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A b s t r a c t .  This paper studies spectral density estimation based on amplitude mod- 
ulation including missing data as a specific case. A generalized periodogram is in- 
troduced and smoothed to give a consistent estimator of the spectral density by 
running local linear regression smoother. We explore the asymptotic properties of 
the proposed estimator and its application to t ime series data with periodic missing. 
A simple data-driven local bandwidth selection rule is proposed and an algorithm 
for computing the spectral density estimate is presented. The effectiveness of the 
proposed method is demonstrated using simulations. The application to outlier de- 
tection based on leave-one-out diagnostic is also considered. An illustrative example 
shows that  the proposed diagnostic procedure succeeds in revealing outliers in time 
series without masking and smearing effects. 

Key words and phrases: Amplitude modulation, local linear regression, missing ob- 
servations, outlier detection, spectral density. 

1. Introduction 

Let  {Yt, t = 0, +1 ,  + 2 , . . . }  be  a s t a t i ona ry  t ime  series wi th  m e a n  zero and  autoco-  
var iance funct ion R y ( v )  -- E[YtYt+v], v -- 0, +1 ,  i 2 ,  . . . .  T h e n  the p e r i o d o g r a m  for the 
observed t ime series Yl, �9 �9 �9 Yn is given by  

(1.1) i(n)(w) = ~ n  t = l  y t e x p ( - i t w )  2 , w E [0,77]. 

I t  is well-known tha t  the  pe r iodog ram is an a sympto t i ca l l y  unbiased  e s t ima to r  of the  
spec t ra l  densi ty  funct ion 

1 (3o 

(1.2) f y ( w )  = ~ E R y ( t ) e x p ( - i t w ) ,  w E [0,771, 
t ~ - - o o  
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even though it is inconsistent. See for example Brillinger (1981), Priestley (1981) and 
Brockwell and Davis (1991). If {Yt} follows a stationary linear process, then the pe- 

riodogam I(yn)(wk) at Fourier frequencies wk = 27rk/n (for k = 0 , 1 , . . . , N ,  where 
N = [ ( n -  1)/2]) are asymptotically independent. The asymptotic unbiasedness and 
independence of the periodogram allow one to construct a consistent estimator of fy (w) 
by locally averaging the periodogram. Most traditional methods are based on this ap- 
proach. See for example Brillinger (1981), Fan and Kreutzberger (1998), and others. 

Other alternative estimators, such as the smoothed log-periodogram and Whittle 
likelihood-based estimator, have received much attention. Examples include: the au- 
tomatic smoothing of the log-periodogram in Wahba (1980); the penalized maximum 
likelihood spline estimator in Pawitan and O'Sullivan (1994); the logspline estimator 
in Kooperberg et al. (1995a, 1995b); and the local Whittle's likelihood estimator in 
Fan and Kreutzberger (1998). As demonstrated by Fan and Kreutzberger (1998), the 
Whittle likelihood-based estimators are desirable and outperform other estimators at 
regions where the log-spectral density is convex. Fan and Kreutzberger (1998) also 
recommend using Whittle's likelihood-based method. 

However, our experience shows that there is little advantage of using Whittle's likeli- 
hood over the smoothed periodogram. One reason is that  its asymptotic bias depends on 
the spectral density and the second derivative of log-spectral density, which complicates 
the choice of optimal bandwidth selector. Another reason is that the absolute value of 
the asymptotic bias of the Whittle-based estimator is larger than that of the smoothed 
periodogam in the region where fy(w) is convex, while the asymptotic variances are 
the same (see Remark 2 in Fan and Kreutzberger (1998) for bias comparison). Among 
these competitive approaches in spectral density estimation, both the smoothed peri- 
odogram and the Whittle likelihood-based estimator are asymptotically efficient. They 
also outperform the smoothed log-periodogram (see Fan and Kreutzberger (1998)). 

When there are missing observations, direct use of the aforementioned methods is 
infeasible because the definition of periodogram in (1.1) is unclear. In addition, these 
approaches are nonrobust against outliers since they are based on least-squares or local 
maximum likelihood principles. Several authors have proposed regarding the missing 
observations or outliers as zeros, and then estimating the spectral density from the "ze- 
roed" data series. See for example Jones (1962), Parzen (1961, 1963), Priestley (1981), 
and Hui and Lee (1992) among others. A remarkable work in this field is that  of Parzen 
(1963) in which amplitude modulation mechanics is proposed. We will employ Parzen's 
mechanics to develop a generalized periodogram and extend the smoothed periodogram 
of Fan and Kreutzberger (1998) in this study. The asymptotic normality of the proposed 
estimator of spectral density will be proven. The technical derivations of such asymp- 
totic property is very involved and determined efforts have been made. For robustness, 
one may smooth the logarithm of the generalized periodogram and then estimate the 
spectrum using an exponential transformation. The proposed approach can be adapted 
naturally to the smoothed log-periodogram. 

As pointed out in Fan and Gijbels (1996), the spectral densities are usually very 
rough and the periodogram is highly heteroscedastic. Global bandwidth smoothing is 
usually unsatisfactory in revealing the complicated structure of the frequently changing 
spectral density. We will develop a simple data-driven local bandwidth selection method 
for our spectral density estimator, which facilitates the application in outlier detection. 

