
Ann. Inst. Statist. Math. 
Vol. 56, No. 4, 631-654 (2004) 
Q2004 The Institute of Statistical Mathematics 

TYPES OF LIKELIHOOD MAXIMA IN MIXTURE MODELS AND THEIR 
IMPLICATION ON THE PERFORMANCE OF TESTS* 

WILFRIED SEIDEL 1 AND HANA SEV~.iKOV/~. 2 

1Fachbereich Wirtschafts- und Organisationswissenschaften, Helmut-Schmidt-Universitdt Hamburg, 
D-22039 Hamburg, Germany, e-mail: Wilfried.Seidel@unibw-hamburg.de 

2Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195, U.S.A. 

(Received May 23, 2003; revised November 25, 2003) 

A b s t r a c t .  In two-component mixtures of exponential distributions, different 
strategies for starting the likelihood maximization algorithm converge to different 
types of maxima. The power of an LR test of homogeneity against such a mixture 
strongly depends on the considered strategy, and global maximization need not result 
in the largest power. An explanation is given on basis of a systematic investigation 
of the likelihood function in a large number of simulations, using a variety of diag- 
nostic tools. Thereby, we also gain a deeper insight into the properties of the samples 
that  generate particular types of solutions of the likelihood equation. In particular, 
"spurious solutions" often occur; these are mainly responsible for the fact that global 
maximization may not result in a statistically meaningful estimator. Removing the 
smallest elements of a sample may drastically increase the power of previously inferior 
strategies. 

Key words and phrases: Mixture models, likelihood function, likelihood ratio tests, 
multiple maxima, likelihood equation, spurious solutions, EM algorithm, starting 
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I. Introduction 

In mix tu re  models with restr icted number  of components ,  the likelihood funct ion 
may  have multiple local maxima.  Examples  are given in McLachlan and Peel  (2000). 
For calculat ing local maxima,  the EM algor i thm is often applied. This  is an i terat ive 
algori thm tha t  needs a s tar t ing point.  The  possible existence of mult iple max ima  implies 
tha t  the choice of its initial value(s) is an impor t an t  issue. This problem has been t r ea ted  
by several authors;  for recent discussions, see for example Biernacki et al. (2003) or Karlis 
and Xekalaki (2003). 

On the o ther  hand, one might be led to the wrong conclusion tha t  there  are several 
local max ima  if the maximizat ion  m e t h o d  does not  work well enough. Karlis (2001) 
gives an example  of a sample from an exponent ia l  mixture ,  where at first glance the 
likelihood funct ion seems to have several very  different local max ima  (reached from 
different s tar t ing  values). However, if the  EM is run  for a large number  of addi t ional  
i terations,  all s tar t ing values finally converge to the same est imator .  This  observat ion 
indicates tha t  the flatness of the likelihood funct ion in cer ta in  areas is an addi t ional  
source of the  unpleasant  behaviour  of l ikelihood maximiza t ion  in mix ture  models. 

*This research has been supported by a grant from the Deutsche Forschungsgemeinschaft. 

631 



632 WILFRIED SEIDEL AND HANA SEVCIKOVA 

These shortcomings have implications on the statistical performance of likelihood 
methods. For example, in Seidel et al. (2000a), the likelihood ratio test for homogeneity 
against two-component mixtures of exponential distributions is investigated by simula- 
tion. Under the alternative hypothesis, the likelihood is maximized by the EM. It is 
demonstrated that  its starting value and also the type of stopping rule applied strongly 
influence the empirical properties of the test. 

One might argue that these observations are not surprising, as a statistical proce- 
dure that is not based on the true likelihood maximum clearly has inferior properties. 
However, it is shown in Seidel et al. (2000b) and in more detail in Seidel et al. (2000c) 
that global maximization does not result in the best test. 

As subglobal likelihood maximization may give better  results, it seems to be advan- 
tageous to define a likelihood ratio test in terms of the maximization algorithm. If the 
latter is properly specified, the test statistic has a well defined theoretical distribution 
under each parameter value, therefore critical values and the power of such a test are 
well defined theoretical concepts. Although only the empirical behaviour of the tests 
has been studied in our simulation experiments, the differences between the considered 
variants are so evident for the observed phenomena that our conclusions seem to hold 
also for the theoretical behaviour. However, a satisfactory explanation was still missing. 
Such an explanation is given here. 

It has already been observed in Seidel et al. (2000b) that the inferiority of certain 
tests might be caused among others by spurious solutions of the likelihood equation, 
resulting in artifactual components. This conjecture is strongly supported by the obser- 
vations reported here. There is a typical pattern in samples from mixtures of exponentials 
that causes such spurious components, and removing the smallest elements of a sample 
may drastically increase the power of previously inferior strategies. 

These and other features of likelihood functions are investigated here in a systematic 
way in a large number of simulations, using a variety of diagnostic tools. Thereby, we 
gain a deeper insight into the different kinds of solutions of the likelihood equation in 
two-component mixture models, into the properties of the samples that create these 
solutions, and into the implications on the behaviour of likelihood ratio tests. Similar 
observations were made in other mixture models, too. In particular, it follows from our 
studies that the global maximum of the likelihood function is not always a statistically 
meaningful solution of the likelihood equation. 

2. Likelihood ratio tests for mixtures of exponentials 

2.1 The mixture model 
For x > 0, let 

1 - x / 0  
(2.1) f ( x ,O)  : -oe " 

denote the density of the e x p o n e n t i a l  d i s t r i b u t i o n  with expectation 0 > 0. The 
density of the m i x t u r e  of m exponential distributions f ( x ,  01) , . . . ,  f ( x ,  Ore) with mixing 
weights P l , . . . , P m  (0 < pj <_ 1) is given by 

m 

f ( x ,  P)  = E p j f ( x  , Oj), 
j = l  
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the  mat r ix  

,=(:: ::) 
denotes the pa rame te r  of the  mixture .  Suppose tha t  X l , . . . , X n  is the ou tcome of a 
r andom sample of size n with respect  to some observat ion X.  The  log likelihood of P is 

(2.2) l(P) = ~ log f (x i ,  P). 
i=1 

For rn = 1, we obta in  a homogeneous  popula t ion  wi th  pa rame te r  8 = 81 ;  here, the log 
likelihood is wr i t ten  as l(8). 

We are especially interested in the likelihood rat io  test  of the null hypothes is  of 
h o m o g e n e i t y ,  namely tha t  X ,.~ f (x ,  8) for some 8, against the a l ternat ive  hypothesis  
tha t  the dis t r ibut ion of X is a t w o - c o m p o n e n t  m i x t u r e  of exponent ia l  dis tr ibut ions,  
X ,.o f (x ,  P) for some P with rn = 2. For m = 2, we usually set p = Pl.  T h e n  P2 = 1 - p 
and P can be wri t ten  as 

P = ( 8 1 , 8 2 ,  P ) .  

