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Abstract. In this paper, some formulas are proposed, which concern the numbers
of unit canonical correlations in a multi-way layout. Different types of canonical cor-
relations are considered and their connection with connectedness and orthogonality
are examined.
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1. Introduction

In experimental design, it is usually necessary the comparison of treatments and
it is well known that the multiple correlation is a measure of association between one
variable and a set of other variables. In fact, it is shown to be the maximum correlation
between one variable and a linear function of the others, which is also the same as the
correlation between a variable and its minimum variance unbiased predictor in terms
of the other variables. This concept was generalized by Hotelling (1936) to study the
association between two sets of variables.

Over the past twenty years, Hotelling’s canonical correlation analysis has received
much attention. This may be due to the fact that canonical correlation analysis includes
a number of multivariate techniques, including multiple regression analysis, canonical
discriminant analysis, corresponding analysis, etc. In linear models, using the theory
of generalized inverse of matrices, Khatri (1976) has shown that canonical correlation
analysis can be extended to the case in which the covariance matrix of two sets of
variables may be singular. Also, Yanai and Takane (1992) studied canonical correlation
analysis subject to linear constraints.

The canonical correlation analysis is important because they include many multi-
variate statistical models as special cases. To explain the variations of £ autonomous
factors in a set of observations, we need to use a k-way layout. In matrix notation, the
linear model may be written as

(1.1) E(y) = X1b1 + Xobo + - + X b = Xb,

where y is a n x 1 vector of all the observations, the vectors b; (i = 1,2, ... k) consist of
the effects (row, column, treatment, etc.), and X; are n x n; design matrices identifying
the correspondence between the elements of y and b; of the k-way layout. In this paper
we consider the following types of canonical correlations:

(1) pg*Q*"'*e) between X7y, XTy,..., and X7y, (¢ factors total)

(ii) pgl*2*"'*els) between X{ Py, XTI Pyy,..., and X[ Py, with s # 1,2,...,¢
(several factors each adjusted for the s-th factor)
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(iii) p§l1*2*~-~*e||s) between X{y,XZy,...,X} ,y and X7 Psy, with s # 1,2,... ,¢
(partial adjusted for the factor s)
where in (ii) and (iii) the matrix Ps is a symmetric orthogonal projection onto the null
space of XT. The sign * corresponds to the partition of n x (ny +- - - +ny,) design matrix
X in block submatrices, and h = 1,...,m. The upper limit m of the index h denotes
the number of positive canonical correlations and we write A = 0, when the associated
vectors are uncorrelated.

Styan has studied the cases of canonical correlations pp, in two- and three-way layout.
In Styan (1983, 1986), the inequalities 0 < p,,, < --- < p; < 1 are presented and the
relationships among the numbers u, ¢, m has been referred, where u denotes the number
of canonical correlations of unit value, ¢ is the number of positive canonical correlations
less than 1, and m = u + t is equal to the number of positive canonical correlations.
In Styan (1986), properties of the connectedness and orthogonality have been studied,
when the three-way layout is considered

completely connected <= Uj42.3 = 2

and
weakly orthogonal <=t = 0.

This work is an extension the most of the results entitled “Canonical correlations in
the three-way layout” by Styan (1986) given in the reference in the sense that we extend
results from three-way layout to multi-way layout. Several equalities are presented for
different types of the u’s, (the numbers of the unit canonical correlations), and the
concept of connectedness is generalized. A recurrence relation with a two-way layout is
investigated, as well as the version of orthogonality.