Note that the presence of outliers can severely distort conventional spectral estima- 
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tors even though such outliers are not large relative to the scale of the observations (see 
Kleiner et al. (1979)). Outlier detection is vital to nonrobust spectral estimation and the 
existence of masking and smearing effects in time series further complicates the prob- 
lem. We study an outlier detection procedure by evaluating the smoothed periodogram 
based on the widely used leave-one-out diagnostics. Therefore the spectral density can 
be estimated using the proposed method after outliers are removed from the data. 

This paper is organized as follows. Section 2 introduces the generalized periodogram 
and the spectral density estimator. Section 3 considers asymptotic properties of the 
generalized periodogram and the spectral density estimator. A data-driven bandwidth 
selection rule is proposed and an algorithm for calculating the spectral density estimate is 
presented in Section 4. A simulation study on the performance of the proposed estimator 
for incomplete series is discussed in Section 5. Section 6 studies the application to outlier 
detection and Section 7 gives our conclusion. Technical proofs are presented in the 
Appendix. 

2. Estimation 

2.1 Parzen's amplitude modulation mechanics 
Consider the amplitude modulation mechanics for spectral density estimation with 

missing values in Parzen (1963). The time series we are interested in is {Yt}, but  the 
observed series is {Xt}. The amplitude of time series {Yt} is modulated by {gt} through 
the relationship 

( 2 . 1 )  = 9,Y , 

where {gt} is a non-random bounded series possessing a generalized harmonic analysis 
in the sense that  for v : 0, 1 , . . . ,  

1 
n - - v  

(2.2) Rg(v) lim E = -- gtgt+v 
n - - * o o  n 

t = l  

exists. For a systematically unobservable series, such as a stock index which is unobserv- 
able on certain days in a year, it may be more appropriate to model this phenomenon 
as an amplitude modulated series with gt defined by 

0 if Yt is missing at time t, 
(2.3) gt = 1 if Yt is observed at time t. 

For a general missing pattern, (2.1) can also be used by letting Xt represent the observed 
value of Yt with 0 inserted in the series whenever the value of Yt is missing. 

2.2 Generalized periodogram 
Suppose {Xt} is asymptotically stationary, i.e. Rx(v)  -- limn-.ccl/n~-~.tn-1 v 

E[XtXt+v] exists. Then (2.1) leads to Rx(v)  -- Rg(v)Ry(v).  According to Parzen 
(1963), if {Yt} is an ergodic normal process, then {Xt} is ergodic. The sample auto- 
covariance function of {Zt}, Rx(v)  = 1/n ~-]tn=-i v XtXt+v, is a consistent estimator of 
Rx(v)  in the quadratic mean. Therefore, if Rg(v) r 0, then Ry(v) can be consistently 
estimated by 

Rx(v)  for v = 0,1, . . . .  ( 2 . 4 )  ' 
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For v -- - 1 , - 2 , . . . ,  let /~y(v) -- R y ( - v ) .  This motivates us to define the following 
generalized periodogram. 

DEFINITION 2.1. For the time series {Yt} with modulated amplitude, its general- 
ized periodogram is defined as 

1 
(2.5) GI(n)(wk) = - ~  E Ry(v)exp(- ivwk) ,  

rvl<n 

where wk = ~-~ (k = 0, 1 , . . . ,  N)  are Fourier frequencies. 

The generalized periodogram has properties similar to the common periodograms. 
It can be used to construct a variety of tests for hidden periodicities following the ideas 
of common tests based on the periodogram in (1.1). The generalized periodogram has 
the following asymptotic representation for the bias and covariances. 

PROPOSITION 2.1. I f  { Yt } is ergodic and normal with mean zero, then the following 
results hold for k = 1 , . . . ,  N 

(1) Asymptotic unbiasedness: E[aI(y~)(wk)] = fy(wk) + 0 ( - ~ ) .  

(2) Variance approximation: Var[GI(")(Wk)] = f~(wk) + T~(Wk) + O(1). 
(3) Asymptotic independence: for wj r Wk, 

Cov(Gl(yn)(wj), Gl(~)(Wk)) = O ( 1 )  . 

A detailed proof of Proposition 2.1 is given in the Appendix and T~ (w) is defined 
in Theorem 3.1. 

2.3 Local linear regression smoother 
Note that the generalized periodogram is an asymptotically unbiased estimator of 

fy(w) at Fourier frequencies. However, it is inconsistent in estimating fw(w). A con- 
sistent estimator of fy(w),  for w E [0, ~r], can be obtained via directly smoothing the 

data  {(wk, GI (n) (wk)), k = 1 , . . . ,  N} using a locally weighted average. Following Fan 
and Kreutzberger (1998), we run the local linear regression smoother to the data, and 
obtain the estimator 

N 

k-~l 

where 
KN(t) ---- 1 SN._.._A~2 - ____-- ht" sN,1 

Nh  SN,O " SN,2 -----SY~ K(t) ,  N,1 

where K(t) is a kernel funct ion and  SN,s : N ~  Ek=IN K(W-._~_~)(~3n , ,  - OJk) t" 

Other estimation approaches such as Whittle 's likelihood in Fan and Kreutzberger 
(1998), may be indiscriminately applied, but we will not pursue these options further 

in this paper. Furthermore, the distribution of GI(y'~)(wk) is unknown under a general 
amplitude modulation or missing mechanism. It is unclear whether Whitt le 's  likelihood 
principle applies in these situations. 
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3. Asymptotic properties 