Note tha t  the  pa rame te r  P of a t rue  two-component  mix ture  (i.e., 81 ~ 82 and 0 < p < 1) 
is identifiable in the sense tha t  the only pa ramete r  /5 tha t  describes the same mix tu re  
is obta ined from P = (81,02, p) by "label switching",  namely  t5 = (02,01, 1 - p). Th e  
s i tuat ion is different for a homogeneous  popula t ion  with pa rame te r  0, say: it is descr ibed 
by all mixtures  wi th  pa rame te r  P = (01,02, p) and 

(2.3) (81  = 8 and p = 1) or (82 = 8 and p = O) or (81 = 82 = 8). 

Under  homogeneity,  the log likelihood I(8) is maximized by 0 = 7, the sample mean. 
Under  the al ternat ive hypothesis ,  a l i k e l i h o o d  e s t i m a t o r / 5  of P is a pa rame te r  va lue  
tha t  is defined in a par t icular  way in terms of l(P), a special kind of a local maximizer ,  
say. Any local maximizer  t5 in the  interior of the pa rame te r  space satisfies the  l i k e l i h o o d  
e q u a t i o n  (01/081,01/082, Ol/Op)(/5) = 0. Let  

(2.4) ri(8, P) - f(x(i),  8) 

and 

n 

(2.5) S(O,P) = E Ti(8, P), 
i=1 

w h e r e  x(1 ) < x (2  ) _< - . -  _< X(n ) denotes  the  ordered sample. Using these expressions, the 
likelihood equat ion can be rewr i t t en  as 

( 2 . 6 )  = x(i)ri(Oj,/5) 
S(Oj,/5) j = 1,2 
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and 

(2.7) b = 

This form of the likelihood equation is often used in mixture modelling as a starting 
point for deriving the EM algorithm, see for example Lindsay (1995), Subsection 3.2 or 
McLachlan and Peel (2000), Subsection 2.8.1. We additionally arrange the terms in the 
sums in the order of the elements x(i), this will be useful in the discussion of spurious 
solutions. 

The likelihood ratio test is based on the difference dn of the log likelihoods of /5  and 
0. For bet ter  comparison to critical values reported in the literature, we consider as test 
statistic 

(2.8) 2dn = 2[/(/5) - / (0 ) ] .  

In standard statistical models, this test statistic has a xU-distribution. However, in 
mixture models this is no longer true. The nonidentifiability of the model under the null 
hypothesis implies a breakdown of the regularity conditions for the classical asymptotic 
theory, this is discussed among others by Ghosh and Sen (1985) and by Lindsay (1995). 
Here also exact theoretical results are developed for certain special cases. For example, 
in the article by Ghosh and Sen (1985), the limiting distribution for 2dn in a model 
of normal mixtures is derived under a strong separation condition and a compactness 
assumption for the parameters. On the other hand, Hartigan (1985) shows that without 
the compactness assumption 2dn is asymptotically infinite. A variety of asymptotic 
results has been derived under special conditions or in restricted models, see for example 
McLachlan and Peel (2000). It has been claimed that the separation condition of Ghosh 
and Sen (1985) can be removed. In fact, without assuming such a condition, Dacunha- 
Castelle and Gassiat (1999) show that 2dn converges for a rather general class of models 
to a Gaussian process indexed by the closure of the convex cone of directional score 
functions. This generalizes also the results of Lindsay (1995). Their approach, however, 
does not lead to optimal assumptions. Essentially the same limiting distribution is 
obtained in a more general setting in Liu and Shao (2003). 

2.2 The EM algorithm 
A standard algorithm for maximizing the likelihood function in mixture models with 

finite number of components is the E M  a l g o r i t h m ,  see B5hning (2000) or McLachlan 
and Peel (2000). It is an iterative algorithm that starts from some externally chosen 
initial value pO o o = (ok, O~,pk), k C IN, of = (01,02,p ~ and generates a sequence pk 
improved estimates. It can be derived from the likelihood equation; in our situation of a 
two-component mixture of exponentials, pk+l  can be computed from pk by substituting 
pk into the right-hand side of equations (2.6), (2.7). This results in the iteration 

(2.9) 0 +1 vj S(O],pk)  , j = 1,2, 

(2.10) pk-I-1 = (pk /n)S(Okl , pk). 

The sequence (l(Pk))ke~ is nondecreasing. For stopping the iteration, we apply a crite- 
rion based on d i r ec t i ona l  de r iva t ives ,  see B6hning et al. (1994) and Lindsay (1995): 
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S(0, P)  - n has the properties of a directional derivative of l ( P )  in the direction of 0. 
Let acc > 0 be a given level of accuracy. In the same way as in the algorithm described 
in B5hning and Schlattmann (1992), we stop the iteration at i 6 -- pk  if 

(2.11) max{S(0~, p k )  _ n,  S (0~,  p k )  _ n }  < n .  acc and k _> 3. 

For simulating the quantiles and power of likelihood ratio tests, we chose in previous 
studies acc = 10 -5 and set the maximum number of EM iterations to 5000. However, 
for the more detailed investigation here, we choose acc = 10 -11 and set the maximum 
number of EM iterations to 100 000. The only exception is the mul t i s tar t  strategy (see 
below), which would lead to an extremely slow algorithm. A detailed discussion of the 
choice of accuracy can be found in Seidel and Sev~fkovs (2002b). 
2.2.1 Star t ing  values 

We consider the following starting strategies: 
�9 m i n m a x :  p o  o = PmUinma~ = (x(1), x(n), 0.5), resulting in an estimator/Sminm~• 

�9 mean:  p0 = POea n = (0.55, 1.5~, 0.5), resulting in an estimator Pmean- 
�9 mul t is tart :  This strategy is based on a version proposed by BShning (2000) (p. 69, 

"Gold Standard") with a modification described in Seidel and S e v ~ o v s  (2002b), it uses 
64 starting values. 

�9 m a x i m u m :  the EM is started from both P~ and Pm0ean . Then Pmaximum is 
the element of {tSminmax, Pmean} with the larger likelihood. 

BShning and Schlattmann (1992) claim that initial values with p = 0.5 and well 
separated parameters 01 and 02 often yield the global maximum, therefore they propose 
to use m i n m a x  as a possible starting value. The mul t i s tar t  strategy is an approximation 
to global maximization. We found that in exponential mixture models, m a x i m u m  results 
in tests with nearly the same quantiles and power as mul t i s tar t .  Therefore in this paper, 
we address m i n m a x  and m e a n  as representatives of a large variety of possible starting 
values. 

2.3 P e r f o r m a n c e  o f  the tests  
In Seidel et al. (2000a, 2000b) and, in more detail, in Seidel et al. (2000c), the 

performance of different versions of the likelihood ratio test for homogeneity is analyzed. 
For the starting strategies of Subsection 2.2.1, the theoretical distribution of the test 
statistic 2dn (eq. (2.8)) under the null hypothesis does not depend on the parameter 0. 
In the papers mentioned above, simulated critical values of a level c~ test, i.e., the i - c~ 
quantiles of 2dn, are shown for different sample sizes and several levels c~. The quantiles 
based on m i n m a x  are always (considerably) larger than the quantiles based on mean ,  
consequently m i n m a x  has bet ter  optimization properties under the null hypothesis. Of 
course, mul t i s tar t  results in the largest quantiles. 

