
Ann. Inst. Statist. Math. 
�9 Vol. 56, No. 4, 599-609 (2004) 
Q2004 The Institute of Statistical Mathematics 

A BAYESIAN ANALYSIS FOR THE SEISMIC DATA ON TAIWAN 

TSAI-HUNG FAN AND ENG-NAN KUO 

Graduate Institute of Statistics, National Central University, Chungli, Taiwan 32054, R.O.C. 

(Received October 28, 2002; revised November 18, 2003) 

Abstract .  A Bayesian approach is used to analyze the seismic events with magni- 
tudes at least 4.7 on Taiwan. Following the idea proposed by Ogata (1988, Journal 
of the American Statistical Association, 83, 9-27), an epidemic model for the process 
of occurrence times given the observed magnitude values is considered, incorporated 
with gamma prior distributions for the parameters in the model, while the hyper- 
parameters of the prior are essentially determined by the seismic data in an earlier 
period. Bayesian inference is made on the conditional intensity function via Markov 
chain Monte Carlo method. The results yield acceptable accuracies in predicting 
large earthquake events within short time periods. 

Key words and phrases: Epidemic model, prior distribution, hyperparameter, con- 
ditional intensity function, MCMC method. 

1. Introduction 

Statistical research using point process models to analyze the earthquake activity 
have been considered since Utsu (1961) in which only the temporal component was 
focused in small areas that  are believed to have homogeneous physical characteristics. 
More sophisticated approaches incorporating the magnitude of the shocks where the 
relationships between the main shocks and the minor shocks are described can be seen 
in Ogata (1988, 1989). Ogata and Zatsura  (1988) and Musmeci and Vere-Jones (1992) 
have also included the spatial location of the shocks for modeling events that  occur in 
heterogeneous regions. Betrb and Ladelli (1996) address the issue of model selection in 
different areas of seismic activities in Italy. 

Let {ti, N mi} i=l  denote the occurrence times and the corresponding magnitude of 
the earthquake events over the time interval [0, T] of interest, and Mr be a prescribed 
minimum magnitude considered. Ogata (1988) constructed the seismic model based on 
an epidemic model with conditional intensity function 

a 

(1.1) )~(t I ~) = ~ + E e/3('m~-M')(t - -  t i Jr e) p '  
t i< t  

where _0 = (#, a,/3, c,p) denotes the vector of unknown but positive parameters and 
# relates to the sequence of main shocks, /3, a, c and p refer to the sequence of the 
aftershocks. He used the maximized likelihood estimator (MLE) to analyze and predict 
the seismic activity along the northeast coast in Japan. The choice of the conditional 
intensity function has been described extensively in Ogata (1988, 1989) and the references 
there in. Peruggia and Santner (1996) applied a Bayesian approach to the seismic data  
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at the area of Sannio Matese in Italy based on the intensity function 

(1.2) A(t I_0) = p + E cZ(m~-M~)ae-~(t-td' 
ti<t 

where _0 = (#, c~, ~, a) are all positive but unknown parameters. A similar method has 
been used to the seismic data in Hualien area of the northeastern Taiwan by Fan and 
Lin (2002). 

In this paper, we use a Bayesian approach to analyze the seismic data  on the entire 
island of Taiwan which includes the area between the east longitudes of 119 ~ and 122 ~ 
and the north latitudes of 21 ~ and 26 ~ . The data  are obtained from the Central Weather 
Bureau of Taiwan. By restricting attention to earthquakes occurring between January 
1984 and December 1997 and their magnitudes, we model the likelihood function using 
a nonhomogeneous Poisson process with conditional intensity function given by (1.1). 
Both the AIC (Akaike (1974)) and BIC (Schwarz (1978)) criteria suggest (1.1) is superior 
to (1.2). At the beginning of 1991, the Central Weather Bureau in Taiwan introduced 
a new measuring system to record the seismic activity. Therefore, we use it as a cut-off 
point to collect the prior information. The data before 1991, measured by the old system, 
are used to determine the prior distribution and those after 1991, measured by the new 
system, are used in the likelihood. However, according to the Central Weather Bureau, 
there exists a measurement difference between the two systems. Their rough belief is 
that the magnitude of 4.5 measured by the old system is equivalent to that  of 4.7 by the 
new one. We have also observed that the average daily rates in the early period with 
magnitude at least 4.5 and in the later period with magnitude at least 4.7 are about  
the same. Thus in our study only those data with magnitudes at least 4.5 measured 
by the old system are considered and adjusted to construct the prior and the minimum 
magnitude Mr of the earthquake events used in (1.1) is 4.7. In Section 2, we will select 
between models (1.1) and (1.2). Both the AIC and BIC criteria support  (1.1) over (1.2). 
Then we will describe the prior distributions of the parameters which more or less are 
adopted from Peruggia and Santner (1996). Section 3 gives the Bayesian inference of 
the conditional intensity function which can be used to estimate the probability of event 
occurrence within a short period. Section 4 is the conclusion and discussion. 