In this section, we only consider the impor tant  case where gt is a function with 
period 0 and Yt is a moving average process given by 

oo 

(3.1) Yt = E r  Z, iLd Af(0,0-2). 
j ~  --OO 

Assume that  ~-~j ICjlj 2 < c~. The  spectral  densi ty of {Yt} is 

0 -2 _ .  

fy(w) = ~-~l~(e *~)l 2, 

where V(e = Ej=-  j exp(-ij ). It follows that the spectral density has a 
bounded  second derivative. From Parzen ((1963), pp. 388-389),  gt admits  a harmonic 
representat ion 

o 
(3.2) gt= E ekexp(itAk)Gk, 

k = - @  

)~ 21vk e r ~  1 0 . where k = --~-, -- iS J, Gk 1 = Y ~-]~s=l exp(--~sAk)gs for k = O, i l , . . . ,  •  and ek -= 1 
for all k except tha t  e+o  -- ~ if 0 is even. Furthermore,  

0 

(3.3) Rg(v)= E eke_kGkG-kexp(--ivAk). 
k = - O  

W h e n  gt is not a periodic function and n is modera te ly  large, one can use the 
approximat ion  

n - - v  

(3 .4 )  R (v) - 
n 

t = l  

The  following assumptions and notat ions are needed to derive the  asympto t ic  prop- 
erties of the  proposed estimator:  

(i) {Yt} is a s ta t ionary and normal process with ~-~j ICily 2 < c~. 
(ii) The  spectral  density function f y  (w) is positive on [0, ~]. 

(iii) The  kernel function K(x) is a symmetr ic  probabi l i ty  densi ty function and has 
a compact  support ,  [ -1 ,1]  say. Let # 2 ( K ) =  f l  1 u2K(u)du and Vo(K) = f l  1K2(u)du. 

(iv) h --+ 0 and Nh -+ cc as n --+ oc. 
(v) The  bounded  ampli tude modula ted  series {gt} with period 0 satisfies p = 

1 n - v  min v Rg(v) > 0 and ~ ~-~-t=l gtgt+v = Rg(v) + O(~n), uniformly in v. 

Condit ions (i)-(iv) are derived from Fan and Kreutzberger  (1998). For function gt 
1 0 with period 0, Rg(v) -- -~ ~ t=l  gtgt+v (see (2.4) in Parzen (1963)) and condit ion (v) 

follows. An example where these condit ions hold is Parzen 's  periodic missing pa t t e rn  
(see Parzen (1963), pp. 385-386). 

THEOREM 3.1. Suppose assumptions ( i)-(v)  hold. For each w E (0, ~r), we have 

L L ] 
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For a boundary point w* = eh, we have 

fv(wn) - fu(wn) - h2f~(O+)p2(K,c) 

Af(O, vo(K, c)Tr[fy2 (0+) + T~(0+)]), 

where 

and 

with 

and 

8 2 
# 2 ( K ,  c )  ---- 2,c - 81,c83,c 

2 , 
8 0 , c 8 2 ,  c - 81, c 

Vo (K, c) = 

+ o(h2)] 

f~-x (S2,c - Sl,ct)2K2(t)dt 

= Y] eke lH , l /Y(  + + 
k # l  

SO,cS2,  c 2 2 ' 
- -  81,c) 

0 0 
1 

Hk,t ---- E eiWiG~-kG-~-l ,  Wj = ~ E exp(-is)~j)/Rg(s),  
i = - O  s= l  

f sj,c -- tJK(t)dt. 
1 

Theorem 3.1 gives the asymptotic distribution of the spectral density estimator. A 
detailed proof is given in the Appendix. 

Remark 3.1. It is worth noting that the estimated spectral density inherits the 
boundary adaptation as discussed in Fan and Kreutzberger (1998). The estimator 
achieves the same convergence rate at the boundary as at the interior points. When 
gt = 1, i.e. Yt is always observed, we have T2(w) = 0. Our result coincides with the 
result in Remark 2 of Fan and Kreutzberger (1998). (Note that the convergence rate 

in Fan and Kreutzberger (1998) is a typo.) Therefore, our result can be regarded 
as an extension of Fan and Kreutzberger (1998). 

Remark 3.2. From Theorem 3.1, the asymptotic mean squared errors (MSE) for 
estimating f v  (w) at w E (0, 7r) can be defined as 

1 2 (3.5) MSE(h,w) = l h4[f~(w)p2(K)]2 + -~-~vo(K)Tr[fy(w) + ~-~(w)]. 

Therefore, the optimal local bandwidth for estimating f y  (w) in the sense of minimizing 
MSE(h, w), is 

(3.6) hopt(02) = N_I/5  (vo(K)Tr[f2(w) +_7~(w)]~ 1/5 
\ [f~(w)#2(K)] 2 ] " 

4. Data-driven local bandwidth selection 

Identifying peaks of spectral density is of special interest since information on energy 
and period are carried by the peaks. The global optimal bandwidth works pretty well 
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in the estimation of a generally smooth spectral density. However, the local bandwidth 
selector should be employed to capture the complicated structure (especially the peaks) 
of a changing spectral density. 

