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A b s t r a c t .  In this paper, some formulas are proposed, which concern the numbers 
of unit canonical correlations in a multi-way layout. Different types of canonical cor- 
relations are considered and their connection with connectedness and orthogonality 
are examined. 
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1. Introduction 

In exper imenta l  design, it is usually necessary the compar ison of t r ea tments  and 
it is well known tha t  the mult iple correlat ion is a measure  of associat ion between one 
variable and a set of o ther  variables. In fact, it is shown to be the  m ax im u m  correlat ion 
between one variable and a linear funct ion of the others,  which is also the same as the 
correlat ion between a variable and its min imum variance unbiased predic tor  in te rms 
of the other  variables. This  concept  was generalized by Hotell ing (1936) to s tudy  the 
association between two sets of variables. 

Over the past  twenty years, Hotelling's canonical  corre la t ion analysis has received 
much at tent ion.  This  may be due to the fact t ha t  canonical  correlat ion analysis includes 
a number  of mult ivariate  techniques,  including multiple regression analysis, canonical  
discriminant  analysis, corresponding analysis, etc. In linear models,  using the theory  
of generalized inverse of matrices,  Kha t r i  (1976) has shown tha t  canonical  correlat ion 
analysis can be ex tended  to the case in which the covariance ma t r ix  of two sets of 
variables may  be singular. Also, Yanai and Takane (1992) s tudied canonical  correlat ion 
analysis subject  to linear constraints.  

The  canonical correlat ion analysis is impor tan t  because they  include many  multi- 
variate  statist ical  models as special cases. To explain the variat ions of k au tonomous  
factors in a set of observations,  we need to use a k-way layout. In ma t r ix  notat ion,  the 
linear model  may be wri t ten  as 

(1.1) E(y) = X l b l  + Z252 ~-. . .  -~ Xkbk ~-- Xb ,  

where y is a n • 1 vector  of all the  observations,  the vectors bi (i -- 1, 2 , . . . ,  k) consist of 
the  effects (row, column, t r ea tment ,  etc.),  and Xi are n • ni design matrices identifying 
the  correspondence between the elements of y and bi of the k-way layout.  In this pape r  
we consider the following types of canonical correlations: 

^(1,2,...,~) (i) Ph between X T y ,  Z T y , . . . ,  and X~Ty, (6 factors total) 

(ii) ~(1,2, .... ~ls) between x T p s y ,  X T p s y ,  and X [ P s y ,  with  s ~ 1,2, ,6 Hh �9 �9 �9 �9 �9 �9 
(several factors each adjusted for the s-th factor) 
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(iii) _(1.2 ..... ells) Ph between K1T y, X T y , .  . . , X[_ i y and X TPs  Y, with s • 1, 2 , . . .  , g 
(partial adjusted for  the factor s) 
where in (ii) and (iii) the matrix P8 is a symmetric orthogonal projection onto the null 
space of X T. The sign �9 corresponds to the partition of n x (nl + . . .  + nk) design matrix 
X in block submatrices, and h = 1 , . . .  ,m. The upper limit m of the index h denotes 
the number of positive canonical correlations and we write h = 0, when the associated 
vectors are uncorrelated. 

Styan has studied the cases of canonical correlations Ph in two- and three-way layout. 
In Styan (1983, 1986), the inequalities 0 _< tim ~ " ' "  --~ Pl --~ 1 are presented and the 
relationships among the numbers u, t, m has been referred, where u denotes the number 
of canonical correlations of unit value, t is the number of positive canonical correlations 
less than 1, and m = u 4- t is equal to the number of positive canonical correlations. 
In Styan (1986), properties of the connectedness and orthogonality have been studied, 
when the three-way layout is considered 

and 

completely connected -: '.- Ul.2,3 = 2 

weakly orthogonal -: '.- t = 0. 

This work is an extension the most of the results entitled "Canonical correlations in 
the three-way layout" by Styan (1986) given in the reference in the sense that  we extend 
results from three-way layout to multi-way layout. Several equalities are presented for 
different types of the u's, (the numbers of the unit canonical correlations), and the 
concept of connectedness is generalized. A recurrence relation with a two-way layout is 
investigated, as well as the version of orthogonality. 