2. Canonical correlations in a multi-way layout

Let X = [X; ... X be the design matrix for the k-way layout, where the sub-
matrices X; (¢ = 1,...,k), are of dimensions n x n;, with n > ny + --- + ng. Without
loss of generality we assume that rank(X;) = dim R(X;) = n,, where R(X;) stands the
range of X; (i.e., the subspace spanned by the columns of X;). Further, we remind that

(2.1) H; = Xy(XIX:)7' XT

is an n x n orthogonal projector onto R(X;), since det(XF X;) > 0. A simplified form of
this projector is
Hi=X:X; (i=1,2,...,k)

where the superscript “—” is referred to a least squares generalized inverse, in the sense
that XXX = X and X~ XX~ = X, see p. 430, Lancaster and Tismenetsky (1984).
If rank(X;) < n;, clearly in (2.1) the (XTX;)~! has to be (XT X;)~. With regard to
the orthogonal projectors, note that if Hjs is the orthogonal projector onto R([X; X3]),
then by Rao and Yanai (1979),

(2.2) Hi;=H +H, ifandonlyif X{X,=0
(23) Hys=H;+ H, ~ HiH, if and only if H{Hy = HyH;.

A generalization of (2.2) appears in the next statement.
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LeMMA 2.1. Let the matriz [X; X2 ... Xi] is of full rank and Hia. i be the
orthogonal projector onto R([ X1 X2 ... Xi|), then:
. Hig p=Hi+Ho+ -+ Hy+= XFX;=0,Vi,j
II. Hig. k= Hi+ Hia. (i—1)@+1)..kli>
where Hiy . (i—1)(i+1)...k|i 18 the orthogonal projection onto R(P[Xy ... Xis1 Xita
X)), with P, =1 — H; and H; as in (2.1).

ProOOF. By the successive relationships

Hig p=Hy+Hy = XT[X2 X5 ... Xg]=0=XTX;=0;, j=2,...,k

and
H23,,,k=H2+H3'_‘k<:Xg[X3 Xk]=0<=:>X2TXj=0; 7i=3,...,k

the first claim is proved easily. For II, having P, = I — H;, the relationship
XIPX; = XT(I - X XIX) ' X)X =0, i#j

leads to XiTPi[Xl ... Xi—1 Xit1 ... Xx] = 0 and thus the second equation turns out
to be true. O

In order to evaluate the whole k-way layout we define the number v of unit canonical
correlations of type (i):

k
(24)  Uaze.ak = »_rank(X;) —rank[X; Xp ... X
=1
k
= ni—rank[X; Xp ... X4] =dimN([X; Xz ... X]),
i=1

where N([-]) stands the null space of matrix. For k = 2 (or = 3) the equation (2.4) is

referred, Styan (1986), t0 1.2 OF Up4243-
Since rank(X;) = rank(H;), and

=1

k
rank(H; + --- + Hi) = dim {w:szHiy,yeR"}

k

= dim {w tw= Y Xjv;v = (XiTXi)‘lXiTy}
=1

=dim{w:w=[X; X2 ... XpJy;u=[T oI ... of|T}

= rank[X; X2 ... Xi]

we have

k
(2.5) ULx2s ook = Zrank(Hi) —rank(Hy + Ho + -+ - + Hg).

i=1

For these numbers note the next properties.
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PROPOSITION 2.1. If the matrices [ X1 ... Xs] and [Xs41 ... Xi| have full
rank, then

(26) Us2s--xk = Y12, .sx(s+1)..k + Ura2s. s T U(s+1)%---xk-

PROOF. By the case of two-way layout and the equation (2.4) we have:

U12.. .sx(s+1)..k = rank[X; ... X |+ rank[X,y; ... Xj]
—rank[X1 . Xs Xs+1 . Xk]

= Zrank(Xi) — Ulseons
i=1

k
+ Z rank(X;) — Ugeq1)s...sk — Tank[ Xy ... Xi]
i=s+1
= Ulseoonk = Ulneoons — U(st1)nem vk O

Clearly for k = 2,3 by (2.6) we obtain the well known relationships as they have
been presented by Styan (1986). Moreover, for s = 1

(2.7) UL 25wk = U123,k T U2a3Bx- sk
and generally
Ulw2x-xk == Usx12...(s—1)(s+1)...k T Ulneron(s—1)x(s+1)%---nk-
For the concept of connectedness, as it is presented in Styan (1986), by (2.7) we say:

COROLLARY 2.1. Let the design matriz X = [X, ... Xi] for the k-way layout
has full rank. A multi-way layout is completely connected for effects if and only if

ULs2%...xk — k—1.