For the nonparametric regression estimator (2.6), common global and local band- 
width choices developed in nonparametric regression literature can be applied. Examples 
include the "pre-asymptotic substitution method" of Fan and Gijbels (1995), the "plug-in 
bandwidth selection" in Ruppert et al. (1995), and the "empirical bias bandwidth selec- 
tor" of Ruppert (1997). However, these bandwidth selection methods usually involve a 
large computational burden for outlier detection. We present a simple rule for bandwidth 
selection which is easy to implement in practice. 

From (A.n)-(A.7) in the Appendix, we know that the exact bias of fy(w)  is 

N 

Bias(h,w) _~ E K N  fY(COk) -- fY(CO), 
k = l  

up to a negligible term of order Op(1/v/-~). We can evaluate Bias(h, w) and the asymp- 
totic variance in Theorem 3.1 for a given bandwidth h at co if we have a pilot estimate 
f y  (co) for f y  (co) in hand. We propose choosing the bandwidth minimizing the estimated 
mean squared errors 

(4.1) MSE(h,w) = [Bias(h,w)] 2 + -~-fitvo(K)Tr[f~(co) + "?~(w)], 

where Bia~s(h, co) and #2 (co) are defined as Bias(h, w) and ~_2 (co) respectively with f y  (w) 
replaced by fy(w). Define 

hopt (co) = arg min MS-'----E(h, w). 
h 

A 

Then we minimize the one-dimensional function MSE(h, cz) with respect to h at each 
fixed frequency w. hopt(W) can be evaluated at a grid of frequency points. The above 
bandwidth selection requires only a pilot estimate of the spectral density, which avoids 
estimation of higher order derivatives of the regression function in implementation of the 
"pre-asymptotic substitution" and "plug-in" methods. The proposed method is also sim- 
pler than the "empirical bias bandwidth selector" method proposed by Ruppert (1997), 
where the empirical bias is estimated by calculating the estimate of regression function 
rh(x, h) on a grid of bandwidth values and then modeling the behavior of rh(x, h) as h 
varies. Note that the asymptotic variance in (4.1) does not involve the variance of the 
white noise in (3.1). It follows that evaluation of the asymptotic variance is much eas- 
ier compared with the nonparametric regression case where the unknown error variance 
needs to be estimated from the data. 

Common Newton's iterations can be applied to find t h e  hopt(co) efficiently. We here 
synthesize the ideas in minimizing the asymptotic mean squared errors of the hazard 
rate estimator in Miiller and Wang (1994) and maximizing the local pseudo-likelihhod 
in Fan et al. (2003), and propose an algorithm to evaluate fy(w).  

Algorithm for estimating fy(w) 
Step 1. Initial estimate of fy(w):  Choose a kernel, such as the Epanechnikov ker- 

nel, and an initial global bandwidth h0. The choice of the initial bandwidth depends 
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on the specific case. A possible value for h0 is } n  -1/5, as recommended by Mfiller and 
Wang (1994), or the global optimal bandwidth estimate given in Fan and Kreutzberger 
(1998). The initial estimate fy(w) of fy(w) is obtained by employing h = h0 and (2.6). 
The pilot estimate of f r  (w) may also be obtained via a parametric approach if one has 
a plausible parametric model in mind. 

Step 2. Minimization of MSE(h, w): Choose an equispaced grid of m l  points &i, 
i = 1 , . . . , r n l  between 0 and 7r. For each grid point &i, compute MSE(h,&i) in (4.1) 
and obtain its minimizers tt(&i) on the interval, [ho/4, 10h0] say. The minimizers can be 
easily obtained using the estimate Tz(&k) as the initial value of minimization at the next 
grid point &k+l. The minimizer can be found within a few iterations. 

Step 3. Bandwidth smoothing: Choose another equispaced grid of m2 points wr, 
r = 1 , . . .  ,rn2, over the interval [0, 7r] on which the final spectral density estimate is 
desired. Running the following local linear smoother by employing the global bandwidth 
}to = h0 or 2h0: 

m l  

t, / 

where Km, (t) is the local linear weight, similar to (2.6). The smoothed bandwidth is 
then used to estimate fy(wr). 

Step 4. Final spectral density estimate: Obtain the estimate fy(wr) in (2.6) by 
employing the bandwidths h(w,-), for r = 1 , . . . ,  m2. 

The bandwidth selector is not only easy to implement; the estimator is also stable 
in the peak regions where the bandwidths are smoothed by the local linear smoother in 
Step 3. This contrasts with the claim made by Fan and Gijbels ((1996), p. 242). The 
steps can be iterated using the estimate fy(wr) in Step 4 as initial estimate in Step 1 
and repeating Steps 2-4. The proposed spectral density estimation method can be easily 
applied to time series analysis with missing observations. 

5. Simulations 

We conduct a simulation study to compare the performance of the proposed method 
under a periodic missing pattern with the complete observation case. Note that for the 
complete observation case the proposed estimator is just the smoothed periodogram in 
Fan and Kreutzberger (1998), but  for the incomplete observation case the latter estimator 
is not directly applicable. 

For simplicity, we chose the popular Epanechikov kernel 

K ( x )  = o .75(1  - x )S(Ixl <<_ 1). 

The data-driven local bandwidth selection rule in Section 4 was applied in the simula- 
tions. To compare the performance of different estimators in simulations, we use 'typical' 
dataset in the sense that, based on the dataset, the estimators have their median per- 
formance in terms of average squared deviation loss at grid points where the estimators 
are evaluated. 