2. Canonical correlations in a multi-way layout 

Let X = IX1 . . .  Xk] be the design matrix for the k-way layout, where the sub- 
matrices X~ (i = 1 , . . . ,  k), are of dimensions n x ni, with n > n l  + .. �9 4- nk. Without 
loss of generality we assume that  rank(Xi) -- dim R ( X i )  -- hi,  where R ( X i )  stands the 
range of Xi (i.e., the subspace spanned by the columns of Xi). Further, we remind that  

(2.1) Hi = X i ( X T  X i ) - l x i  T 

is an n • n orthogonal projector onto R ( X i ) ,  since det(XTXi) > 0. A simplified form of 
this projector is 

Hi = X i X (  (i = 1 , 2 , . . . , k )  

where the superscript " - "  is referred to a least squares generalized inverse, in the sense 
that  X X - X  = X and X - X X -  = X - ,  see p. 430, Lancaster and Tismenetsky (1984). 
If rank(Xi) < n~, clearly in (2.1) the ( x T x i )  -1 has to be ( x T x i )  - .  With regard to 
the orthogonal projectors, note that  if Ha2 is the orthogonal projector onto R ( [ X i  X2]), 
then by Rao and Yanai (1979), 

(2.2) H12 = H1 + / / 2  if and only if x T x 2  = 0 

(2.3) H12 = H1 + H2 - H1H2 if and only if H1H2 = H2H1. 

A generalization of (2.2) appears in the next statement. 
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LEMMA 2.1. Let the matrix IX1 2 2  . . .  Xk] i8 of full rank and H12... k be the 
orthogonal projector onto R([X1 X2 . . .  Xk]), then: 

I. H12...k= Hl + H 2 + . . . +  H k - ~ 4 .  X T X j = O ,  Vi , j  
II. H12...k = Hi + gl2...(i_l)(i+l)...kli, 

where H12...(i_l)(i+l)...kl i is the orthogonal projection onto R(Pi[X1 . . .  X i -1  X/+I . . .  
Xk]), with Pi = I - Hi and Hi as in (2.1). 

PROOF. By the successive relationships 

gl2...k =Ha+H23 . . . k . :  ?'xTI[X2 X3 . . .  X k ] = O . :  : . xT1x j  = 0 ;  j = 2 , . . . , k  

and 
H23. . . k=H2+H3. . . k . :  '..X~2[X3 . . .  X k ] = O . :  : . x T x j = o ;  j = 3 , . . . , k  

the first claim is proved easily. For II, having Pi = I - Hi, the relationship 

x T p i x j  = x T ( I - -  X i ( x T x i ) - - I x T ) x j  = o ;  i c y  

leads to x T p i [ x 1  . . .  X i -1  Xi+l . . .  Xk] = 0 and thus the second equation turns  out  
to be true. [] 

In order to evaluate the whole k-way layout we define the number  u of unit canonical 
correlations of type (i): 

(2.4) ul ,2  ..... k = 

where N([.]) s tands 
referred, Styan (1986), to ul ,2  or Ul,2,3. 

Since rank(Xi)  = rank(H/) ,  and 

k 

E r a n k ( X i ) - r a n k [ X a  X2 . . .  Xk] 
i=1 

k 

E n i - r a n k [ X 1  X2 . . .  X k ] = d i m N ( [ X 1  X2 . . .  Xk]), 
/=1 

the null space of matrix.  For k = 2 (or = 3) the equation (2.4) is 

r a n k ( H l + . . . + H k )  = dim w : w =  Hiy, y C R  n 
i=1 

k / x T x  " - I x T  = dim c o : c o = E X i v i ; v i = (  i /) i Y .  
i=1 ) 

= dim{co:co = [X1 X2 . . .  X k l v ; v  = [v T v T 

= rank[X1 X2 . . -  Xk] 

we have 

Ul*2 . . . . .  k = E rank(H/)  - rank(H1 + H2 + . . -  + Ilk).  
i=1 

(2.5) 

For these numbers note the next properties. 
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PROPOSITION 2.1. I f  the matrices [X1 . . .  X~] and [X~+I 
rank, then 

(2.6) Ul,2 ..... k = u12...~,(~+l)...k + ul ,2  ..... 8 + u(~+l), .... k. 