2. The model and the prior 

2.1 Model selection 
The conditional likelihood for an epidemic model is uniquely determined by its 

conditional intensity function (Daley and Vere-Jones (1988)). Let N be the number 
of events occurred over the time interval considered [0, T], N N {mi}i=l be {ti}i=l and the 
observed times and magnitudes of the events, then the conditional likelihood of _0 based 
on the intensity function A(t; 0_) is 

N T 

(2.1) log LT(8__) = E log A(ti; _8) - / o  A(t; 8_)dt. 
i=1  
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Thus, using A(t;_O) in (1.1), one can deduce the conditional log likelihood of _0 = 
(#,a,/3, c,p) as 

e~(mJ -Mr') 
logp + ~--~N_2 1og(p + a Y'~tj<t~ (t,-tj+c)pJ -- # T  

p-a_ I ~-~N_ I [eZ(~'-M~)(c-(P-I) -- (T - t{ + c)-(P-I))] 
(2.2) logLr(_0) : for p > 1 

N l e~(-b-Mr) 
1ogp + Y'~i=2 og(# + a ~-~tj<t ~ (t~-tj+c)p J - p T  

N -- a ~-~i=1 e f ~ ( m ~ - M ~ ) 1 o g ( ~ )  for p = 1; 

and while for A(t;_0) is given by (1.2) 

(2.3) logLT(_0) = l o g # +  Z l o g  # + a  E e-a( t ' - t JeZ(m{-Mr)  - # T  
i = 2  t j  <ti 

N 
a 

-t- -- E e/?(ra~-M~)[1 -- e -"(T-t ' )]  
o~ i=1 

with  _0 = (#, a, a,/3) and all the parameters  in _0 are positive. Ogata  (1988) uses (2.2) to 
analyze the seismic activity in the nor theast  coast of Japan  by the MLE approach and 
Perrugia and Santner (1996) perform a Bayesian analysis on the ear thquake da t a  in I ta ly  
using (2.3). We will first make a model comparison between (2.2) and (2.3) based on the 
da t a  to be analyzed which include all the earthquake events of magni tudes  at least 4.7 
(M~ = 4.7) on Taiwan over the east longitudes of 119 ~ and 122 ~ and the nor th  la t i tudes 
of 21 ~ and 26 ~ from 1991 to 1997 with N = 110. Figure 1 shows the magni tudes  versus 
the event t imes of all such events. 

Two of the most widely used model selection criteria are the AIC (Akaike (1974)) 
and the BIC (Schwarz (1978)) criteria. For given da ta  of N observations, let L(0) be the 

^ 

likelihood of _0 which has k unknown parameters ,  and OgLE be its MLE, then  the AIC 
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Fig. 1. The magnitudes versus the occurrence times of the earthquakes from 1991 to 1997 in Taiwan. 
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Table 1. Comparison between Models 1 and 2. 

k N log L(~MLE) AIC BIC 
Model 1 5 110 -403.18 816.36 829.87 
Model 2 4 110 -419.85 847.70 858.50 

value of the model is defined by 

AIC = - 2  log L(~MLE) + 2k; 

and the BIC value is 
BIC = - 2  log L(_~MLE) q- k log N. 

