment data for which the censoring variable is of the given 
form. We mention that  our proposal is also suitable for the renewal process described 
in Winter and FSldes (1988), who did not incorporate the length-bias relation under 
right-censoring in the construction of their estimator (thus resulting in less efficiency). 

The organization of the paper is as follows. In Section 2, the new estimator is 
introduced and illustrated with real data. Section 3 is devoted to the main theoretical 
results concerning the proposed estimator. Consistent estimation of the limiting variance 
is given, and efficiency of the new empirical relative to that  of (1.2) is discussed. In 
particular, it is shown that  the proposed estimator has asymptotic variance less than 
that  corresponding to (1.2). Comments on the extension of the estimate in the presence 
of covariates are briefly reported in Remark 3. Proofs are deferred to Section 4. Finally, 
Section 5 summarizes the main conclusions of the paper. 

Asgharian et al. (2002) derived the maximum-likelihood estimate of F and the 
accompanying aysmptotic results. These authors based their proposal, rather than on 
(1.1), on the model assumption 

C T independent of (Y - T, T) conditionally on Z _> T. 

Uniformity on T was also assumed. The estimate in the referred work has no explicit 
form, and must be obtained via an iterative algorithm. This results in complicated 
asymptotics. For example, uniform strong consistency is established under a condition 
which is difficult to interpret. Furthermore, adaptation of the theory to the covariate 
setup is unexplored, and does not seem to be an easy task. 

2. The estimator 

2.1 Definition 
Put  TF for the upper bound of the support of F.  Assume that  
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(i) Y is independent of T; 
(ii) T ~ Uniform(0, TL) for some "rL > TF; and 

(iii) C = T + T .  
Assumption (i) is typical in left-truncated scenarios. Stationarity (or length-biasing) 

is incorporated in the model by means of assumption (ii). Finally, (iii) states a Type 
I censoring scheme. The  uncensored case is obtained for ~- = c~ (no limit in following- 
up). Note that ,  as mentioned in Introduction, under (i)-(iii) the lifetime df F and the 
t runcated df F* are connected through the length-bias relation (1.3), respectively (1.4). 
So, rather than  on F ,  we initially focus on the problem of estimating F*. 

Introduce the function 

(2.1) p(y) = El5 I Y = Y,Z >_ T] = P(5 = 1 ] Y = y ,Z  > T). 

Under (i)-(iii) it is easily seen that  this function satisfies 

T 
p(y) -= l{y<~} + yl{y>~}. 

In particular, the probability of uncensoring equals 1 for the recruited individuals with 
lifetimes taking values on [0, ~-], and decreases towards zero as the lifetime gets larger. 
This is in accordance with the assumed truncation-censoring scheme, under which life- 
times shorter than ~- cannot be censored. The function (2.1) will play a crucial role in 
the following. 

Write 

F*(y) -- E[I{y<y} , Z > T] = E [E(5 ' Y 'Z  >- T)I{y<Y} I Z > T ] _  _ p(y) - 

= E [  51{Y<-y} >T] [51{z_<y} T] 

These equalities suggest estimating F* (y) through 

l~-~Si l{z i<Y}-~-~Wil{z~<y},  
F*(Y) = p(Z ) 

where 
5iZ  

Wi = np(Zi)Si = nl l{z~<~}_ + --l{z~>~},nT_ 1 < i < n. 

Note that ,  for 0 _< y < T, F*(y) takes the form of the ordinary empirical df of the Zi's. 
In other words, the weight at tached by F* to those Z{ falling on [0, ~-] is just  1/n. This is 
expected, since (by (iii)) censoring cannot act on that  t ime interval. On the other hand, 
the weight at tached under F* to each recorded time satisfying Zi > T equals 5iZ{/n'r. 
As a result, F* does not jump on the censored times; also, the jump size of F* at the 
uncensored times exceeding ~- is proportional to Zi. An heuristic explanation for this 
can be found in the fact that ,  under (ii) and (iii), the censoring variable turns out to be 
uniformly distributed on (T, T + TL). 

Now we use (1.4) in order to introduce 

f :  U-- I~ .  (du) n 
(2.2) F ( Y ) =  f u-l"F*(du) --EWil{z'<v}'i=l 
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where 

wi = wiz l l < i < n .  
Ejn__l WjZj  1' 

Clearly, F is a proper empirical df. In Theorem 3.1 we show its consistency under (i)- 
(iii). The curve (2.2) jumps at the uncensored data, but  the censored ones receive no 
mass. The normalizing factor ~F ---- [22=1WjZj-1] -1 can be regarded as an estimator 

for the mean lifetime PF. We see that the weights of F are obtained from those of F* 
by including a factor - -1 p F Z  i ; this is because of the length-biasing, which provokes an 
overree~presentation of relatively large times in the sample. An alternative expression for 
the Wi's is given by 

] w~ g~ 1 = - -  l{z~<~}+ l{z~>~} , 1 < i < n .  
n 

We mention that the Wi's can be computed without knowledge on the truncation times 
(the Ti's). Of course, assumption (ii) is responsible for this. 