. . .  Xk] have full 

PROOF. By the case of two-way layout and the equation (2.4) we have: 

Ul2...s,(s+I)... k = rank[X1 . . .  Xs] + r a n k [ X s + l  . . .  Xk] 

- r a n k [ X 1  . . .  X~ X~§ . . .  Xk] 
8 

= E rank(X/ )  - -  Ul, .... s 
i = l  

k 

+ E rank(X/ )  - u(8+l),  .... k -- rank[X1 
i = s + l  

U l , . . . , k  - -  U l , . . . , s  - -  U ( s + l ) , . . . , k .  

zk] 

[] 

Clearly for k = 2, 3 by (2.6) we obta in  the well known relat ionships as they  have 
been presented by Styan (1986). Moreover,  for s -- 1 

(2.7) 

and general ly 

U l * 2 * . . . , k  -~- ~ 1 , 2 3 . . . k  -~- U 2 * 3 * . . . * k  

U l , 2 , . . . , k  ~--- U s , 1 2 . . . ( s _ l ) ( s + l ) . . .  k -~- U l , . . . , ( s _ l ) , ( s + l ) , . . . , k .  

For the concept  of connectedness,  as it is presented in S tyan  (1986), by (2.7) we say: 

COROLLARY 2.1. Let the design matrix X -- IX1 . . .  Xk] for the k-way layout 
has full rank. A multi-way layout is completely connected for  effects if  and only i f  

U l * 2 * . . . * k  : k - 1. 

PROOF. 

(2.8) 

Hence, 

The  relat ionship (2.7) leads to 

U l , 2 , . . . , k  -~- ? . t l , 2 3 . . . k  -~- ~ t 2 , 3 , . . . , k  

U l * 2 3 . . . k  -[- ?- t2*34. . .k  -[- U 3 * 4 * . . . * k  ~ " " " 

~- U l , 2 3 . . . k  "~- U2*34...k Jr " '"  d- U ( k - 1 ) ,  k.  

Ul,2 ..... k = k - - l ' :  ~ ' u i , ( i + l ) . . . k = l ,  for i = l , 2 , . . . , k - 1 .  [] 

There fore  by (2.6), we obtain the connectedness  by parts: 

U l , 2 , . . . , k  : k -  1 ~ U l 2 . . . s , ( s + l ) . . . k  : 1, U l , 2 , . . . , s  ~ 8 - -  1 ,  

u(8+1) .... , k = k - - s - - 1 ,  

and 



C A N O N I C A L  C O R R E L A T I O N S  IN M U L T I - W A Y  L A Y O U T  659 

concluding that the connectedness of total factors is equivalent to the connectedness 
of any partition of factors. Moreover, by (2.7) we conclude that a k-way layout is 

completely connected if and only if for any partition of X = IX1 X2] we have Ul.2 = 1. 
Hence, it is not possible some u's are zero, while others are greater than one, to make 
~ t l , 2 , . . . ,  k ~ k - 1. 

Mentioning that in two-way layout 

ul.2 = dim(C1 N C2) 

where Ci stands the column space of Xi, by (2.8) we have 

k - 1  

Ul.2 ..... k = ~ dim(Ci A C ( i + l ) . . . k ) .  

i = 1  

It is useful to notice the necessity that the columns of the design matrix X have to be 
linearly independent. 

Example 1. Let k = 3 a n d X 1  = h ,  X2 = [1 0] T , ) ( 3  = [0 1] T. Then by (2.4) 
uj.2.3 = 2 + 1 + 1 - 2  = 2 = k - l a s r e q u i r e d ,  but  ul.~a = 2 + 2 - 2  = 2 7~ 1 and 
u2.3 = 1 + 1 - 2 = 0 r 1. These results are coming out since the dimension of the 
subspace span{X1, X2, Xa} is equal to 2 ( r  4). 

Also, involving the equation (2.5), we may express the number Ul.. .s,(s+l). . .  k in 
terms of Hi as follows: 

and 

U12. . . s , (s+1) . . .  k = r a n k [ X l  . . .  X s ]  q- rank[Xs+l . . .  Xk] - r a n k [ X 1  

: rank [/=~1 Hi ] " r a n k  [i=s~+ Hi ] -rank[i=~lHi ] 

Us.1...(s_l)(s+l)... k = rank(X,) + rank[X1 . . .  X , - I  Xs+I . . .  Xk] 

- r ank[X1  . . .  Xk] 

= rank(H,)  + rank Hi - rank Hi �9 
i = l  
i r  

�9 . .  x d  

For canonical correlations of type (ii) or (iii), we define as u the numbers: 