Consider the ARMA model 

(5.1) Yt + alYt-1 + " -  + apYt-p = et + blet-1 + bqet_q, 
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where et ~ A/'(0, 1). The following two examples  were studied in Wahba (1980) and Fan 
and Kreutzberger (1998). 

Example 1. The AR(3)  model  with al  = - 1 . 5 ,  a2 = 0.7 and a3 = - 0 . 1  and the 
rest of the coefficients equal to zero. 

Example 2. The MA(4)  model  with bl = - 0 . 3 ,  b2 = - 0 . 6 ,  b3 -- - 0 . 3  and b4 = 0.6 
and the rest of the coefficients equal to zero. 

No missing and weekly missing patterns were considered for these examples.  Here 
we specifically generated the missing pattern in each simulated series. We kept the 
simulated observations for five t ime points ,  then  dropped the next  two observations.  

o~ 

Typical estimated periodogram and spectral density 
with complete data 

I I I I I I ] 

0 , 0  05 1.0 1.5 20 2.5 3,0 

Typical estimated periodogram and spectral density 
with incomplete data 

,J: i!; 

t i E i ~ i , 

O 0  0,5 1.0 15 2.0 25 3 . 0  

o_  

9 -  

o. ,  

Confidence interval of spectral density 
with complete data 

: i 

0.0 0.5 1.0 1.5 

Confidence interval of spectral density 
with incomplete data 

\ 

o. : 

o .  

m ,  

2.0 2.5 3,0 0.0 0,5 1,0 1.5 2.0 2.5 3.0 

Fig. 1. Numerical  results for Example  1. 
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Hence {gt} is a periodic function with period 7, and 

1 if t = 1 , . . . , 5  
gt = 0 if t = 6, 7. 

We simulated 600 times with sample size N = 250. Two time series, a complete 
series and an incomplete series with specified missing pattern, were generated in each 
simulation. 

Figures l(a) and l(b) give the 'typical' estimated periodograms (dotted lines) and 
spectral density functions (dashed lines) for the complete series and the incomplete series 
in Example 1 respectively. It is shown that the proposed estimator performs resaonably 
well for the incomplete series with missing observations (Fig. l(b)) compared with the 

Q 
C, -  

Typical estimated periodogram and spectral density 
with complete data 

~ii! i !  

i 
r i i i i i i 

oo  0.5 1.0 1,5 2.0 2.5 3.0 

Confidence interval of spectral density 
with complete data 

Typical estimated periodogram and spectral density 
with incomplete data 

:~ i l  i 
!i i; 

ii i i i ~  ]i 
ii i li:i 

:i:: :ii: :! :i:: : ' ! !i :~ :'i~iiiii" ~!!:;ii;:i :: 

O 0  0 , 5  1 . 0  1 5  20  2.5 3 , 0  

o". 

i 

/ 

D 

I i i ~ i i 

0 . 0  0.5 1.0 1.5 2 .0  2 .5  3 .0  

Confidence interval of spectral density 
with incomplete data 

O �9 . . ' , " . . , ,  

/ - . . . .  = 

o 

�9 

o "  

d 

e4 
o "  

Q 
d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.0  0 .5  1,0 1,5 2 .0  2 .5  3.0 

Fig. 2. Numerical results for Example  2. 
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complete series (Fig. l(a)). The difference is insignificant. This demonstrates that the 
proposed estimator gives a good estimate under the missing observation situation. Fig- 
ures l(e) and l(d) also plot the envelopes (dotted lines) of the true spectral density 
(solid line) constructed from the pointwise sample percentiles. These envelopes repre- 
sent pointwise 2.5%, 12.5%, 87.5% and 97.5% sample percentiles of the spectral density 
estimates among 600 simulations. The estimated envelopes in Figs. 1(c) and l(d) in- 
dicate that  the proposed method gives good confidence bounds for the spectral density 
function when there are missing obervations. Therefore it is insensitive to missing ob- 
servations. It also demonstrates that  these confidence bounds provide a reliable tool in 
outlier detection, which is discussed further in the next section. Figure 2 plots the esti- 
mated spectral densities and envelopes for complete and incomplete series generated from 
Example 2. Results from Example 2 with a unimodal spectral density (Fig. 2) reconfirm 
the conclusion drawn from Example 1 with a J-shaped spectral density (Fig. 1). 

It is shown for the above two examples that  the proposed estimator performs reason- 
ably well with about 30% missing observations in comparison to the case where complete 
observations available. To assess the effectiveness of the proposed estimator for a higher 
proportion of missing, we considered the following weekly missing pat tern with a periodic 
function gt such that 

1 if t = 1 , 3 , 5 , 7  
gt = 0 if t = 2,4, 6. 

There are about 43% missing observations. For the previous two examples, the perfor- 
mance of the proposed estimator under this missing pattern is similar to that under the 
previous pattern, but with a slightly wider confidence band. The results will not be 
displayed here due to space constraint. 

Example 3. Continuation of Example 2 with random missing pattern. In this ex- 
ample, we use the following random missing pattern to illustrate how to use the proposed 

Typical estimated periodogram and spectral density 
with random amplitude modulation 

0.0 0,5 1+0 1.5 2.0 2.5 3,0 

q _  

o=.. 