PRrOOF. The relationship (2.7) leads to

U2 vk = U1423...k T U2x3x--xk
= UL23...k T U2«34.. .k + UBsdse-nk = **°
(2.8) = U123k + U2x34. kT F U—1)xk-

Hence,

ULx2%---xk — k—1<= Uin(i41)..k. = ]., for i= 1,2, ce ,k —1. O

Therefore by (2.6), we obtain the connectedness by parts:

Ulsdwok =k =1 = U2 gu(s+1). b =1,  Uls2sws =8— 1, and

U(sH 1wk = k—s—1,
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concluding that the connectedness of total factors is equivalent to the connectedness
of any partition of factors. Moreover, by (2.7) we conclude that a k-way layout is
completely connected if and only if for any partition of X = [X’ 1 )?2] we have U0 = 1.
Hence, it is not possible some u’s are zero, while others are greater than one, to make

UL 42x%...xk — k—1.
Mentioning that in two-way layout

Ulx2 = dim(Cl N Cg)

where C; stands the column space of X;, by (2.8) we have

k-1
ULx2x-- vk = Zdlm(cz N C(i+1)...k)'

i=1

It is useful to notice the necessity that the columns of the design matrix X have to be
linearly independent.

Ezample 1. Let k = 3 and Xy = I, Xo = [1 0]T, X5 = [0 1]T. Then by (2.4)
Ursos3 = 24+1+1—-2 =2 =k —1 as required, but uj.3 =2+2-2=2 %1 and
Uz = 14+ 1—2 =0 # 1. These results are coming out since the dimension of the
subspace span{Xi, X9, X3} is equal to 2 (+ 4).

Also, involving the equation (2.5), we may express the number u;. su(s41)..k in
terms of H; as follows:

Ut su(s+1)..k = rank(Xy ... X ]+ rank[X,; ... Xg] —rank[X; ... X

s k k
= rank {Zl H,} + rank {Zl Hz} - rank lzl Hi]
= =5+ 1=

and
Ugsl...(s=1)(s+1)..k = Tank(X,) +rank[X; ... Xo 1 Xep1 ... Xi]

—ra,nk[Xl Xk]

k k
= rank(H,) + rank Z:Hz — rank {Z Hi} .

i=1 i=1

i#£s

For canonical correlations of type (ii) or (iii}, we define as u the numbers:

4
UL s2aenl]s = Zrank(Pin) —rank(Ps[X; X2 ... X4))
(2.9) =l
Uiszent)s = Y rank(X;) + rank(P,Xp) — rank(X1 Xy ... Xeo1 P Xy

=1

where s #1,2,...,4and P, =1~ Hs =1 — X (X7 X;)"' XT.
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PROPOSITION 2.2. The numbers Uy,2....x]s, 014 U1,23.. k|s are Telated to the other
numbers u of unit canonical correlations by the equations

14
L UL a2s---xl]s = ULx2x-xlxs — Zus*i (e <k s 7é 1L,2,... 76)
=1

(2.10) = Ua23..0)s T U2s3. £]s T T Ue—1)xl]s

IL U1423.. .kjs = Us»1%23...(s—1)(s+1)...k — Usx1 — Usx23...(5-1)(s+1)...k
(2.11) = Uls23. k — Usal, (5 € {2,...,k}).

ProOOF. By the relationships
R[X, X;] = R(X,)® R(P,X;)
and
rank[X, X;] = rank(X;) + rank(X;) — tsui

clearly, rank(P;s X;) = rank(X;) — ugui.
I. The equation (2.4) and the previous statement lead to

¢
Unesgls = 9 _rank(PyX;) — rank(Py[X1 ... Xq)
i=1
¢
= Zrank[Xs_ X;] — €rank(X,) —rank[X, X; ... X,]+ rank(X;)

i=1

¢ ¢
= Zrank(Xi) + rank(X;) —rank[X; X; ... X¢ — Zus*i
i=1

i=1

4
= ULs24-- - xlxs — E Usxi-
i=1

Moreover, by (2.8) and the equation u;.jk = Uisk + Uisjjx of Theorem 2.1, Styan (1986),
we take