(2.9) 

t 

Ul*2 . . . . .  s = Z r a n k ( P s X i )  - rank(Ps[X1 X2 . . .  Xg]) 
i=1  

u**2 ..... eD = ~ rank(Xi) + rank(PsXe) - rank[X1 X2 
i=1  

�9 . .  X e - 1  P ,  Xe]  

w h e r e  s ~ 1, 2,. . . ,  g a n d  P, = I - H s = • _ X s  ( X s  - 1  X s  
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PROPOSITION 2.2. The numbers Ul.2 ..... ~ls, and Ul,23...kls are related to the other 
numbers u of unit canonical correlations by the equations 

I. Ul,2 ..... ~ l s=ul*2*  .... ~ * ~ - E u s * i  ( ~ < k ;  s ~ l , 2 , . . . , ~ )  
i = l  

(2.10) = ul,23...els + u2,3...els + "'" + u(e-1),els 

II.  i t l*23 . . .k l s  --~ U s * 1 * 2 3 . . . ( s - 1 ) ( s + l ) . . . k  - -  U s * l  - -  i t s * 2 3 . . . ( s - 1 ) ( s T 1 ) . . . k  

(2.11) = i t i*23 . . .k  -- i t s * i ,  (8  �9 { 2 , . . . ,  k } ) .  

and 

PROOF. By the relat ionships 

R[Xs Xi] = R(Xs)  ~ n (PsXi )  

rank[X~ Xi] = rank(Xs)  + rank(Xi )  - u~,i 

clearly, r ank(PsXi )  = rank(Xi)  - u s , i .  

I. The  equat ion (2.4) and the previous s ta tement  lead to  

it1 ..... els = E r a n k ( P ~ X i )  - rank(Ps[X1 . . .  Xe]) 
i=1  

= y'~'rank[X~ X ~ ] -  erank(X2 - rank[X~ X~ 
i=1  

= ~ rank(X~) + rank(X~) - rank[X~ Xl  . . .  

i=1  

U l*2* ' "*s  --  E i t s * i "  

�9 . .  X t ]  + r a n k ( X s )  

i----1 

Xk] - u ~ , 2 . . . ( ~ - l ) ( s + l ) . . . k  

- rank[X1 X2 . . .  X8-1 Xs+l  . . .  Xk] + us,L..(s-1)(~+l)...k 

= U l * 2 3 . . . ( s - 1 ) ( s + l ) . . . k  -]- l t s , 1 2 3 . . . ( s - 1 ) ( s + l ) . . . k  - -  i t s * l  - -  i t s * 2 . . . ( s - 1 ) ( s + l ) . . . k  

-~  i t s * l * 2 3 . . . ( s - 1 ) ( s + l ) . . . k  - -  U s * l  - -  l t s * 2 3 . . . ( s - 1 ) ( s + l ) . . . k  

II. On the other  hand we have: 

itl.23...kl~ = rank(PsZl) + ra~k(Ps[Z2 . . .  X~-I X~+~ . . .  

- r a n k ( P s [ X 1  X2 . . .  Xs-1 Xs+l . . .  Xk]) 

= rank(X1)  - us,1 + rank[X2 . . .  Xs-1  Xs+l  . . .  

x k ] )  

i = 1  

Moreover,  by (2.8) and the equat ion u~,jk = u~,k + u~,jlk of T h e o r e m  2.1, S tyan  (1986), 
we take 

Ul , 2 , . . . , s  ---- U l * 2 , . . . , s  - -  ~ U s , i  
i----1 

Ul*23. . .~s  -~- U2,3. . .~s -}- " " " "~- U ( s  -}- Ug , s  

- -  U s * I  - -  U s * 2  . . . . .  i t s* ( s  - -  i ts  

U l , 23 . . . ~ I s  -[- U2,3. . .s  s -~ �9 . .  -[- U ( s 1 6 3  
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and using (2.7) we take: 

Ul,23...(s_l)(s+l)...k[ s = rank[Xs X 1 ]  - r ank(Xs)  + rank[X2 . . .  Xk] 