Confidence interval of spectral density 
with random amplitude modulation 

. . , / . . " . , . .  

i i t t t i 

0.0 0.5 1.0 1,5 2.~ 2.5 3.0 

(b) 

Fig. 3. Numerical results for Example 3. 
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estimation approach and to investigate if the method works in the setting: 

P(gt = O lgt-1 = 0) = 0.3, P(gt = 0 I gt-1 = 1) = 0.2 

with initial condition g0 = 1 (i.e. {gt} is a Markov chain). For the MA(4) model in 
Example 2, we simulated 600 samples for {Yt} with size N --- 250. For each sample, {gt} 
was sampled from the above Markov chain and {Xt} was the observed series. Because 
no optimal bandwidth is available for the proposed estimator in this case, we use the 
one for the spectral density estimation on {Y~} in our simulations. 

Figures 3(a) and 3(b) show the typical estimated curve and the pointwise 2.5%, 
12.5%, 87.5% and 97.5% sample percentiles of the proposed estimators among 600 sim- 
ulations for this example. Note that only {Xt} was observed, direct use of the common 
smoothed periodogram for {Xt} in Fan and Kreutzberger (1998) would result in a bi- 
ased estimator of the spectral density of {Yt}. Given {Xt} and the transition probability 
matrix of {9t}, we computed the proposed estimator. Figure 3 demonstrates that for the 
random missing pattern the proposed estimator truely captures the structure of the spec- 
tral density even though the bandwidths employed here are not optimal. Further s tudy 
on the optimal choice of bandwidth in this case requires derivation of the asymptotic bias 
and the asymptotic variance of the estimator, which is worthy of further investigation. 

{5. Outl ier detection 

The existence of outliers may affect model identification, which is essential in time 
series analysis. See for example Abraham and Chuang (1989), Bruce and Martin (1989), 
Subba Rao (1989), and Tsay et al. (2000) among others. Our suggested method only 
requires a nonparametric estimation of spectral density which avoids the identification 
problem. Thus, it is expected that the diagnostic based on nonparametric spectral 
estimation be more reliable than common diagnostics based on parametric models. 

The welt-known masking and smearing phenomena post a difficult problem in the 
diagnostic tests for time series data. Earlier work in this area was presented in Chernick 
et al. (1982), Martin and Yohai (1986), and Bruce and Martin (1989). In spectral density 
estimation, outliers with a relatively large value compared with the scale of the innovation 
process will distort the estimator. These "outlying" points may not have a relatively large 
value compared with obervations' scale. We adopt the common leave-k-out diagnostic 
method to identify outliers in the spectral density estimation. The leave-k-out diagnostic 
has been widely used in regression analysis (see Cook and Weisberg (1982) and Atkinson 
(1985)). Bruce and Martin (1989) and Hui and Lee (1992) also studied the leave-one- 
out approach in the time series context. We expect that  our diagnostic approach based 
on deletion and the proposed spectral density estimation identifies outliers (especially 
innovation outliers) without masking and smearing effects. 

For illustration, we only consider the leave-one-out diagnostic method in outlier 
detection when there are missing observations. A multiple-deletion diagnostic can be 
developed in the same way, but  we will not consider this problem since intensive com- 
putation would be required. 

Diagnostic procedure for outlier detection 
(1) Confidence bound. Given a significance level a (1% or 5%, say), construct a 

confidence bound for the spectral density with all available observations based on the 
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estimators in (2.6) and the normal approximation in Theorem 3.1: 

1/2 

f ly(W)- Bia~s(hopt(W),W)=k Zl_a/2 �9 (vo(K)Tr[f~(w) + r 
\ Nhopt(W) ' 

where Z1-~/2 is the 1 - ct/2 quantile of standard normal distribution. 
(2) Spectral density estmation with data deletion. Apply the leave-one-out approach 

to estimate the spectral density. Evaluate the spectral density curves in (2.6) with the 
i-th observation deleted where observation i is regarded as periodic missing with period 
0~- -n .  

(3) Outlier identification. The i-th observation is identified as an outlier if the esti- 
mated spectral density curve with i-th observation deleted exceeds the confidence bounds 
in (1). 

Example 4. Consider the yearly differenced RESEX series consisting of 77 obser- 
vations with two consecutive "outliers" at t = 71 and t = 72. The original RESEX 
dataset is given in Martin et al. (1983), and consists of Bell Canada inward movement 
of residential telephone extensions in a fixed geographic area from January 1966 to May 
1973. As pointed out by Hui and Lee (1992), several common diagnostic approaches 
suffer from masking and smearing phenomena, which motivated Jiang et al. (1999) to 
use the robust Ll-norm fit of the dataset. Here we use the proposed diagnostic procedure 
to identify outliers in the data. 

The data-driven bandwidth selection rule in Section 4 and the proposed diagnostic 
test were applied in this example. Figure 4(a) gives the estimated periodogram (solid 
line) and spectral density (dotted line), and Fig. 4(b) reports the 99% confidence bounds 
(dotted-dash lines) and the corresponding estimated spectral density curves with one 
observation in the dataset deleted as missing. It is shown that only the estimated 
curves with observations 71 and 72 deleted respectively stretch out of the confidence 
bounds. The two observations t --- 71 and t = 72 are correctly identified as outliers. 

Estimated Period0gram and spectral density 
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Fig. 4. Numerical results for Example 4. 
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The illustrative example also shows that the diagnostic procedure avoids masking and 
smearing phenomena. 