In the uncensored situation (~- = oo), F* reduces to the ordinary empirical df of 
the recorded times, and hence /? coincides with (1.5). In such a case, F is known to 
outperform Fn (this is discussed in de Ufia-/~lvarez (2001)). In the following section, 
we show that this property holds true under Type I censoring, and several large sample 
results on F are presented. Now, we give an illustration of the practical possibilities of 
this estimator by means of real data  analysis. 

2.2 Illustration 
For illustration purposes, we consider data concerning unemployment spells (in 

months) of 1009 Spanish women. The observations correspond to married women living 
in Galicia, a small geographic region at the Northwest of Spain. These data, obtained 
from the I. N. E. (the Spanish Institute for Statistics), were collected by means of in- 
quiries at the individuals' homes from 1987 to 1997. The sampled unemployment spells 
correspond to those women being unemployed at the inquiry time, which varies from indi- 
vidual to individual. In Economic literature, this is typically referred as stock sampling. 
As discussed in Introduction, this kind of cross-section results in left-truncation. Here, 
the truncation variable is defined as time elapsed from beginning of unemployment to 
the inquiry date. When the unemployed population size may be assumed to be constant, 
suitable modellization is given by the length-bias model (1.3), see Lancaster (1990). Be- 
sides, because of the design of the inquiries, each individual was followed during no more 
than 1.5 years. Indeed, right-censoring was of Type I, with T = 18 months. 563 spells 
were censored at the end of the period of observation, giving a censoring percentage of 
56%. 

In order to check the stationarity assumption that leads to (1.3), we have com- 
puted the conditional NPMLE of the truncation df, see Wang (1991). This estimator is 
displayed in Fig. 1, and strongly suggests the uniformity of the truncation distribution. 

Figure 2 provides the survival function associated to estimator (2.2) for these 1009 
data. 95% pointwise confidence bands are included. These bands are computed by using 
the asymptotic normal distribution of F ,  resulting in intervals of the form 

1 - F(y) 4- 1 96 3(y) " 
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Fig. 1. 
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NPMLE of the truncation distribution for the Galician unemployment data. 
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Fig. 2. Estimated survival function (solid line) for the Galician unemployment data, with 95% 
pointwise confidence bands (dashed lines). 
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Fig. 3. Estimator of the unbiased survival function (solid line) and Kaplan-Meier survival 
curve (dashed line) for the Galician unemployment data. 
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where 3(y) stands for the plug-in type estimator of the limiting standard deviation of 
F(y)  to be introduced below, see Section 3. 

A major mistake that has occurred several times by users of statistics is to naively 
ignore the length-bias factor. In Fig. 3 we depict both the estimator for the unbiased 
survival function and the Kaplan-Meier estimator. Note that the latter estimate does not 
cope with the length-bias issue. Hence, the Kaplan-Meier curve severely overestimates 
survival on the entire range of unemployment durations. This figure illustrates in a 
practical framework how misleading a naive statistical analysis can be. 

3. Main results 

In this section we present some asymptotic results for the estimator F defined in 
(2.2). These results guarantee the strong consistency of F and of related curves, such as 
the empirical mean residual lifetime function (introduced below). Also, an asymptotic 
representation of (2.2) as a sum of independent, identically distributed random variables 
is easily obtained, the remainder being negligible at an in-probability rate n -1. This rep- 
resentation immediately gives (a) the asymptotic (normal) distribution of (2.2) and (b) 
its limit variance. A plug-in type estimator for the variance is introduced. Comparison 
with the limit variance of (1.2) is performed. Finally, we establish the weak convergence 
of the empirical process associated to F.  Throughout this section, hypotheses (i)-(iii) 
above are assumed to hold. See Section 4 for the proofs of the included results. 

THEOREM 3.1. For each y, we have 

F(y) -~ F(y) with probability 1. 

ion. 

A uniformity argument, immediately gives the following result. 