- r ank(Xs)  - rank[X1 . . .  Xk] + r an k (Zs )  
k 

= r a n k ( X 1 ) -  u s , ,  + E r a n k ( X / ) -  u2 ..... k - rank[X1 
i = 2  

U l , . - . * k  - -  ~ t 2 , . . . , k  - -  ?-ts,1 ~ U l * 2 3 . . . k  - -  ?-ts*l- 

xk] 

[] 

COROLLARY 2.2. Supposing that s ~ 1 , . . . , g  we have 

(2.12) ul  ..... ells = U l  . . . . .  (e-l)  + ul...(e-1).ells 

and i f  s C { 1 , . . . , k } ,  then 

(2.13) Ul ..... klls = Ul ..... (s-1).(8+1) ..... (k- l )  + ut2...(k-1)*klls- 

PROOF. Similarly, by (2.9) for (2.12) we have: 

e - 1  

Ul . . . . .  ells = E rank(Xi )  + rank (PsXt )  - rank[X1 
i = 1  

g - 1  

= E rank(Xi )  - rank[X1 . . .  
i = l  

= ua ..... (e-D + u12...(e-1),ells. 

The  equat ion  (2.13) is a special case of (2.12). [] 

�9 . .  X e - 1  P s X e ]  

Xe-1] + u12...(t-1),tlls 

By the first equat ion  of (2.10) and the equat ion  (2.12), we say: 

PROPOSITION 2.3. A multi-way layout of the type (ii) or (iii) is connected for  
effects, i.e., ul ..... tls = 0 i f  and only i f  

Ul.....e,s = g, and us. i  = 1, i = 1 , . . . , g ,  s r i, 

while Ul ..... ells = g - 2 i f  and only i f  

Ul . . . . .  (e-l)  = g - 2, and u12...(e-1),tlls = O. 

We define 

(2.14) 

and 

(2.15) 

e--1 

m, ,2 .3  ..... ~ =  E rank (XT[Xi+l  Xi+2 . . .  Xe]) 
i = 1  

e - 1  

tx ,2 ,s ,  .... e = E r a n k ( X T  p(i+l)...ePi[Xi+l Xi+2 
i = 1  

. . .  x e ] ) ,  
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where P(i+l)...e = I - H ( i + I ) . . .  b The above equations generalize the cases of ml ,2  and 
t l ,2  in a two-way layout form and declare tha t  

(2.16) ml ,2 ,3  ..... (g-1),e = ml,23...e + m2,3...e + " "  + m(e-1),e 
and 
(2.17) t 1 , 2 , 3 ,  . . . .  ( e - 1 ) , ~  = t l , 23 . . .~  -[- t2 ,3 . . .g  + " ' "  + t(e-1),e. 

Similarly by (2.14) and (2.15), we define the numbers ml ,2  ..... els and t l ,2 ..... els, as well 
as the numbers ml ,2  ..... g[]s and t l ,2 ,  .... ell~. 

PROPOSITION 2.4. The positive numbers m, u, t are interrelated by the equation 

(2.18) ml ,2 ,  .... k = ul ,2  ..... k + tl ,2 .... ,k. 

PROOF. The equat ion (2.18) is well known for k = 2, Styan (1986), and it is based 
on the equation, B~rub~ et al. (1993), 

rank(MTN) = rank(M)  + rank(N)  - rank( [M Y]) + rank(MTpNPMN). 

Using this relationship (i.e., for two factors) we have 

m l , 2 3 . . . k  ~- U l , 2 3 . . . k  -Jr t l ,23 . . .k~  

m 2 , 3 . . ,  k ~-~ u2 ,3 . . ,  k -{- t2 ,3. . .k~ 

r n ( k - 1 ) , k  = U ( k - 1 ) , k  + t ( k - 1 ) , k .  

Thus, adding these equations, by (2.8), (2.16) and (2.17), the equat ion (2.18) follows 
immediately. [] 

(2.19) 

Note t ha t  (2.18) can be proved also by induction. 

COROLLARY 2.3. 

m l . 2  . . . . .  ( e - 1 ) , e / s  = U l , 2  . . . . .  ( g - 1 ) , g / s  -]- t l , 2  . . . . .  ( g - 1 ) , g / s  

m l , 2  . . . . .  (e-1),ell~ = ul,2 . . . . .  (e -1) ,eN~ -[- t l , 2 ,  . . . .  ( ~ - l ) , e l l s .  