12
Ura2x.. . xlls = Ulx24.--xlrs — E Ugxi
=1

= U1423...85 T U2s3...0s + T Ue-1)xls T Utas
T Usxl — Usx2 T 0 T Usx(e—1) — Utss
= U423..0s T U2«3..¢)s + - -+ Uge—1)«e|s-
II. On the other hand we have:

U1423.. ks = rank(PsX;) +rank(P[Xs ... X1 Xepr ... X))
—rank(Ps[ X1 X2 ... Xs—1 Xsp1 .- Xi))
= rank(X;) — User +rank[Xo ... X1 Xop1 ... Xi] = Usso. (s—1)(s41). .k
—rank(X; Xy ... Xo1 Xoyr oo K|+ Ugua (s—1)(s41)..k
= U1423...(s—1)(s+1)...k T Usx123...(s—1)(s+1) ..k — Ussl — Usx2.. (s—=1)(s+1)...k
= Usx1423...(s—1)(s+1)...k — Ussl — Us+23...(s~1)(s+1)...k
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and using (2.7) we take:

U123, (s—1)(s+1)...k|s = Tank[X, Xi] —rank(X,) +rank[Xy ... X]
—rank(X;) — rank[X; ... Xji]+ rank(X;)
k

= rank(X;) — v + Zrank(Xi) — Ugunk — rank[Xy ... Xi]
i=2
= Ulse-kk — U2xeoxk — Usxl = ULx23.. .k — Usx1- a

COROLLARY 2.2. Supposing that s £ 1,...,¢ we have

(2.12) ULseoxtlls = Ulxeon(e=1) F UL...(6-1)ut]s

and if s € {1,...,k}, then

(2.13) Ulseoonklls = Uluen(s—1)(s+1)x-x(k~1) T Y12, (k=1)*k|js-

PRrOOF. Similarly, by (2.9) for (2.12) we have:

-1
Upewts = P Tank(X;) +rank(P,Xe) — rank[Xy ... X1 PoX(]
=1
-1
= Zrank(Xi) —rank[X; ... Xe_ 1]+ uga. (e—1)xe)s

i=1
= Upse-x(e—1) T U12...(4—1)%¢||s

The equation (2.13) is a special case of (2.12). O
By the first equation of (2.10) and the equation (2.12), we say:

PropoOSITION 2.3. A multi-way layout of the type (ii) or (iii) s connected for
effects, i.e., Uy,...xe)s = 0 if and only if

Ulwontns = & and  usi =1, i=1,...,£ s#i,

while Uy y...«qys = £ — 2 if and only if

Upsn(e=1) =€ —2, and Uy (g-1)xs = 0.
We define

-1
(2.14) M1 4243558 — Zrank(X,-T[XH.l X,;+2 .. Xg])

=1
and

-1

(2.15) t1424Be el = ZYank(XzTP(iH)...ePi[XiH Xiva ... Xi)),

i=1
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where Pi11)..¢ = I — Hiy1)..0. The above equations generalize the cases of m;.o and
tix2 In a two-way layout form and declare that

(216) m1*2*3*...*(1_1)*e =MM1423..6 + M2s3..e+ -+ Mp—1)xL
and
(2.17) E1a2e30x(0—1)xt = t1x23.0 F 12430+ - -+ Lo—1)ue-

Similarly by (2.14) and (2.15), we define the numbers my,2....ces a0d t1,24...40]s, 8 Well
as the numbers my.94...«gs a0d t1424...xp|ls-

PROPOSITION 2.4. The positive numbers m,u,t are interrelated by the equation

(218) M1a24eak = Ula2s- sk T L1420 nk-

PrROOF. The equation (2.18) is well known for k£ = 2, Styan (1986), and it is based
on the equation, Bérubé et al. (1993),

rank(MT N) = rank(M) + rank(N) — rank([M N]) + rank(M7T Py Py N).
Using this relationship (i.e., for two factors) we have

M1423...k = U1x23...k T T1423. k)
M3, .k = U243,k + 1243, k)

Mg 1)k = U(k—-1)xk T E(k—1)xk-

Thus, adding these equations, by (2.8), (2.16) and (2.17), the equation (2.18) follows
immediately. O

Note that (2.18) can be proved also by induction.