In other words, both AIC and BIC examine the maximized likelihood values plus a 
penalty term. The best model to be selected is the one with the smallest value. In 
addition to being penalized by the number of unknown parameters, BIC also takes into 
account of the sample size effect so that it would correct the bias toward the more 
complex models. Table 1 gives the corresponding AIC and BIC values based on the data  
shown in Fig. 1. We see that (2.2) indeed yields bigger maximized log likelihood and it 
also has smaller AIC and BIC values even though it contains one more parameter. Thus, 
we conclude that the data support Model 1 (with corresponding log-likelihood given by 
(2.2)) over Model 2 (with log-likelihood given by (2.3)). Hence, we will only focus on 
Model 1 with the likelihood given by (2.2) from now on. 

2.2 Prior determination 
In this paper, a Bayesian analysis will be conducted. The prior distribution on _0 is 

more or less adopted from that used by Perrugia and Santner (1996). That  is, we assume 
that the prior distribution of # is independent of that  of (a,/3, c, p) by the fact that # 
relates to the main shocks and the rests relate to the aftershocks. Moreover,/3 describes 
the magnitude effect and (c, p) are about the time effect of the events, hence we assume 
independence between/3 and (c,p). Since the value of p is known not to be too big (cf., 
Ogata  (1988)), a uniform prior over (0, 5) is considered here for simplicity. However, the 
prior distribution of a depends on/3, c and p. Furthermore, all #,/3 and c are assumed to 
have gamma priors with corresponding hyperparameters (%, A~), ( ~ ,  A~), and (3%, Ac) 
respectively. Given /3, c, and p, it is also assumed that the conditional prior of a is 
of gamma distribution with hyperparameters (%, Aa), but  both • and Aa depend on 
the values of/3, c and p. Based on constraints on the behavior of the magnitude effect 
(depending on/3) and the time effect (depending on c and p) of a shock, one can identify 
the area where a is concentrated most likely. Detailed discussion can be seen in Perrugia 
and Santner (1996). Therefore, the joint prior density of _0 is 

(2.4) u(_0) -- [_0] -- [p] [a I/3, c, p] [/3] [c] [p], 

where [.] or [. I "] denotes the density or the conditional density of the prior for the 
corresponding parameter(s). 

The values of the hyperparameters of the priors can be determined by specification 
of the means and percentiles of the prior distributions. Such information here is obtained 
from an approximate sample of_0 based on the early seismic data  from January 1984 to 
December 1990 in the area considered. Beginning in 1991, the Central Weather Bureau 
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in Taiwan changed the measuring system for recording the seismic activity. The data 
measured by the old system before 1991 are used to construct the prior distribution and 
those measured by the new system after 1991 are used in the likelihood. As mentioned 
in Section 1, a measurement difference exists between the two systems. We have investi- 
gated that the average occurrence rate of earthquakes with magnitude at least 4.5 (out of 
106 occurrences) in the early period was 0.042 per day while that with magnitude above 
4.7 (with 110 cases) in the later period was 0.043. Therefore, our prior information is 
based on the early data with (original) minimum magnitude 4.5. There are 106 such 
events in the early period. Adjusted values of their magnitudes are made by the Central 
Weather Bureau which are basically derived by a simple linear regression. Figure 2 shows 
the cumulative numbers of shocks of the early data with magnitudes at least 4.5 and 4.7 
as well as those of the recent data  with magnitudes at least 4.7. It indicates that the 
adjustments look reasonable. To obtain the prior distribution, consider the likelihood 
function 

L0(0_) = exp(log LTo (0_)), 

where logLTo(O) is given by (2.2), with I t  ~ rn ~176 being the adjusted data  in the early -- L i , i J i = l  

period time interval [0, T0] with No = 106. Letting 7to(_0) -- 1 be the noninformative 
prior of __0, it yields the posterior density of 0 as 

fro(_0 I {t ~ m~ c< L0(_0)Tr0(_0) (x Lo(_0), 

subject to the dependence of a on fl, c, and p as described previously. Note that 
7r0(_0 I "rt9 mPl,~ contains all the information about 0 carried by the early data. Us- L ~,' '$J)  
ing Metropolis-Hastings algorithm with a multivariate log-normal distribution for (#, 
a, ~, c) and a uniform distribution for p as the proposal distributions to generate 500 
parallel (independent) chains, each of length 200, an approximate posterior sample of 
_ It  ~ rn~ is drawn from the last observation gener- 0 of size 500 with respect to 7to(_0 I ~ i, i J, 
ated in each chain. Then we find the corresponding hyperparameters by matching the 
gamma priors with the sample means and quantiles of the generated distributions. The 
estimated hyperparameters are listed in Table 2. 
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Fig. 2. Cumulative number of shocks of the early and recent data. 
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Table 2. Estimated hyperparameters of the priors (Unit: day). 