PROOF. Using the equation in two-way layout,  Styan (1983, 1986), 

lTti , j l  k = Ui , j [  k -~- t i , j l k ,  

the second of (2.10) and the equations 

g--1 

rnl,2 .... ,(~-11,e18 = E r a n k ( X T p s [ x i + l  Xi+2 . . .  NeD 
i=1 

~ -1  

= E mi,(i+1)(i+2)...ti~ 
i = l  
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t - 1  

t1.2 ..... (g-1)*tls = E r a n k ( X T P ( i + l ) . . . t s P i s [ X i + l  Xi+2 
i = 1  

= E ti*(i+l)(i+2)'"tl s' 
i----1 

. . .  x e ] )  

the  first of (2.19) is fulfilled. The  same for the second of (2.19). [] 

Analogous generalizations of the  condit ion in Section 3 on the two-way layout,  
Baksalary et al. (1992), which characterize the s i tua t ion  m = t (i.e. when there  are 
not unit  canonical correlations),  we derive also by (2.16) and (2.17). 

It  is worth  not ing tha t  the or thogonal i ty  x T x ~  =- 0 (i = 1 , . . . ,  g), due to  P ~ X i  = X i  

and Psi = I - Hsi  = I - H s  - H i  = PsP i  = PiPs ,  leads to  the  identit ies 

and 

m 1 " 2  . . . . .  els = E rank(XTps[Xi+l 
i = 1  

�9 .- Xt])  ---- m l , 2  .. . . .  t 

g--1 
t1.2 . . . . .  t]s = E rank (  X F  P( i+ l ) . . . tspis [x i+  l 

i = 1  

~--1 

E r a n k ( X T p s P ( i + l )  . . .ePiPs [Xi+l  
i----1 

t - - 1  

E r a n k ( X T p ( i + l )  . . .~Pi[Xi+i "'" 
i = 1  

x t ] )  

. . .  

x d )  = . . . .  

consequent ly  

U l , 2 , . . . , ~ l s  ~ ~ t l , 2 , . . . , g .  

Similarly for the numbers  m, u, t of  type  (iii). 

3. Results on orthogonality 

Using the no ta t ion  of canonical  correlat ions in the  in t roduct ion,  we generalize in 
the following, some results on weak or thogonal i ty  of rows and columns as the y s ta ted  
in two-way layout in SWan (1986) and B~rub~ et al. (1993). T h e  next  proposi t ion refers 
to  the relat ionships of or thogonal i ty  and connectedness.  

PROPOSITION 3.1. I f  S ~ { 1 , . . . , g } ,  then  m l ,2  ..... ~ls = 0 and u i , s  = 1 i f  and  only  

i f  t l ,2  . . . . .  tls = 0 and ui,(i+l).. .gs = 1, f o r  i = 1 , . . .  , g -  1. 

PROOF. Clearly, ml,2,...,~ls = 0 < > u1,2, .... gls ---= t1,2 .... *gls = 0. By Proposition 
2.2, the equat ion Ul,2 ..... tl~ = 0 implies ui,(i+l)...tLs -- 0 for i -- 1 , . . .  , g -  1 and then  

ui,( i+l) . . . ts  - u i , s  = 0, i.e., ui,( i+l) . . . ts  = 1. 
Inversely, by t l ,2 ,  .... els = 0 and the  first of (2.19), we take the relat ionship 

e-1 
ml ,2  ..... el~ = u l ,2 ,  .... tls. I fUl ,2  .... ,els > 0, then  by (2.10) we have )--~i=l ui,(i+l)...els > 0. 
In this sum there  exist some posit ive terms,  let ui,(i+1)...e[s. Since, ui,(i+l).. .eis = 
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ui,(i+l)...es - ui ,s  > 0 ~ ui ,s  < 1, absurd. Hence, Ul, 2 . . . . .  e[s = 0, i.e., ml ,2  ..... e]s = 0, 
and ui,~ -- 1, for i = 1 , . . . ,  g - 1. [~ 

Denoting by Chh(.) the h-th largest real eigenvalue, in two-way layout,  it is known, 
Khar t i  (1976) and Bdrubd et al. (1993), tha t  the canonical correlation 

In multi-way layout the canonical correlation of type  (i) and (ii) are generalized respec- 
tively as follows 

p(1,2 ..... ~) 1/2 
h --- ch h ( H I H 2 " " H e )  

p(1,2 ..... e[s) ~z.1/2 
h = c,~ h ( H l [ s g 2 1 s ' " H e t s ) .  