For mixing proportions p ~ {0 .1 , . . . ,  0.9}, the power of the tests based on different 
starting strategies has been simulated for P =- (01,02, p) with 01 = 1 aS a function of 02, 
02 > 1. Some typical power curves are shown in Figs. 1 and 2 (e = 0) in Subsection 3.2. 
Usually, the following ranking of the strategies is observed (Fig. 1): m e a n  has the largest 
power, m i n m a x  has the smallest power and is often strongly inferior. This seems to be 
somewhat surprising, as under the null hypothesis, m i n m a x  has much better  optimization 
properties than mean .  Perhaps the most striking result is that  globM maximization, 
represented by mul t i s tar t  or m a x i m u m ,  has always smaller power than m e a n ,  often it is 
considerably worse. We shall refer to this ranking as the "typical behaviour". 
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Lower contamination models, here represented by p = 0.1 and 02 > 1, behave 
differently for small sample sizes, as Fig. 2 (e = 0) in Subsection 3.2 shows. For 02 _< 10, 
the typical behavior is observed. However, for 02 _> 20, mean has a smaller power than 
minmax;  here, m a x i m u m  is the best strategy. 

3. Spurious components 

In former studies we observed that  the striking behaviour of likelihood ratio tests 
may be caused by the occurence of "spurious local maximizers" of the log likelihood, 
where an "artifactual" mixture component is fitted to a small group of sample points. 

3.1 Properties in exponential mixtures 
In samples from exponential distributions, often extremely small data points occur. 

In such cases it is quite common that  a sharp local maximum exists at a parameter 
/5 with a very small first component 81 having a small mixing weight i5 and a second 
component 02 near 5. However, this is not a parameter that  describes a homogeneous 
population in the sense of equation (2.3); typically, l(/5) > l(~) holds. In samples from 
homogeneous populations, there is often a global maximum in such/5. 

In the described situation, the first component of /5  is "spurious" in the sense that  
it does not correspond to a genuine group in the population from which the sample is 
drawn. Here, such/5 is called a "spurious local maximizer" or a "spurious solution of 
the likelihood equation". Of course, each component of an estimator /5 that  does not 
correspond to a component in the population is in some sense "spurious". However, we 
will reserve this term only for components which are fitted to a small number of "extreme" 
data points. Such phenomena have been observed in mixtures of normal distributions, 
see for example McLachlan and Peel (2000): a component with a very small (generalized) 
variance is fitted to a small group of data points located close together. This is similar 
to the situation considered here, as an exponential distribution with a small parameter 
01 has small variance, too. However, we observed spurious components also in mixtures 
of location families of normal distributions with fixed variance, in which a separate 
component was fitted to one or two small or large outliers. 

The character of a spurious estimator /5 in a mixture of exponentials can be de- 
scribed in more detail. Here, we give only a crude heuristic characterization, which 
nevertheless contains essential features of a possibly finer analysis. In samples with 
small x0) , there is often a (small) index p such that  the first p order statistics are much 
smaller than the following elements (x(p+l) ~ 10x(p), say). We shall refer to these ele- 

ments as "small outliers". T h e n  81 is usually approximately the mean of the group of 
small outliers, 15 is proportional to the size of this group and 02 is approximately equal 
to the mean of the remainder of the sample. In this sense, /5 fits a spurious mixture 
component to the group represented by 81. 

To give a heuristic motivation of the existence of a solution of the likelihood equation 
of this type, we define wi(O1,02) = (01/02)exp((x(i)/Oi) -- (x(i) /02)).  Then Ti(O1, P)  = 
1/~o + (1 - p)wi(O1,02)] and Ti(02, P) = 1/[1 - p + p/wi(O1,02)]. Suppose that  a sample 
with p small outliers is given and consider a parameter P such that  x(1) _< 01 _< x(o ) 
and 02 is large compared to x(p). Then 01/02 is very small. If the first p elements are 
located close together and if X(p+l) is much larger than x(p), we obtain in the limit (see 
Example 3.1 and, even more pronounced Example A.1 in Appendix A): 
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�9 For i <_ p, exp((x(,)/01) - (x(,)/02)) .-~ exp(1), therefore wi(01,82) ~'~ 0, 7-/(81, P)  
1/p and ~-~(82, P) ~ 0. 

�9 For i > p, x(o/#l  is large and exp((x(0/81 ) -  (x(,)/02)) is large compared to 81/02, 
therefore w,(81,82) is large. Consequently, Ti(81, P) ~ 0 and Ti(82, P) ~ 1/(1 - p ) .  

With these expressions, we obtain approximate likelihood equations with solution 
(0~, #~,p*) as follows: 

Equation (2.7), writ ten as n = S(0~, P), has approximately the form n = p/p with 
solution p* = p/n. Equations (2.6) give approximately 

P 1 P E i = I  X ( i ) / P  __ 

0~ - y]ip= 1 1/p p Z...,,=I 
x(i) 

and 

n . E ~ n ~ + l X ( , ) / ( 1  - p) 1 ~ x(,). 
02---- ~-]in__p+ll/(1-p) -- n -  p,=#+, 

Let 15 __ (/}1,~}2,/~) ~ (0~,0~,p*). Then for small i, 

f(x(i),/5) __ (P/01) exp(-x(0/ t}l)  + ((1 - P)//}2) exp(-x(0/t}2) 

"~ (P/Oi)exp(-l) + ((i -P)/02)exp(0) 

is of magnitude P/01, and therefore the first terms in the sum defining l(/5) (eq. (2.2)) 
are large. The remaining terms are of the same magnitude as log f(x(i), ~), which is the 
contribution of x(,) to the log likelihood of ~ under homogeneity. 

Moreover, in a sample of the considered type, the EM with starting strategy minmax 
usually converges to the spurious maximizer P. This will be discussed later, but it can 
also be made plausible by applying the above approximations to the EM iterations: For 
p0. mmmax = (x(1), X(n), 0.5) we obtain after one step: 

n Y ] i = l  x ( 0 / 0 " 5  1 , o~ = E , = I  x(,)~,( o~ p0)  p 
E i = I  n ( e l ~  P ~  ~ P = -- E X(i) = 81 '  n E , = I  1/0.5 P /=1 

n 

81 --__ Ein=l X(i)Ti(oO, p ~ }--],n__p+ 1X(/)/0.5 1 E X(/) = 0~ 

E , \ I  ~ (  8~ po)  ~ E , : , + I  1/o.5 - n - p ,=~+1 

and 

pl 05fi 05 1 
= _ _  ~_i(0 o, pO) ~ ~ i=1 0.5 n 

n i=1 

- -  p * .  

Example 3.1. (Three small outliers) We discuss the properties of a parameter  es- 
t imate that  fits a spurious component to the first three order statistics. An additional 
example for a highly pronounced spurious estimate is given in Appendix A. We con- 
sider a particular sample of size n = 200 from a homogeneous population (0 -- 1) with 
x(1) = 0.000155 and 5 = 1.0308. Observe that for such a sample, the expectation of x(1) 
is 1/n = 0.005, therefore x0) can in fact be considered as small. 
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Table 1. Contribution of sample points to likelihood equation at Pminmax and to the log likelihood. 