COROLLARY 3.1. We  have 

sup IF(y) - F(y)[ -~ 0 with probability 1. 
O~_y~'r F 

Importantly for applications, Theorem 3.1 may be generalized in the following lash- 

THEOREM 3.2. For each F-integrable ~, we have 

f ~dF  ~ f ~dF with probability 1. 
J J 

Theorem 3.2 ensures the strong consistency of, e.g., the empirical mean residual 
time: 

e(y) 1 - ~'(y) -~ E [ Y -  y I Y >- Y] 

with probability 1. Now, introduce the function 

~~ ---- u-l[l{u<_y} - F(y)].  
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THEOREM 3.3. Under f u-lF(du) < oc, we have 

_ # F  i ~  1 5~ n p(Z~)Zi [l{z~_<y} - F(y)] + Rn(y), 

where Rn ( y  ) -- O p ( / t - 1 ) .  

Representation in Theorem 3.3, together with the Central Limit Theorem, gives the 
asymptotic distributional law of the estimate: 

v/-n[F(y) - F(y)] --~ N(0, ~r2(y)) in distribution, 

where 

aS(y) -- #2F Var [p( ~--~l)zl (l{zl <_y} - F(Y) ) ] 

fo y F(du) / F(du) = , F [ 1 -  2F(y)]  + ' F F 2 ( Y )  

In the uncensored case, p -: 1 and we obtain the variance in Vardi (1985). We see that the 
function a2(.) depends on F and T, being independent of the particular choice of TL(> 
TF). At first sight this could be surprising, because the truncation proportion depends on 
the T L value, and an increasing truncation percentage should result in greater variance. 
But note that  the truncation issue results in a smaller sample size, so the standard 
error of/~(y) increases as the truncation proportion approaches to one. Explicitly, under 
(i)-(iii), censoring and truncation probabilities are given by 

1// pc -- - -  (1 - F(y))dy -- (y - T)F(dy) and pt = 1 - it-if-F, 
~F ~tF JT TL 

respectively. 
Figure 4 reports three variance curves as(.) for the special df F(y) = y21{0<y<l} 

and ~- values 1, 2/3 and 1/3. For T L = 1, we get 33% of truncation and censoring 
percentages 0% (~- = 1), 15% (T = 2/3) and 52% (T ---- 1/3), but the figure remains valid 
for each T L > 7- F. Note that  the case ~- = 1 (no censoring) gives the asymptotic variance 
for (1.5). As expected, the variance a2(y) increases with censoring. Recall also that a 
larger value of ~- implies more following-up after recruitment. 

Estimation of a 2 (y) is obtained when replacing the unknown df F by the estimator 
F.  This gives 

?(du) ?(du) 
= - 27(y)]  f + ] 

J0 

Note that  Theorem 3.2 guarantees consistency of ~2(y) under o-2(y) < oc. 
Now, set a2(y) for the limit variance of (1.2). The following result ensures that  

efficiency is gained when including the model information (ii) and (iii) in the construction 
of the estimate. 
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Fig. 4. Asymptot ic  variance of F as a function of the F-quantiles,  for the special case 
F ( y )  = y21{0_<y<l } and T values 1 (dotted line), 2/3 (crosses) and 1/3 (squares). 

THEOaEM 3.4. For each y, we have a2(y) _< a~)(y). 

A quantification of how much efficiency is gained through the use of F(y)  is given 
by the asymptotic efficiency of (1.2) relative to /? (y) ,  which is defined as 

 2(y) 
ARE(Fn(y) ,  F(y)) - a~(y)" 

As claimed by Theorem 3.4, this quantity does not exceed the unity. The ARE,  as a 
function of y, depends on the special form of F and on the following-up period duration 
7-. But, interestingly, the A R E  is not influenced by the particular choice of ~-L, and then 
situations with different truncation levels may result in the same relative efficiency rate 
(similarly as above for a2(.)). 

We have computed the relative efficiency values for the case in which F(y) = 
(y/TF)21{O<y<_.rv} and 7- < T F .  This example is important because it shows that, in 

special situations, using ~'(y) instead of Fn(y) may result in much more efficiency. In 
this example, the truncation proportion is given by 1 - 2/3TL. Also, it can be seen that 

lira ARE(Fn(y) ,  F(y)) - 1 - T/TF, 
y---~TF 2 

and the relative performance of (1.2) at large quantiles gets poorer as 7 --~ ~-F. Table 1 
reports A R E  values for several choices of T/T F (approaching to one) and selected large 
quantiles of F (75, 85 and 95%). 

Representation in Theorem 3.3 is useful for establishing weak convergence too. 
Clearly, by Theorem 3.3 and the multivariate Central Limit Theorem, the finite di- 
mensional distributions of the process v/n[F(.) - F(.)] converge to a multivariate normal 
distribution, with covariance structure as that  given below. In Section 4 we prove that 
this process is tight. 
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Table 1. ARE values for the model F(y) = (y/TF)21{O<_y<_~-F}. We consider large quantiles 
of F (75, 85 and 95%) and several r a t e s  TIT F. 