Parameter 
C a m m a  

Hyperparameters 

11.86 1101.76 
/3 33.57 11.80 
c 1.35 34.30 

3. Bayesian inference 

Given the observed da ta  {ti, mi}i=lN over [0, T] with mi ~ Mr for all i = 1 , . . . ,  N ,  
the posterior density of _0 is 

=(_01 m{}) o~ LT(_0)Tr(_0), 

where log LT(-0) and 7r(-0) are of the forms in (2.2) and (2.4), respectively. The observed 
da ta  analyzed here include all the ear thquake events of magni tudes  at least 4.7 (Mr = 
4.7) on Taiwan from 1991 to 1997 with  N = 110. The prior r(-0) is constructed based on 
an early period da ta  from 1984 to 1990 in the same area after adjus tments  as discussed 
in Subsection 2.2. It is obvious but  not  unusual  tha t  the posterior 7r(_0 [ {ti, mi}) is not of 
a closed form. An approximate posterior sample, _01,_02,... ,_0M, of_0 of size M = 10,000 
are generated via the Metropolis MCMC algori thm similar to tha t  described previously. 
The resulting sample means, denoted by _0 = (/5, 5, ~, ~,/~), which are the commonly used 
Bayesian estimates of the parameters ,  and the sample variances are listed in Table 3. 
Note that ,  for each t, A(t;_0i), i = 1 , . . . ,  M,  also form an approximate posterior sample 
of A(t;-0) and its sample mean 

M 

5,(t;-0) = 

i=1 

can be considered as a Bayesian est imate  of A(t; -0) in contrast  to )~(t; _0) used by Perrugia 
and Santner (1996). One may  view i(t;-0) as the est imation of the posterior intensi ty 
mean, or the Bayesian predictive intensity (cf., Rhoades et al. (1994) and Ogata  (2002)). 
Furthermore,  any Bayesian inference of A(t; _0) can be made for each t via the posterior 
sample. For example, one can obtain a corresponding (1 - a ) 1 0 0 %  credible set of A(t;-0) 
for each t. Figure 3 plots log i ( t ;  -0) and the (estimated) 90% credible bands of log A(t; -0) 
for each t �9 [0, T] pointwisely. We have also examined tha t  ~(t; 0), A(t; _0) and A(t; ~MLE) 

Table 3. Estimated posterior means (posterior standard deviations) and the MLE of the 
parameters. (The last line lists the MLE's based on the adjusted early data only.) 

Parameter tt a c ~3 p 
Posterior mean 0 .0298  0 . 0 0 8 1  0 . 0 4 2 0  2 .9 8 3 1  1.1095 
(Posterior s.d.) (0.0014) (0.0010) (0.0141) (0.2917) (0.0412) 

MLE 0.0320 0 . 0 0 4 3  0 .0 4 9 1  3 . 5 9 9 9  1.2718 
Early-MLE 0.019 0.0120 0 .0 0 4 1  2 . 8 1 6 7  0.9411 
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Fig. 3. Graphs of A(t;0_) (solid line) for 0 < t < T and the 90% credible bands of A(t;_0) 
(shaded area). The vertical axis is given in logarithmic scale. 
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Fig. 4. The prior density (dotted) and the posterior density (solid) of each parameter. 

(where ~MLE is the  MLE of _0 based on the recent data) are not  of much difference 
pointwise,  especially the two Bayesian point  estimates.  The  posterior and prior densities 
of each parameter are also graphed in Fig. 4, from which we see that  the prior densities are 
considerably flatter compared with  the posteriors and hence in general are satisfactory 
by robustness consideration (cf., Berger (1985)).  
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4. Conclus ion and discussion 

Given the conditional intensity function A(t; _0) as the occurrence rate of a Poisson 
process, one can calculate the probability of event occurrence within a short time period 
(t, t + At) for any At > 0. Let X(t, t + At) denote the number of such events occurring 
in (t, t + At). The probability of at least one occurrence within the short interval is 

(4.1) 
ff ft+At 

r )~(s;O_)ds). 