1 0 . 0 0 0 1 5 5  0 .000542 71.460227 0.038756 3 . 2 0 6 4 3 8  --0.030485 
2 0 . 0 0 0 1 6 3  0 .000554 71.401761 0.039554 3 . 1 8 6 0 5 9  --0.030493 
3 0 . 0 0 0 9 1 3  0 .004098 57.138012 0 .234145 1 . 4 0 7 0 6 2  --0.031220 

~1,2,3 7.799558 --0.092197 
4 0 . 0 0 8 8 6 4  6788651.8 0.00000015 1.013642 -0.065914 -0.038934 
5 0.010777 1.1 X 109 0.0 1 .013642  -0.067745 -0.040790 

200 5.831890 c~ 0.0 1 .013642  - -5 .638952  --5.687974 

~rem --208.621691 --205.974668 
~tot  --200.822133 --206.066866 

The  est imators  a r e / h m i n m a x  = (0.000375, 1.044857, 0.013459) wi th  likelihood differ- 
ence 2dn -- 10.4895 and/hmean = (1.0308, 1.0308, 0.45) with likelihood difference 2dn = 0. 
Table 1 shows the order statistics x(0 as well as the quanti t ies wi(01,~2), ~-~(01,/5) 

and T~(~2,/5) for the first indices i wi th  /5 = /hminm~x. In addit ion,  the contributions 
li(/5) = l o g f ( x ( 0 , / 5 )  of x(0 to the log likelihood I(/5) fo r /5  -- /hminm~x a n d / 5  =/hme~n 
axe shown. 

Clustering the sample points according to the Bayes criterion wi th  respect to 
/hmi,max (see Subsection 5.2.2) allocates the three smallest sample points to the first 
component  and the remainder of the sample to the second one. Let  us finally note 
tha t  a clustering of est imators derived from all s tar t ing values of multis tart  (see Subsec- 
t ion 5.1.2) results in two clusters represented by Pminmax and Pmean- 

3.2 Implications on the power of  tests 
The likelihood function of a spurious maximizer 15 in a sample from a homogeneous 

populat ion tha t  follows closely the described pat tern  wi th  p = 2 is displayed in Seidel 
et al. (2000b). There is a sharp local (even global) max imum i n / 5  wi th  the shape of a 
thin needle, i.e., l (P)  is larger t han  l(5) only in a very small neighbourhood of /5 .  In 
the usual plots of the likelihood surface (maximized over p) it is invisible due to a too 
coarse resolution. 

To see if small  outliers really affect the properties of tests, we performed the follow- 
ing experiments:  in 10 000 samples of each of a variety of populat ions (a homogeneous 
and several mixtures),  we removed the first e elements of the ordered sample and cal- 
culated the LR test statist ic for m i n m a x  and mean from the remainder  of the sample. 
Table 2 shows for n = 200 the simulated 1 - a quantiles of the new test  stat ist ic under  
homogenei ty  for several values of e wi th  a = 0.1. 

All quantiles are rapidly decreasing with  increasing values of e. Moreover, the 
(relative) differences between m i n m a x  and mean vanish; for n -- 200 and e = 3, bo th  
are almost equal. For larger values of e, the quantiles of m in m a x  are even smaller t han  
these of mean. For n -- 1000, the quantiles of minmax  are very sensitive to the choice of 
the accuracy level in the stopping rule of the EM (eq. (2.11)), see Seidel and Sev~fkovs 
(2003). 



Table 2. 
sample under homogeneity. 

T Y P E S  O F  L I K E L I H O O D  M A X I M A  IN M I X T U R E S  

1 - a quant i l e s  ( a  = 0 .1)  of  2dn after r e m o v i n g  the  first e e l e m e n t s  of  t h e  ordered  

200 

n e m e a n  m i n m a x  

0 2.627 3.589 

1 2.218 2.290 

3 1.601 1.621 

5 1.172 1.166 

10 0.505 0.493 
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Fig. 1. Power  ( a  = 0.1) as func t ion  of  ~2 for p ---- 0.7 and n ---- 200 after  r emoving  the  first e 

e lements  of the  o rdered  sample .  Left panel:  e = 0 and  1; r ight  panel:  e = 0 and  3. 
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Figures 1-2 show selected simulated power curves for n = 200 and e = 0, 1 and 3. 
The "typical behaviour" is represented by p = 0.7 (Fig. 1). The power of m e a n  is almost 
independent of e. In particular, for e -- 0 and e = 1, the corresponding versions of m e a n  

coincide and dominate the other strategies (left panel). On the other hand, the power of 
m i n m a x  is much larger for e = 1 than for e = 0, and it is almost identical to the power 
of m e a n  for e = 3. 

The power for lower contamination models (p -- 0.1) is shown in Fig. 2. For e = 1 
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and 02 _> 10, minmax has even a larger power than all other strategies for e = 0 and 
e = 1. For large 02 the power of mean decreases in e; for e = 3, it has poor power. 

Similar phenomena can be observed also for n -- 1000 (Seidel and S e v ~ o v ~  (2003)). 
Here, it is in some cases necessary to remove a slightly larger number of elements from 
the sample to achieve a good power also for minmax. In all examples studied so far, the 
power of minmax can be drastically improved by removing low order statistics. 

4. Log likelihood and EM iterations for large populations 

In several simulation studies, we observed that for each particular mixture model, 
the likelihood functions of all samples from the same model seem to have a typical 
"common shape" ; moreover, the sequences of EM iterations corresponding to a particular 
starting strategy seem to follow a typical pattern. To identify this pattern, in this section 
we replace the sample by a large population. 

4.1 Log likelihood 
Suppose that x l , . . . ,  xn is an i.i.d, sample from some distribution G and define 

// Iv (P) = log f (x ,  P)dG(x). 

Then (cf., eq. (2.2)) (1/n)l(P) ~ lG(P) for n --* cx~. Consequently, the log likelihood 
function is for large n approximately proportional to Ic(P), and therefore the function 
P ~ IG(P) represents the theoretical shape of the log likelihood function. We shall refer 
to it as the log likelihood of P given the population G. 

To visualize the log likelihood of P = (81,82,p), we maximize I t (P)  with respect 
to the mixing weight p and display the resulting function IG(01,02). As the likelihood 
function is strictly concave in p, the maximization problem can be solved easily. For 
computational details as well as for the evaluation of the integral in the definition of 
Ic(P), see Seidel and Sev~ov{~ (2002b). 

Homogeneous population. If G is an exponential distribution with parameter one, 
then/horn (01,02) = IG (01,02) represents the "typical" log likelihood under a homogeneous 
population. It is shown in Fig. 3. 

The function /horn(01,02) attains its maximum at the ridge (]0, c~ [ •  
({1} • ]0, c~[), which corresponds to (]0, c~[ • {5}) U ({5} x]0, c~[) in finite samples. There 
are no other local maxima. 

Inhomogeneous population. Figure 4 shows 1G(01,02), where G is a two-component 
mixture of exponential distributions with parameter Q = (1.0, 0.33, 0.7). 

Although this case looks similar to the previous one, this function has two local 
(which are also global) maxima at (01,02) = (1.0, 0.33) and (0.33, 1.0). 