COROLLARY 2.3.

* 2% x{€—1)* = * 2k (€—1)* U1 w2 (8=1)%
(2.19) {ml 2ecex(€=)xlls = Ula2eeox(e=1)xlls F Lladues(8=1)xt)s

1254 (0—1)#L||s = UL#2x-x(£—1)l||5 + tl*2*~-~*(€—l)*€|ls-

PrOOF. Using the equation in two-way layout, Styan (1983, 1986),
Myxjlk = Uinjlk T Lixjlks
the second of (2.10) and the equations

£-1
M1s2x- % (£~1)xl|s = Zrank(XiTPs[X,-H Xiya ... Xe])
i=1
-1
= Zmi*(i+1)(i+2)...£|s

i=1
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-1
Pla2e x(=1)xt]s = Zrank(XzTP(i+1)...€sPis[Xi-H Xive .. Xi)
=1
-1
= Z Lin(i+1)(542)...4] 5>

i=1

the first of (2.19) is fulfilled. The same for the second of (2.19). O

Analogous generalizations of the condition in Section 3 on the two-way layout,
Baksalary et al. (1992), which characterize the situation m = t (i.e. when there are
not unit canonical correlations), we derive also by (2.16) and (2.17).

It is worth noting that the orthogonality X} X, =0 (i = 1,...,£), due to P, X; = X;
and P,; =1—-Hy,, =1—- Hy; — H; = P,P, = P,P,, leads to the identities

-1
ml*g*...*as = Zrank(XiTPs[XH.l PN Xg]) = M1%2%.. %
i=1

and
-1

Ela2xexb]s = Zrank(XzTP(i+1)4.4£s-Pis[Xi+1 o X))
i=1
-1
= > rank(XT P, Piy1). oPPolXiy1 ... X))
i=1
-1
= Zrank(XZﬂP(iH)ng[XHl e Xg]) = {1525 xty

i=1

consequently
ULx2%---xl]s = Ulx2x-.xL-

Similarly for the numbers m, u,t of type (iii).
3. Results on orthogonality

Using the notation of canonical correlations in the introduction, we generalize in
the following, some results on weak orthogonality of rows and columns as the y stated
in two-way layout in Styan (1986) and Bérubé et al. (1993). The next proposition refers
to the relationships of orthogonality and connectedness.

PrOPOSITION 3.1. Ifs ¢ {1,...,£}, then my,...xpjs = 0 and uius = 1 if and only
ift1*2*...*g|s =0 and Uju(i+1)..0s = 1, fori=1,...,£—1.

Proor. Clearly, M 1424 b]s = 0 <= UL sk xf|s = t1*2*---*€|s = 0. By Proposition
2.2, the equation uj......g)s = 0 implies u;y(i11)..¢s = 0 for i = 1,...,£ — 1 and then
Uis(i41)...ts — Uizs = 0, 1.€., Usu(341)...05s = L.
Inversely, by ti.o....«gs = 0 and the first of (2.19), we take the relationship
e-1
M1s2next]s = Ula2uxb]s: U Uls2x...xe]s > 0, then by (2.10) we have Y /77 uiu(it1)...4s > 0.
In this sum there exist some positive terms, let % (i41)..qs- SiNCE, Uis(it1)..t}s =
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Uix(i+1)...s — Uixs >0 = ups < 1, absurd. Hencea ULs2%- #l|s = 0, ie, M142%-.-xl|s = 0,
and u;,, =1, fori=1,...,¢-1.0

Denoting by chp(-) the h-th largest real eigenvalue, in two-way layout, it is known,
Kharti (1976) and Bérubé et al. (1993), that the canonical correlation

o) = chy/* (H:Hy).