For fixed At > 0 and for each t > 0, CAt(t) can be estimated via (4.1) by replacing 
A(t;_0) with its estimate. If the estimated probability is high, we may suspect it as a 
signal of a possible future earthquake (with magnitude at least Mr) within the next At 
time interval. However, CAt(t) should be estimated with the data observed only up to 
time t for prediction purpose. Figure 5 gives the predicted log A(t;_0), only using data 
up to t for 0 < t < T by MLE and the predictive Bayesian methods. The thin line 
is A(t;--OGLE), without taking account of the early period data  which results in higher 
conditional intensity, and the grey line, say A(t; -O~u), produced by the MLE on all data  up 
to t including the adjusted data from the early period, yields lower conditional intensity; 
while the thick one, A(t;_0) (the Bayesian result), lies in between except in the very 
beginning period. Note that the adjusted data  in the early period indeed have much 
smaller MLE than those in the later period (see Table 3) which might pull down the 
intensity. On the other hand, the Bayesian approach, incorporating the prior information 
from previous observations, provides a compromising result and seems to be less sensitive 
compared with A(t; -OaH) against the early information. At time goes on with more data 
collected, the prior plays less role and the Bayesian result turns out to be similar to the 
MLE with current data only. 
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Fig. 5. Graphs of (predicted) conditional intensity functions. 
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Fig.  6. G r a p h s  o f  t h e  p r ed i c t i ve  p robab i l i t i e s  CAt(t) for 0 < t < T .  

Hereafter, we will only look at the estimated CAt(t), denoted by CAt(t), in which 
/k(t;_~) is estimated by ~(t;_0) using data  up to t. Figure 6 plots ~bAt(t) for 0 < t < T with 
At ---- 3, 7 and 10 (days), respectively. It is then of desired to choose a cutoff value for 
bAt(t) in order to make predictions. If bAt(t) is higher than the cutoff, we conclude it 
as a signal for a possible earthquake within (t, t + At). Appropriate cutoff values can be 
determined based on the prediction results. Let a, b, c, and d represent the numbers of 
successful forecasts of occurrence, failures to predict, false alarms and successful forecasts 
of non-occurrence in the prediction, respectively. For example, considering At = 7, 
among all 109 events studied, there are 45 of them occurred within 7 days. In Fig. 7 
we show the prediction error rates of r against different cutoff values, --r in which 
the dotted line (a) is the false alarm (false positive) rate (= c / (a  + c)), the dashed 
line (b) is the undetected (false negative) rate (= b/(a + b)) and the overall error rate 
(-- (b + c) / (a  + b + c + d)) is plotted by the solid line (c). Obviously, more signals are 
detected using smaller cutoff values but  it produces higher false positive rates. On the 
other hand, if bigger cutoff values are used, it results in fewer signals and thus higher 
false negative rates. In terms of the overall error rates, the best choice for the cutoff 
is about  0.5. In addition, we also consider the Hanssen-Kuiper skill score, or so called 
R-score, namely 

ad - bc 
R =  

(a + b)(c + d) 

for various cutoffs, and the results are shown in Fig. 8. Again the maximum R-score is 
achieved at --r = 0.5. If (~7(t) _> 0.5 is used as detection of a signal, there are overall 49 
signals detected including 15 false alarms. The correct prediction rate is 34/45 (75.56%) 
and the correct detection rate is 34/49 (69.39%) with R-score 0.521. 

It is also interesting to note that  the trend of q~At (t) is similar to that  of the mag- 
nitudes (see Fig. 1). It is worth to mention that if the cutoff used is 0.5, the events 
detected are indeed of magnitudes over 5.4 for r 5.8 f o r  (~3(t) and 5.3 for r 
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Fig. 7. The prediction error rates for various cutoffs. 
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Fig. 8. The R-score for various cutoffs. 

The predictive probabilities are relatively lower for smaller At and thus indicate less sig- 
nals, it detects bigger events however. On the contrary, longer period prediction yields 
higher probabilities and more signals but with more false alarms as well. Higher values 
of the predictive probabilities correspond to larger earthquake events. How to find the 
correspondence between C A t ( t )  and detected magnitudes within various time intervals 
should be an important issue in further study. 
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