4.2 Theoretical behaviour of the EM 
To evaluate the typical sequence of EM steps for different starting strategies, we shall 

replace in the spirit of Subsection 4.1 the sample by the whole population. Consider the 
EM iteration defined by eqs. (2.9), (2.10) and suppose again that  x l , . . . ,  xn is an i.i.d. 
sample from some population G. Define 

pk I c)  = r i f(x, e]) dG(z) 
f(x,  pk) Jo 
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Fig. 3. A "typical" log likelihood under a homogeneous population. 

Fig. 4. Log likelihood of a two-component mixture with parameter (1.0,0.33,0.7). 

and 

xf(x,O ) 
m(j, pk I G) = dG(x). 

f(x,  pk) 
T h e n  it follows similarly to Subsect ion 4.1 tha t  the EM i terat ions can be wr i t t en  ap- 

k+l pk pk pk+l proximate ly  for large n as 0y ---- re(j, I G)/~-(j, I G) and = pkT(j, pk I G). 
We refer to these i terat ions as the popula t ion  version of the  EM. For evaluat ion of the 
integrals, see again Seidel and Sev~l"kovs (2002b). 
4.2.1 Examples 

If the EM is s ta r ted  from different initial values, it moves into different direct ions 
which are specific for the par t icu lar  s tar t ing  value. This  behaviour  can be s tudied very  
clearly by considering the popula t ion  version of the EM. 

In a par t icu lar  example,  we consider the strategies minmax and mean for a homo- 
geneous popula t ion  wi th  pa rame te r  0 = 1. Here, the expec ted  value of ~ is E (~)  ---- 1.0, 
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so we represent the strategy mean by the starting value Pmean = (0.5, 1.5, 0.5). 
The expected values of x(1) and X(n) for the considered population depend on the 

sample size n, they are given by E(x(1)) = 1/n and E(x(n)) = 1 + ( 1 / 2 ) + - . .  + ( l /n ) .  We 
consider two sample sizes: n = 200 and n = 1000. The strategy minmax is represented 
by Pminmax = ( E ( x ( ] ) ) ,  E(x(n)), 0.5).  

Figure 5 shows for each starting strategy the coordinates a k (81,82) of the sequence 
pk,  k = 1, . . . ,  1000, of the first 1000 EM-iterations of the population version. The points 
of each sequence are connected by lines. 

In the left panel, the curves representing the versions of the minmax-strategy for 
the two different sample sizes are shown; this is only a zoomed part of the whole plot. 

(81,82) with 80 ~ 0 and 80 "large". Then 8 k Obviously, minmax always starts in a point 0 0 
increases very slowly, whereas 8~ rapidly decreases to 1 ( -- E). Thus, (81 k, 8~) approaches 
]0, c~[x {1} ( --]0, c~[x {E}) very rapidly, where the speed of convergence increases with 
increasing n. 

In the right panel of Fig. 5, EM iterations for the strategy mean are presented in 
comparison to the strategy minmax for n = 200. Apparently, mean starts at (0.5, 1.5) 
and approaches (1, 1) ( = (~,~) in finite samples) almost along the diagonal. 

If there is a spurious maximum with coordinates near (0, E), this is found by minmax, 
but  usually not by mean. 

We observed that in small samples, the EM typically behaves according to this 
scenario, especially in its first steps. However, there are cases, where the direction is 
suddenly changed. Then the convergence becomes very slow for a while, before the 
EM may move faster towards some maximum. For most of the stopping rules used in 
practice, in such cases the EM may terminate before a maximum is reached. 

5. Diagnostic i n s t r u m e n t s  

To investigate the properties of likelihood functions of two-component mixture mod- 
els in a large number of replications, we use a number of automatic diagnostic instru- 
ments. 

5.1 Properties of the likelihood function 
5.1.1 Criteria for local maxima 

To test if the log likelihood has a local maximum at some point /5, we use two 
types of criteria: an analytic criterion based on first and second order derivatives, and 
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a criterion based on function values only. Within certain tolerances, both are sufficient 
criteria for the existence of a strict local maximum near/5.  

In particular, the analytic criterion gives us the information i f /5  is a stationary 
point or not, and if there is a local maximum, minimum or a saddle point a t / 3  or if no 
decision about a local maximum at t5 can be made on basis of the second order criterion. 

The other criterion evaluates l(P) on a grid defined on a small cube around /5. 
If 1(/5) is larger than l(P) for all P on the surface of the cube, then according to the 
criterion there is a strict local maximum in the interior of the cube (not necessarily at 
/5). If there is a grid point P with l(P) > l(/5) + 10 -1~ then according to the criterion, 
there is no local maximum at /5.  Detailed information about the implementation of both 
criteria can be found in Seidel and Sevh~ovs (2002b). 

As neither criteria is reliable in all situations, we state that  there is a strict local 
maximum only if it is indicated by both criteria. Moreover, there are local maxima which 
cannot be strict ones. For example, if 81 -- 82 = 5, then each value of p yields the same 
likelihood. If there is a local maximum in such a point, it cannot be strict. 
5.1.2 Clustering the results of multistart 

The multistart strategy defined in Subsection 2.2.1 uses 64 starting values which 
converge to 64 points /5i ~̂ ^i ^i = (81,82, p ). Some of these may be approximately equal. 
These form a cluster, where it is taken into account, that  for 81 -- 82, the parameter 15 
is irrelevant. Such clusters may be used as an indicator for possible local maxima of the 
likelihood function. 

Note that  P = (5, 5, 0.5) is one of the starting points. As this is a fixed point of the 
EM, there is always a cluster that  contains P,  even if it does not correspond to a local 
maximum. 

5.2 Properties of the sample 
5.2.1 NPMLE 

To get an idea of the nature of possible groups in the data, we calculate for each 
sample the nonparametric maximum likelihood estimator (NPMLE, cf., Bhhning (2000) 
or Lindsay (1995)). The NPMLE maximizes the log likelihood in the space of all mixing 
distributions. There is always a version with finite support, denoted here by /hNPMLE. 
To calculate /~NPMLE for mixtures of exponentials, we use the Intra-Simplex Direction 
Method (ISDM, Lesperance and Kalbfleisch (1992)) in combination with an improved 
method to maximize the gradient function (Seidel and S e v ~ o v s  (2002a)). 
5.2.2 Clustering of sample points 

According to the heuristic arguments in Section 3, spurious components should occur 
if for a small value of p, the first p elements in the ordered sample form a cluster that  is 
well separated from the other points. As an indicator for such samples, we cluster the 
sample points according to the Bayes criterion (McLachlan and Peel (2000), Subsection 

1.15.2) with respect to /hminmax : (~1, ~2,15)- This induces an allocation of the sample 
points to groups gt corresponding to St, t = 1,2, as follows: x(0 is allocated to gl, 

if 151f(x(i),~1) > 152f(x(~),~2), otherwise to g2. If Pminmax corresponds to a spurious 
maximum, gl should consist of the first p elements for small p. 