7. Conclusion 

We have considered the spectral density estimation for a deterministic amplitude 
modulated pattern, especially for Parzen's periodic modulation mechanics. The perfor- 
mance of the estimator applied to an incomplete series is demonstrated in a simulation 
study. The proposed method also works for a random modulation pat tern such that 
{gt} is a stationary process with mean E[gt] and is independent of {I/t}. Under this 
situation, {Xt} is stationary with covariance function Rx(v)  = Ry(v)Rg(v), where 
Rg(v) = E[gtgt+v]. Then one can construct the estimator for spectral density based on 
smoothing the generalized periodograms, where Ry (v) -- Rx  (v)/Ra (v) can be estimated 
by its sample average. 

The proposed outlier detection approach can be applied to other diagnostic tests. 
For example, one may also identify influential cases by employing the estimated spectral 
curve in (2.6) and the methods mentioned in Subba Rao (1989) and Hui and Lee (1992). 
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Appendix 

Since the main result will be derived from the proof for Theorem 3.1, we first present 
the proof of Theorem 3.1 and then discuss the proof of Proposition 2.1. To facilitate the 
exposition, the following notations from Parzen (1963) are adopted: 

Am=21rm/O, for m =  1 , . . . , O  
O 

g s g t  _ 

h(s, t) - Rg(s - t) E emenHm,n exp[i(SAm + tan)]. 
m~n=--O 

PROOF OF THEOREM 3.1. We only give the proof for interior points. For boundary 
points w* = ch, the proof is basically similar to that for the interior points. Note that  

1 

_Oy(v)  = n 
t = l  

It follows by the definition of GI(y '0 (wk) that  

(A.1) 
1 

= E  y(v)exp(-/wk) 
Iv]<n 

n n 
1 

- 27rn E E h ( s , t ) exp[ - i ( s -  t)wk]YsYt. 
8=1 t = l  
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Denote the discrete Fourier transforms of {Yt} by fig(w) - 1 }-~n exp(-isw)Ys. 2 x / ~  s = l  

Then aI(y n) (~) can be rewritten as 

e 
(A.2) GI(n)(w)_ 1 

27rn E em en Hrn,n 

x ~ exp[i(sAm + tan)] exp[- i ( s  - t)w]Y, Yt 
s,t=l 

e n 

= E ernenHmn, ~o/5-'~-~1 E exp[_ i s ( co_Am)]ys  
m,nm--~ v ~Ji1~ s = l  

1 ~ exp[it(w + An)]Y t 
• ~ t = l  

O 

- ~ ~ n H m , J ~ ( ~ -  A~)J~(~ + An) 
m,n=--O 

From the proof of Theorem 10.3.1 in Brockwell and Davis (1991) ,  we  have 

(A.3) Jg(w) : 9(e-{~)Jz(w) + rn(w), 

where Yn(W) -- 1 0o "" 2,/Y~ Y~J=-~r such that ElYn(W)[ 4 = O(n -2) and Unj = 
n--j Zse_is  w n Zse_isw. ~-~s=l-j - -  ~-~s=l Combining (A.2) and (A.3) gives 

GI(n)(w) = 
e 

E emenHm,nlUUUUUW(e-i(c~ -- Am)qd(e-i(~~ + An) 

ernenHm,n[k~(e-i(~~ - Arn)Yn(cO q- An) 

+ rn(~  - Am)V(e-*(~+~~ + An) 

+ rn(~ - Am)Yn(~ + An)]~ 
) 

-- Anl (w) + An2 (w). 

Therefore 

N N ( ) (1.4) ]y(w) --- E KN Anl(Wk) + E KN W --Wk 
k=l  k----1 -~ An2(aJk) 

-= Mn(~) + Rn(~). 

Observe that  max~c[0,~ ] ElYn(co)l 4 = O(n-2) ,  so we have An2(W) = Op(-~) uniformly 

in w E [0,7r]. Hence Rn(w) = O p ( ~ ) ,  which is an asymptotically negligible term, and 

suffices to derive the asymptotic distribution of Mn (w). 
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Note that 

n 1 
Anj(W)-- E 2~n 

s,t=l 

n 

=- E r~(s,t)Z~Zt. 
s,t=l 

Z~Zt 

Observing Hm,n = H - n , - m ,  we have rw(s, t) = r~(t, s). Then Anl(W) is real. Therefore 
by (A.4), 

(A.5) 
k=l s,t=l 

---- s~l k=l rwk 

+ ~ KN ~ r~(8,t) z~z, 
l<s~=t<_n [.k=l 

-=  Bnl(~) + B~2(~). 

We show that Bnl(W) contributes to the bias, and Bn2(w) to the variance of M,~(w). 
Direct calculation gives 

and 

N 
E[Snl(O..))] : E K N  ( O d - W k )  k=l -h fy(wk) 

= fy(~)  + lh2f~(~)~2(K) + o(h2), 

Var[Bnl(02)] = f i  KN ~ h  O')k rwk(8,8) 

:o(1) 
2or 4 

Then 

(A.6) Bnl (W) -- fy(w) + ~h2 f~(w)tL2(K) + o(h 2) -~-Op I--~n I . 

It remains to show that 

(A.7) W(n) = x/-NhBn2(w) ~ Af(0, vo(K)Tr[f2(w) + T~(W)]). 
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Note that  

W ( n ) =  

l~_s#t<_n 

bs,t(w)ZsZt. 