A relationship between Ph of type (i) and (ii) is the next s ta tement .  

PROPOSITION 3.2. Let the design matr ices  X 1 , . . . , X e ,  X~ be weakly orthogonal, 
i.e., t i , j  = 0 f o r i ,  j = 1 , 2 , . . . , g -  1, j > i and ts , i  = 0, i = 1 , 2 , . . . , g ,  then the algebraic 
mult ipl ici ty  of  eigenvalue A = 1 o f  ma t r i x  H I H 2 " .  H e - i l l s  is equal to 

(1.2 . . . . .  ( t - -1)*es) l  _ ( I .2  . . . .  * ( s 1 6 3  
Ph J" - {vh ~, 

where {p~)} denotes the set  of canonical correlations of  factors.  

PROOF. We follow analogue s ta tements  of Theorem 3 in Bdrubd et al. (1993). By 
the equation II in Lemma 2.1, we have 

(3.1) [AI - H 1 H 2 . . .  He - lHes[  

= - H H2... + H ls)l 

= - H i . . .  ge-lg l 

• II -- (AI -- H I H 2 . . .  H g _ I H s ) - I H I H 2  . ." Ht-xH~[s  [ 

where A is not eigenvalue of H1 .." H e - i l l s .  Since t i . j  = 0 the matrices Hi, Hj  are com- 
muting,  B4rubd et al. (1993), and the mat r ix  H I H 2  . . -  H e - I H ~  is idempotent .  Moreover, 
by the equat ion (2.3) and II in L e m m a  2.1 we have 

Hsj  = Hj  - H Hj. 

Thus 

(AI - H1 " .  H t - I H s ) H I H 2  " , . H e - I H t i s  = AH1H~ . . . H t - lHe[~  

due to HsHels = Hs(He  - H s H t )  = 0. Therefore the equation (3.1) is equivalent to 

[ A I -  H I H 2 . . .  H e - l i l t s [  = [AI - H 1 H 2 . . .  H e - x g ~ l [ I  - A-1H1H2 - ' -  ge- iHe l~[  

(3.2) = IAI - B I B 2 . . .  ge - lHe]s [  
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where q -- u l .2  ..... (e-1).8. On the o ther  hand  

H 1 H 2 " "  Hs = H 1 H 2 " "  H~-IH~js - H1 " "  He- lHsHels  

= H I H 2 . . .  H~-2(He-1 - H~-IH~)Hels 

= H1 . . .He-2He_l l sHels  

-- HllsH21s "" He-llsHels . 

Hence, we obta in  the required result,  by 

IAI - H I . . .  He- l i l t s [  = IAI - Hlls ' " HeI~I. [] 

Now, if one factor, say k, is pairwise or thogonal  to all of the  o ther  factors,  the  nex t  
relat ionship arises. 

COROLLARY 3.1. Let k E { 1 , . . . , g - 1 }  and let ts.i  = O, for  i = 1, 2 , . . . , g -  l ,g ,  
and t i . j  = O, for  i , j  = 1, 2 , . . . ,  g - 1, g, j > i, with i , j  # k, then the difference 

_ p ( 1 , . . . , ( k - 1 ) , ( k + l )  . . . . .  e*kls) {p(h 1 .... *(k-1)*(k+a) . . . . .  ~*ks) } { h } 

is equal to the algebraic multiplicity of eigenvalue A = 1 of matrix 

H1 . - .  H~-IHk+~ . - .  Hs 

Moreover,  at  once from (3.2) the following result  is obtained:  

COROLLARY 3.2. Let ts . j  = 0, for  j = 1 , . . . , g ,  and t i . j  = O, with j > i, where 
i , j  = 1 , . . . , ~ ,  then, 

{ ,~(1.2. .. . .  (s163 ^(1.2 . . . . .  (s 
t~h } -- {Vh $ = Ul*2 .... *(~- l )*s  -- Ul*2 . . . . .  (g-2)*t~*s 

is equal to the difference of algebraic multiplicities of eigenvalue A = 1 of matrices 
H I H 2 . . .  H e - i l l s  and H I H 2 . . .  H(e_2)HeHs. 

The  proof  is similar of T h e o r e m  3 in B~rub~ et al. (1993). 
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