6. Simulation study, overview 

We simulated 10 000 samples of size n -- 100, 200 and 1000, respectively, from a ho- 
mogeneous population with parameter 8 = 1, a mixture with parameter P = (1,0.33, 0.7) 
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Fig. 6. Quantiles of 2dn as function of 7r under homogeneity, n = 200, on the set of all 
replications (last values are shown in the table). 

and a mix tu re  wi th  pa ramete r  P -- (1, 30, 0.1). For each sample, the  estimators/hminma• 
/~mean, /~NPMLE and their  likelihoods were calculated; for n -- 100 and n = 200 also 
Pmultistart. For strategy = m i n m a x , . . . ,  we shall write dn(strategy) for the  correspond-  
ing log likelihood difference. 

In the following, we show the most  impor tan t  results for n -- 200. For n -- 1000, 
the same phenomena  can be observed (exceptions will be s ta ted  explicit ly),  cf., Seidel 
and S e v ~ o v ~  (2003). Here also more detai led results for n = 200 can be  found. 

6.1 Null hypothesis, quantiles 
Figure  6 shows the s imulated quanti le  functions of 2d,~, i.e. the  functions tha t  assign 

to each ~ E (0, 1) the ~-quantile,  for the  strategies minmax, mean and multistart on the 
set of all replications under  homogeneity.  Here, 2dn(minmax) is in fact s tochast ical ly  
larger t ha n  2dn(mean); 2d,~(multistart) is still somewhat  larger t h an  2dn(minmax).  

To explain the  differences between the distr ibut ions of the test  statistics,  we consider 
cer ta in  subsets of the set 12 of all replications. Let  meanO (minmaxO) denote  the  set of 
all replicat ions where 2dn ~ 0 for mean (minmax). Moreover,  we define 

�9 A -= meanO N minmaxO, 
�9 B = meanO \ minmaxO and 
�9 C = ~ \ m e a n O .  

For an overview of all sets defined here and in the following, see Fig. 15 in Append ix  B. 
For n = 200, set A has 2003 elements,  minmaxO has 2231 elements and B has 3656 
elements. In part icular ,  this means tha t  a l though minmaxO is not  a subset  of meanO, 
most elements  of minmaxO also belong to  meanO. 

Figure 7 shows the quanti le  functions on set B (left panel) and on set C (right panel) .  
On the set B (2d~(mean) approximate ly  zero), 2dn(minmax) and 2dn(multistart) can 
be  very  large. In fact, for a = 0.1, 0.05 and 0.01, over 30% of the replicat ions for which 
2d~(minmax) exceeds its (1 - a ) -quant i le  come from the set B.  On the o ther  hand,  on 
the set C the distr ibut ions of 2dn(minmax) and 2dn(mean) are a lmost  equal. 

We modified the  s t ra tegy  minmax by assigning the value zero to 2d~(minmax) on 
the set meanO. After  this modification,  minmax had on ~ for all considered sample sizes 
nearly the same quantiles as mean. Consequently,  the set B seems to be in a cer ta in  
sense the source of the differences between the quantiles of mean and minmax, therefore  
it should be  investigated more closely. 
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Fig. 7. Quantiles of 2dn as function of 7r, n -- 200, under  homogeneity. Left panel: set B. 
Right panel: set C. 

However, the set C is of interest, too. Whereas the distributions of the test statistics 
corresponding to mean and minmax are almost identical here, the estimators themselves 
and even their likelihoods may be completely different. For a closer analysis, we split 
the set C into subsets C1-C3 according to the following criteria: 
C l :  Pminmax ~'~ Pmean and /(/)minmax) ~'~ / ( /~ 

C 2 :  / (Pminmax)  > /(P~mean), 

C 3 :  / (Pminmax)  < / (Pmean) ,  
see Fig. 15 in Appendix B. For defining C2 and C3, only elements of C \ C1 are 
considered. The set C1 consists of 1651 elements, whereas [C2[ = 1204 and [C3[ = 1486. 

On each of these sets, the likelihood differences can be large. For a = 0.1, 0.05 and 
0.01, 50% of the replications for which 2dn(rnean) exceeds its ( 1 -  a)-quantile come from 
the set C1, 10% from C2 and 40% from C3. For 2dn(minmax),  more than 30% come 
from C1, about 30% from C2 and also a few replications come from C3. 

In particular, the set C2 U C3 is of interest, as the test statistics 2dn(minmax) 
and 2dn(mean) are different here. In fact, they are almost independent, see Seidel and 
Sev~ovA (2003). The correlation coefficient between both on this set is 0.26. 

A closer analysis of the samples, the likelihood functions and the estimators in the 
considered sets are given in Section 7. 

6.2 Alternative hypotheses 
The quantile functions of 2dn for mean, minmax and maximum (representing global 

optimization) for n = 200 are shown in Fig. 8 for a mixture with parameter P = 
(1, 0.33, 0.7) (left panel) and with P = (1, 30, 0.1) (right panel). 

For P = (1, 0.33, 0.7), mean is in contrast to homogeneity now stochastically larger 
than minmax and maximum has nearly identical distribution as mean. On the other 
hand, the quantiles of mean under the null hypothesis are smaller than these of minmax. 
These two facts explain the larger power of mean. In fact, mean exceeds the minmax- 
quantiles even (much) more often than minmax exceeds the minmax-quantiles. On the 
other hand, the quantiles of maximum are larger than those of mean, and as maximum 
is stochastically almost equivalent to mean, it has smaller power. This explains the 
"typical behaviour". 

For P = (1, 30, 0.1) and n = 200, 2dn(mean) is zero with probability 0.087, whereas 
2d,~(minmax) is larger than zero almost everywhere. Therefore, the quantile function 
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of 2dn(mean) is smaller than tha t  of 2d~(minrnax) for small values of ~. For increasing 
~r, however, it increases faster than  the latter,  crosses it and then remains larger. For 
c~ = 0.1 and 0.05, the critical values are so small tha t  they are exceeded more often by 
minmax than  by mean, whereas for c~ = 0.01, mean has again the larger power. 

In the following sections, we present a detailed s tudy  of the reasons for the observed 
behaviour  of the considered strategies for n = 200. 

7. Analysis of particular sets of samples 

7.1 Additional sets 
7.1.1 Set B 

Consider the intervals I ( 1 ) , . . . ,  I (5)  = [0, 2[, [2, 4[, [4, 6[, [6, 8[, [8, co[. We split the 
set B into subsets  B 1 , . . . ,  Bh,  where Bi is defined as the set of replications for which 
2d,~(minmax) E I(i), see Fig. 15 in Appendix  B. The  sets B 1 , . . . ,  B5  consist of 2872, 
516, 169, 64 and 35 replications. 
7.1.2 Alternative hypotheses 

For each of the parameters  P = (1, 0.33, 0.7) and P -- (1, 30, 0.1), we split the set 
of all replications into three subsets:  
E:  /~minmax ~ /~mean and l(/~minmax) ~ l(/~mean). 

E has 4990 elements for P ---- (1,0.33, 0.7) and 6747 elements for P -- (1, 30, 0.1). 
D:  The  complement  of E,  w i t h  the  subsets  

n h  l (Pminmax)  > / ( P m e a n )  
(1302 elements for P -- (1, 0.33, 0.7) and 1553 elements for P -- (1, 30, 0.1)), 

n 2 :  l (Pminmax)  < l (Pmean)  
(3708 elements for P = (1, 0.33, 0.7) and 1700 elements for P -- (1,30, 0.1)), 

see Fig. 15 in Appendix  B. The  quanti le functions of 2dn for mean, minmax on the 
different sets are shown in Fig. 9 for the mixture  with paramete r  P -= (1, 0.33, 0.7) and 
in Fig. 10 for P = (1, 30, 0.1). 