Zs Zt 

Observe that  b~,t(w) = bt,~(w) for s # t, hence it follows that  a~,t(w) - [b~,t(w)+bt,~(w)]/2 
is real. Then 

(A.8) W(n) = + 
l ~ s < t ~ _ n  

~- f i  as,t(w)ZsZt, 
s , t = l  

where a~,s(w) = 0 for s : 1 , . . . ,  n. Let A(w) = (as,t(w)) be n • n matrix,  then A(w) is 
symmetr ic  with vanishing diagonal elements. Applying Theorem 5.2 in de Jong (1987) 
to (A.8), one gets (A.7). This completes  the proof  of the theorem. De Jong 's  Theorem 
is s ta ted  in the following. 

THEOREM A.1. Let Q(n) = E l < _ i # j < _ n  aijZiZj  be a quadratic form in independent 
random variables Zi (EZi = O, EZ~ = 1), with v l , . . . , V n  the eigenvalues of the sym- 
metric matrix (aij),  with vanishing diagonal elements: aii -- 0 for all i. Suppose there 
exists a sequence of real numbers c(n) such that (let a(n)  2 be the variance of Q(n)): 

1) c4(n)a(n) -2 m a x l < i < n  El~_j~n a? .~,3 --+ O, as n --~ c~; and 
2) maxl<i<n E[Z~I(IZ~ I > c(n))] --~ 0, as n -~ c~. 
3) / f  the eigenvalues of the matrix (aij) are negligible: a(n) -2 maxl<~<n ,2  __~ 0, as 

n ~ oo then 
a(n)_lQ(n)  d N(O, 1), n ~ oo. 

To apply the theorem, we need to check the following conditions: 
(1) A(w) is symmetr ic  and has vanishing diagonal elements; 
(2) a (n )  2 -- Var[W(n)] -- vo(K)7~[f2(w) + T~(w)] + 0(1); 
(3) there exists a sequence of real numbers  e(n) --~ oo such tha t  

c4(n)a(n) -2 max ~ a? .(w) --~ 0, as n--~ oc; 
l < i < n  ~,3 

l ~_j~_n 

(4) m a x l < i <  n E[Z2I(IZil > c (n ) ) ]  ---* 0, as  n --+ oo;  and 
(5) a (n)  -2 maxl<~<n p2 __~ 0, as n ~ ~ ,  where pi 's  are the eigenvalues of the 

matr ix  A(w). 
Condit ions (1) and (4) are obvious from the definition of W(n)  and the normali ty  

of Z~ if there exists a sequence of real numbers  c(n) ~ c~ in condi t ion (3). Note  tha t  

n n 

max p2 <_ E # 2  __ n - l t r ( A 2 ( w ) ) = n - 1  E a2, t(w)" 
l < i < n  

i=1 s , t = l  
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It follows that condition (5) holds if n -1 E~,t=l  a2~,t(w) ~ O. Let 

and 

~m,~(~) = ~ ( e - ' ( ~ - ~ ) ) ~ ( e  -~(~+~)) 

d2m,n(A; s, t) ---- e-iS()~-~m)e-it()~+~) + e-it()~-;~'~)e-isO~+~). 

Then 
O 

1 
r~(s,t) = 2n~r E emenHm'~gm,n(A)e-i~(:~-;~m)e-it(~+~)" 

m~n~--O 

From the definition of as,t(w), direct computation leads to 

as,t(w) -- 2 KN h [r~ (s, t) + r ~  
k=l  

2 E emengm,n_~_~7~EK N W--Wk 
m,n=--O k=l  -h 

(7_ 2 ~ 0 
E 

m,n=--O 

(72 
emenHm,n-~-~Tr ~m,n (~)d2m,n (W; 

\ 
- - )  ~,~,,~(~k)r ~, t) 

s, t)(1 + O(h~)), 

uniformly for s, t with s ~ t. T h e n  E t= ln  a~,t(w ) = O(h) uniformly for s -- 1 , . . . ,  n. 
Hence 

max E a~,t(w) ~ 0 and n -1 a~,t(aJ ) --* O. 
l < s < n  t= l  s,t=l 

Conditions (3) and (5) hold if we take h --~ 0 and c(n) --* co. Condition (2) holds from 
the results of (A.4)-(A.7) and Lemma A.1 below. [] 

LEMMA A.1. Under assumptions (i)-(v), we have for each w E (0,~) 

Var[Mn(w)] = ~---~vo(K)rr[f2(w) + ~-~(w)](1 + o(1)). 

PROOF. Note that  n 

A~l(W) = ~ r~(s, t)Z~Zt.  
s,t= l 

Following the same argument as that given in Parzen ((1963), equation 3.29), we have 

(A.9) 

and 

(A.10) 
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uniformly in k, k'. Then 

(A.11) 
N 

Var[Mn(w)] = E K~v (w ~wa)Var[Anl(wk)] 
k=l  

• C o v ( A n l  (Wk), An2(Cak')) 

---- Dnl  + Dn2. 

By (A.9), (A.10) and (A.11), simple algebra leads to 

and 

1 f2 Dnl -- ~--~Trv0(K)[ y(W) 4- T2(w)](1 -t- o(1)) 

which completes the proof the lemma. [] 

PROOF OF PROPOSITION 2.1. The proof is similar to the proof of Lemma A.1, 
and is shown by employing the arguments for (3.2), (3.3) and (3.29) in Parzen (1963). [] 
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