QUANTILES 

75% 85% 95% 
0.75 .2902 .2052 .1476 

T/TF 0.85 .3686 .2049 .1088 
0.90 .5111 .2296 .0921 
0.95 .6834 .4813 .0823 

THEOREM 3.5. Assume that F is continuous. Under f u- lF(du)  < co, we have 
that v/-n[F(.) - F(.)] converges in distribution to a zero-mean Gaussian process with 
covariance structure given by 

[l{u_<y} - F ( y ) ] [ l { u < z }  - F(z ) ]  F ( d u ) .  
z) = , F  p(u)  

Remark 1. An important question is that  of the bias of F'(y). Derivation of 

ElF(Y)] is not obvious, because the denominator f u - l F * ( d u )  appearing in (2.2) is 
a random quantity. For the best of our knowledge, this problem has not been addressed 
so far even in the uncensored case, in which the proposed estimator reduces to (1.5). In 
de Ufia-/klvarez and Saavedra (2004), some simulations show that  (1.5) tends to slightly 
underestimate the target F(y),  the bias being more serious for small quantiles. This 
makes sense, since the truncation issue results in less information on these points. 

Remark 2. Under (i)-(iii), the NPMLE of F* is the maximizer of 

~=~{[dF*(Z~)]6~[f>z dF:(r)]l-6~ I �9 

The NPMLE of F is obtained from this maximizer via equation (1.4). Asymptotic 
properties of this estimator were investigated by Asgharian et al. (2002). Numerical 
methods are required in order to compute the NPMLE. As mentioned in Introduction, 
our moment-based approach has some advantages when compared to the maximum like- 
lihood criterion. The simple explicit form of estimator (2.2) results in nice asymptotics. 
Direct comparison to the purely nonparametric estimator in Tsai et al. (1987) for left- 
truncated right-censored data is possible, see Theorem 3.4. Besides, consistent plug-in 
estimation of (asymptotic) standard errors is easily introduced. A deeper comparison 
between the NPMLE and (2.2) would be of great interest, but that  is out of the scope 
of the present work. 

Remark 3. In many practical cases, a p-dimensional covariate vector X is attached 
to each individual. In this framework, efforts usually focus on the estimation of the 
(p + 1)-variate df Fx,y(x ,y)  = P (X  <_ x, Y <_ y). When (X ,Y )  is independent of the 
truncation variable, a simple extension of model (i)-(iii) and estimate (2.2) is possi- 
ble. The extended model is particularly useful for regression analysis, when the (time) 
response is subject to length-biasing and Type I censoring. In a technical report, de 
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Vfia-A1varez (2003a) showed that weighting through the Wi's in (2.2) allows for consis- 
tent estimation in the presence of covariates. In the uncensored case, related problems 
under general sampling bias were investigated in de Ufia-A1varez (2003b). 

4. Proofs 

Since Theorem 3.1 can be regarded as a particular case of Theorem 3.2, we state 
the proof for the latter result. 

PROOF OF THEOREM 3.2. Apply the Strong Law to get 

f u-'~(u)_~*(du)--, f u-l~(u)F*(du) 

with probability 1, provided that the limit exists. But  the length-bias relation (1.3) gives 

/u-~p(u)F*(du) = #F f czdF, 

so F-integrability of ~ (together with the existence of PF) is enough for consistency 
purposes. Similarly, 

/ u-lF*(du) ----~ / u-lF*(du) 

with probability 1, and 

f ~dF ~ u-l~~ (d~) 
f u_~ ~.(du) ~ f u_~ F.(du) 

holds almost surely. [] 

PROOF OF THEOREM 3.3. Direct algebra gives 

where 

The Central Limit Theorem ensures 

f u-Iv~(u)F * (du) = / qzdF 

v~ [.#L F 2-~]= v~ [fu-lF*(au) - fu-lF*(du)]=Op(1) 

under fu-eF*(du) < o~. This condition is equivalent to fu-lF(du) < co. The exis- 
tence of f u-lF(du) together with the delta method give 

If: f: 
v/-n[~'(y) - F(y)] = v ~  [ 7 ~ ( ~ u )  - iu_lF.(du) = OR(l) ,  

and hence the theorem follows. [] 
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PROOF OF THEOREM 3.4. The  asymptot ic  variance of (1.2) is known to equal 

~0 y H~(du) a2(y) = [1 - F(y) ]  2 C(u)  2 , 

where 

H~(u) -- P(Z ~ u,5= l I Z > T )  

Now, under  (i)-(iii) it can be checked that  

'0 u 

H~(u) = I.I,F 1 p(v)vF(dv) 

and C(u) = P(T < u < Z IZ > T). 

and C(u) = #~lp(u)u[1 - F ( u - ) ] .  

w-ldF. 