7.2 Classification of sets 
A first group is cons t i tu ted  by  the sets of replications where/5,~i~max ~ /5mea ~ or 

at least l([~minm~x) ~ l(Pme~). Consequent ly  this group consists of the sets A, C1 and 
E.  The  sets B 1 , . . . ,  Bh,  C2~ C3, D1 and D2 form a second group. 
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An important feature that characterizes the members of the groups is the presence 
of spurious maximizers: these are almost completely missing in the first group, whereas 
they play a large role in the second group. According to Section 3, spurious maximizers 
are caused by the occurence of very small sample points. In fact, the quantile function's 
of x(t) are in the first group much larger than in the second. The theoretical quantile 
function of x(1) in a sample of size n from a homogeneous exponentially distributed 
population with parameter 0 -- 1 is given by Q(1)(~r) = - ( l / n ) l o g ( 1  - 7r). As an 
example, this is compared in Fig. 11 with the empirical quantile function of x(1) on 
the set A and on the sets B 1 , . . . ,  B5. On A, the empirical quantile function is much 
larger than Q(1), whereas on the sets B 1 , . . . ,  B5, the quantiles are smaller, tending to 
extremely small values on Bi with increasing i. 

Another indicator of the presence of spurious maximizers is the location of the 
estimators /~minmax and /Sm+an. In a set of a samples from a homogeneous population, 
it is advantageous to visualize the distribution of an estimator as a scatter plot of the 
standardized first coordinates (/}1/5,/}2/5). This is done in Fig. 12 for the set C2. The 
parameter (#1,/}2) of [~minraax is located close to the axis ]0, 5] x {5}. There are essentially 
two clusters, a first cluster with small values of/}1, and a second one with large values. 
With the exception of a few points, the second cluster lies on the axis. In the first 
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cluster, (/}1, (}2) lies slightly above the axis. This coincides with the characterization of 
spurious maximizers in Subsection 3.1, and in fact, the first cluster consists of spurious 
maximizers, whereas the second does not. 
7.2.1 Set A 

In all replications, ((}1, (}2) ~ (5, E) for the estimator Prnean. The parameter ((}1, (}2) 
of /5minma• is located on the axis ]0,5] x {5}, but /5minmax is in no case a spurious 
maximizer. Rather it represents a homogeneous population with parameter E in the 
sense of equation (2.3). 

Usually the starting points of multistart result according to the criterion of Sub- 
section 5.1.2 in one single estimator, represented by (~,~, 0.5), and the NPMLE always 
results in a homogeneous population with parameter ~. There are no small outliers, and 
it seems that the samples that constitute set A follow the pat tern of a homogeneous 
population. 
7.2.2 Sets C1, E 

Let /5 = /5minmax(~ /sm~n). Usually there is a strict local maximum in /5, and 
very often the likelihood function is unimodal in the sense that all starting points of 
multistart (with the exception of the saddle point (5, 5, 0.5)) converge to/5.  On set C1, 
/5 never contains a spurious component, and in most cases /~ is equal to /5. There 
it seems that the samples correspond to mixtures with two clearly distinct components 
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and genuinely positive mixing weights. 
On set E, the NPMLE usually has between two and four components, and its like- 

lihood can be considerably larger than the likelihood of/~. Often PNPMLE has spurious 
components. For P = (1, 0.33, 0.7) there are cases where/~ is a spurious solution with 
one component similar to a spurious component of PNPMLE, although two other com- 
ponents of PNPMLE are reasonable estimators of the population parameters. The latter 
are not found by minmax or mean. Here one can also find few examples where multi- 
start results in two different estimators, one spurious maximizer, which is found by both 
minmax and mean, and a reasonable one, which is found by some other starting point. 
7.2.3 Set B 

The estimators Pminmax are located near the axis ]0,5] • {5}, and for increasing 
values of i, the estimators in Bi are more and more concentrated at small values of 01 
with 02 slightly larger than 5 at least for i _> 2. In all but  a very few cases, there is a 
strict local maximum^at /~minm~• according to both criteria in Subsection 5.1.1. 

The parameter (01,02) of Pmean is again located near the axis ]0, 5] • {5}, very close 
to (5, 5), and for B3-B5  it is practically identical to (5, 5). 

The diagnostic instruments in Section 5 indicate that  the samples might be of the 
type "homogeneous population with small outliers", where the latter result in a spurious 
maximizer which is found by minmax. The starting values of multistart result almost 
always in two clusters of estimators; one corresponds to Pmi~max, the other to /Smean. 
In fact, /~minmax usually exhibits the properties of a spurious maximizer discussed in 
Subsection 3.1. Whereas not all samples in the set B1 precisely follow this pattern, it 
is very pronounced for Bi  with larger index i and also for samples with very small x(1). 
For example, the samples described in Examples 3.1 and A.1 belong to set B5. 

The estimator PNPMLE always has at least two components. In cases with exact two 
(which are the most ones) it is identical to Pminmax- 

Finally, let us describe the effect of removing the first e elements of the ordered 
sample (not shown here). Removing x(1) drastically cuts down the quantile functions 
of 2dn(minmax) on B 1 , . . .  ,B5; for e -- 5 they are close to and for e -- 10 practically 
identical to zero. This observation strongly supports the hypothesis that  small data  
points in the samples on set B create spurious maximizers which are found by minmax, 
whereas mean estimates a homogeneous population. 
7.2.4 Sets C2, C3, D1, D2 

With the exception of set D1 for parameter P --- (1, 30, 0.1), which will be discussed 
separately, Pminmax usually has all properties of a spurious maximizer, whereas Pmean 
is very often a mixture with two clearly distinct components and genuinely positive 
mixing weights. Under the alternative hypothesis, this may be a good estimator of the 
population parameter. Although spurious maximizers can have a large likelihood, now 
the likelihood of the true two-component mixture represented by Pin,an is often still 
(much) larger, especially under the alternative hypothesis. 

In a large majority of replications, there is a strict local maximum in /~mi~max and 
Pmean according to both criteria in Subsection 5.1.1. Very often, Pminmax and Pme~, 
seem to be the only local maximizers of the log likelihood according to the clustering of 
the results of multistart (Subsection 5.1.2). 

The NPMLE usually has more than two components. Frequently it has three: a 
very small component 0~ with a very small mixing weight p~ (having all features of a 
spurious component) and two additional components 0~ and 0~ with genuinely positive 
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mixing weights. Often then /~minmax is a spurious maximizer with (01, #) very similar 
to (8~,p~) and second component slightly larger than ~, whereas Pmea~ is similar to 
the remaining two components of /~PMLE. In these cases, mul t i s tar t  also results in 
the two essentially different maxima Pminmax a n d / ~ m ~ .  Here the sample represents a 
two-component mixture with an additional spurious component caused by small outliers, 
where the spurious solution is found by m i n m a x  and the genuine solution by mean.  Even 
in these cases, the log likelihood of the NPMLE can be considerably larger than the log 
likelihood of both mean and m i n m a x .  