In multi-way layout the canonical correlation of type (i) and (ii) are generalized respec-
tively as follows

p;ll*z*.-‘*e) _ Ch}ll/2(H1H2 .-~ Hy)
pg_*z*...*lls) — Ch,}l/2(H1|sH218 ae Has).

A relationship between py, of type (i) and (ii) is the next statement.

PROPOSITION 3.2. Let the design matrices Xi,...,Xs, Xs be weakly orthogonal,
te,tinj=0fori,j=1,2,...,0—1,5>dandts.; =0,i=1,2,...,¢ then the algebraic
multiplicity of eigenvalue A = 1 of matriz HiHy--- Hy_1H; is equal to

125 -x(£—1)%L 1#2-4(£—1) %8
{pplr2mEmnte)y (12 (t=)ntla)y

where {pg)} denotes the set of canonical correlations of factors.

Proor. We follow analogue statements of Theorem 3 in Bérubé et al. (1993). By
the equation II in Lemma 2.1, we have

(3.1) (M — HiHy - Hy_ 1 Hy|
= |\ - HiHy - Ho_1(H, + Hys)|
=|M—H,---Hy_1H,
X |I —(\ — HiHa+--Hp_yHg) "H1Hy -+ Hp_1Hy,|

where ) is not eigenvalue of H; --- Hy_; H,. Since t;,; = 0 the matrices H;, H; are com-
muting, Bérubé et al. (1993), and the matrix Ay Hs - - - Hy_1 H,; is idempotent. Moreover,
by the equation (2.3) and II in Lemma 2.1 we have

Hjj; = H; — H;H;.
Thus
(M —Hy---Hy_1Hs)HHy-- He_1Hyg = AH1Hp --- Hy_ 1 Hyy,
due to H Hy, = H,(H, — H;H;) = 0. Therefore the equation (3.1) is equivalent to
(A — HiHy - Hy_1Hys| = (N[ ~ HiHy - Ho_1Hy||[I = \"'HyHy - - Hp_1 Hy|

A—1\1?
(32) = T IAI-—HlHQ---Hg_lHqs\
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where ¢ = %1,24...«(¢~1)xs- On the other hand

H\Hy---Hy 1Hyy = HiHy---Hy_1Hys — Hy---Hy_ 1 HsHy)s
= HiHy---Hp 5(Hy_y — Hy_1H,)Hy,
= Hy- - Hp-2Hy_qsHys

= HllsH2|s te H£—1|5H€|s-
Hence, we obtain the required result, by
A—-1\7
|/\I—H1"‘Hg—1HlZs': T ,’\I_Hlls"'Hllsl' 0O

Now, if one factor, say k, is pairwise orthogonal to all of the other factors, the next
relationship arises.

COROLLARY 3.1. Letk € {1,...,6—1} and let ts4i =0, fori=1,2,...,£—1,¢,
and t; =0, fori,j=1,2,...,£—1,¢, j > i, withi,j # k, then the difference

-k (k—1)*x(k weo kel sk (k—1)x(k Kook fxk
{P;,l (k—1)x(k+1) S)} N {P;ll (k=1)%(k+1) IS)}

is equal to the algebraic multiplicity of eigenvalue A = 1 of matriz

Hy---Hg 1Hpyy---HeH,.

Moreover, at once from (3.2) the following result is obtained:

COROLLARY 3.2. Let ts; =0, for j =1,...,¢, and t;,; = 0, with j > 1, where
i,7=1,...,¢, then,

*2%---%{f—1)xf *2 ok (£—2)xlx(L—
{Ps - S)} - {pﬁl1 2 (6-2) ( l)s} = u1*2*~~-*(2—1)*s - u1*2*-~*(€—2)*€*s

is equal to the difference of algebraic multiplicities of eigenvalue A = 1 of matrices
H1H2 s Hg_le and Hle s H(g_g)HgHs.

The proof is similar of Theorem 3 in Bérubé et al. (1993).
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