Hence, 

~o y F(du) cr2(y) = pg[1 -- F(y) ]  u w(u)[1 - F ( u - ) ]  2' 

where we put  w(u) = p(u)u. Write 

_ 

- - (1 -F(y ) )2[~oY(1-F) -2w- ldF- j foYW- ldF]-  F2(y)  ~y ~ 

r o Y ( 1 _  F)_2w_l d F _ ~oY W_l dF = ~0 y F(2w(1-_F)dFF) 2 

1 [Y  F ( 2 -  F)dF 
> w--~  Jo (1 F )  2 

(because w is nondecreasing) 
F (y) 

w(y)(1 - F(y))" 

But  

j~y o o  

~tFl(o.02(y ) __ 0.2(y))  > F2(y) (1  - F(y)) _ F 2 ( y  ) w_ld F 
- w ( v )  

> F2(y) (1  - F(y)) F2(y)  dF 
- w ( y )  

(because w is nondecreasing) 

It  follows 

= 0  

as we wanted  to show. [] 

PROOF OF THEOREM 3.5. We will show tha t  the  process v/-~[F(.) - F(.)]  is tight. 
Write 

v~[F(y) - F(y)] -= ~tFv/-n [~oY u-l F* (du) - ~oY U-l F* (du)l 

+ V~[fiF -- #F] u-lF*(du) �9 
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Since v/~[fiF - #F] is bounded in probability and y ~ J'o v u - l F * ( d u )  is continuous, the 
second term is tight. Since fiF consistently estimates pg ,  it suffices proving tightness for 

/o } = n_l /2  fSi l{z~<y} u _ l F . ( d u  ) 

For Yl -< Y -< Y2, 

[ . \  i=1 / 

where 

5il{yl<gi<-Y} ~yY 
ai -- p(Zi )Zi  u - lF* (du ) '  

1 

Since E(a i )  = E(13i) = O, we get by Cauchy-Schwarz 

E n -1/2 ai n -1/2 13i < n-U[nE(a~j3]) + 3n(n - 1)E(a2)E(/312)]. 
i=1 

Now, since 

we get 

a l  2 < 2 / 511{y, <z~_<u} 
- ; ( z 1 ) 2 z ~  

51 l{u< z~ <y~} 
91 ~ <_ 2 p(Zl)2Z~ 

+ u - l F * ( d u )  , 

+ u - l F * ( d u )  , 
Y 

{[E E ( ~ )  < 4 ~-lF*(du) 1 P(~)-I~-2F~(du) 
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Set r (Y) = f :  u - i F *  (dzt) and r = fY  P(U) - 'u -2F  * (du), which exist under assump- 
tion f u - lF (du )  < oo. We have 

E[IPn(Y) - P n ( Y l ) 1 2 1 p n ( Y 2 )  -- P n ( y ) [  2] ~_ K [ • I ( y 2 )  - r  (yl)]  2 -+- 12[r - r 2, 

where 
K = 32r + 16r 2. 

Since r and ~92 are nondecreasing, continuous functions, the result follows from Theorem 
15.6 in Billingsley (1968). [] 

5. Conclusions 

This work presents new empirical methods for estimating survival and related pa- 
rameters from cross-sectional lifetime surveys. This kind of surveys typically suffer from 
left-truncation and censoring from the right. The proposed estimators are based on a 
stationarity (or length-bias) assumption, that  is, the uniform distribution is assumed to 
hold for the truncation variable. In this case, simple empirical methods can be proposed, 
provided that censoring is of Type I (as it happens in many data sets). In applications, 
stationarity may fail when the period of the study includes recession and/or  expansion 
cycles. 

The new methods have actual advantages when compared to other existing ones. 
First, more efficiency is gained by including the truncation-censoring information in the 
construction of the estimates. Second, the formal simplicity of the proposed techniques 
allows for easy asymptotic analysis (including variance estimation), and straightforward 
extension to the covariate framework. Importantly, both the length-bias and the Type 
I censoring assumption can be easily checked in practice. As a possible disadvantage, it 
should be mentioned that the proposed estimator may be less efficient than the NPMLE 
in Asgharian et al. (2002), particularly under heavy censoring. However, this relative 
efficiency issue is a topic that requires more investigation. 
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