In other cases, the NPMLE has more than three components. Especially under the 
alternative hypothesis, it may have two or more spurious components. In particular, 
spurious components with large values of ~ have been observed. The components of 
/~min~ax and Pmean need not correspond to any component o f  PNPMLE, even if the latter 
has only three. Often then, mul t i s tar t  results in more than two different maximizers. 
There may also be samples without small outliers, where none of the components of the 
NPMLE is a spurious component in the technical sense of Section 3. Pminmax is then 
apparently not a spurious maximizer, although it may have a component with a small 
parameter and a small mixing weight. In these and also in other cases, mean may result 
in an estimator with first and second component equal to 5. 
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Set Dt ,  parameter P = (1, 30, 0.1): Here again, Pminmax is often a spurious max- 
imizer, and then /)mean may correspond to a homogeneous population wi th  parameter 

and 2dn = 0 or to a mixture with distinct components. However, now there are also 
many cases where one component of/~minma• has a small parameter and a small mixing 
weight, but both are too large for representing a spurious component. These can be con- 
sidered as estimators of the lower contamination which is represented in the population 
by 01 = 1 and p = 0.1. In these cases,/~m~n usually corresponds again to a homogeneous 
population with parameter �9 and 2dn -- O. 

Removing low order statistics: The influence of small outliers can be observed in 
Figs. 13-14, which shows the effect of removing the first e elements of the ordered sample 
(e -- 1 and 5) on 2dn(minmax) and 2d,~(mean) for the sets C2 and C3. Removing only 
the smallest element of the sample drastically affects 2dn(minmax); on the set C2, it 
decreases, whereas it increases on the set C3. In the end, M1 curves are decreasing 
for increasing values of e. However, the large differences between the strategies are 
considerably reduced already for e = 1 and vanish almost completely for e = 5. 

The same behaviour has also been observed for D2, both parameters, and for D1, 
parameter P = (1, 0.33, 0.7). This means that  here, the difference between 2dn(minmax) 
and 2d~ (mean) is mainly caused by small outliers leading to spurious solutions. On the 
other hand, for the parameter P = (1, 30, 0.1), the difference between the distributions of 
2dn(minmax) and 2dn(mean) on the set D1 remains large. This is due to the fact that  
here, the difference between both estimators is not a consequence of spurious solutions 
alone. 

8. Conclusion 

The likelihood function in two-component exponential mixture models tends to be 
very flat especially if the data come from a homogeneous population, and it seems to 
have with a large probability not more than two essentially different local maxima. Very 
often it has only one. 

If it has at least two, one of these is in most cases a spurious local maximum. 
The latter occur very often; under the null hypothesis with probability much larger 
than 50% (depending on the sample size), whereas under the alternative hypotheses 
the probability is somewhat smaller than under the null hypothesis, depending on the 
parameter. Spurious maximizers can have large likelihood, and they are typically found 
by minmaz. On the other hand, mean usuMly results in reasonable parameter estimates. 
However, under the null hypothesis, these have in many cases smaller likelihood than 
the spurious. Therefore minmax results in larger quantiles. 

Under the alternative hypothesis, the likelihood of the spurious can be still large, but 
now the regular estimates often have larger likelihoods. Since mean usually finds regular 
estimates and since the quantiles of mean are smaller than the quantiles of minmax, 
mean usually has larger power. Global optimization has in these cases smaller power 
than mean, as its quantiles are larger. 

tn situations where the distribution of the test statistic under the null hypothesis 
depends on the model parameter, quantiles have to be bootstrapped under the estimated 
parameter and computation time may be critical. Here it would be advantageous if one 
could start the EM from only one carefully chosen initial value, as for example mean. 
Our results indicate that  over a wide range of parameter values, this strategy yields good 
estimators and powerful tests. 
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On the other hand, in lower contamination models, mean is for small sample sizes 
inferior to minmax. If one has no prior information, for which parameter set the statis- 
tical procedure should be designed, we would not recommend to use only one starting 
point. It seems that global optimization with elimination of spurious maximizers might 
be a good strategy for parameter estimation and testing. 
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Appendix 

A. Numerical example for spurious estimates 

Example A.1. (One small outlier) As in Example 3.1, we consider a particular 
sample of size n = 200 from a homogeneous population (0 ---- 1), now with x(t) -- 
0.000012975 and �9 = 1.0784. Compared to E(x(1)) = 1/n -- 0.005, xo)  is very small. 

The estimators are Prninmax = (0.0000130, 1.0838, 0.0049676) with likelihood differ- 
ence 2dn = 8.0823 and Pmean ---- (1.0784, 1.0784, 0.45) with likelihood difference 2dn = 0. 
Table 3 shows for the first indices i the order statistic x(i), the quantities wi(01,t~2), 

Ti(01, P) and ~'i(02, P)  for P = Pminmax aS well as the contributions li(P) = log f(x(i), P) 
of x(0 to the log likelihood l(P) for P = Pminmax and P = Pmean. 

Clustering the sample points according to the Bayes criterion with respect to 
Pminmax (see Subsection 5.2.2) results in a cluster x(1) allocated to the first component, 
whereaS the remainder of the sample is allocated to the second component. According to 
the criterion in Subsection 5.1.2, the starting values of multistart result aS in Example 3.1 
in two clusters of estimators represented by P m i n m a x  and Pme~n- 

Table  3. C o n t r i b u t i o n  of  s amp le  po in t s  to  l ikel ihood e q u a t i o n  a t  Pminmax a n d  to  t h e  log l ikel ihood.  

P=-Pmi . . . .  P = Pmean 

i x(~) wi(01,02) ~dth,P) ~i(02,P) t~(P) h(P) 
1 0.000013 0.000033 200.0 0.006509 4.954145 - 0 . 0 7 5 5 2 0  

~ 1  4.954145 - 0 . 0 7 5 5 2 0  

2 0.002775 9.1 • 10 s7 0.0 1.004992 --0.088028 -0 .078081  

3 0.003657 2.9 • 10117 0.0 1.004992 --0.088841 - 0 . 0 7 8 8 9 8  

: : : : : : : 

200 5.331832 c~ 0.0 1.004992 --5.004969 --5.019569 

rem --216.014555 -215 .026040  

~ t o t  --211.060410 --215.101560 
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B. Overview of sets defined in Sections 6 and 7 

A mean = 0 
minmax = 0 

B mean = 0 
minmax > 0 ' 

C mean > 0 

f~ 

l(15minmax) : l(P . . . .  ) I 

(]:)2 l(15mi . . . .  ) <  l(~)mean))J 

B1 

B2 

B3 

B4 

B5 

minmax C [0, 2) 

minmax E [2, 4) 

minmax C [4, 6) 

minmax C [6, 8) 

minmax e [8, oc) 

l(Pm~nm~) > I(P . . . .  ) ) /  

l(Pm~ . . . .  ) = I ( P  . . . .  ) 

l(Pminma~) < l ( P  . . . .  ) 

Fig. 15. Subsets overview. 
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