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A b s t r a c t .  Chirp  signals are qui te  common in different areas  of science and en- 
gineering. In this  paper  we consider the  asympto t i c  proper t ies  of the  least squares 
es t imators  of the  pa ramete r s  of the  chirp signals. We ob ta in  the  consistency p roper ty  
of the least squares estimators and also obtain the asymptotic distribution under the 
assumptions that the errors are independent and identically distributed. We also 
consider the generalized chirp signals and obtain the asymptotic properties of the 
least squares estimators of the unknown parameters. Finally we perform some sim- 
ulations experiments to see how the asymptotic results behave for small sample and 
the performances are quite satisfactory. 

Key words and phrases: Chirp signal, least squares es t imators ,  a sympto t i c  distr i-  
but ion,  consistent  es t imators .  

1. Introduction 

In this paper we consider the following signal processing model; 

(1.1) y(n)  = A~ j(a%+z~ + e(n); n = 1 , . . . ,  N. 

Here y(n)  is the complex valued signal observed at n = 1 , . . . ,  N, A ~ is the amplitude 
and it can be complex valued, j = ~YL-~, a0 is the initial frequency and /3 ~ is the 
frequency rate. The additive errors e(n) 's  are complex valued independent and identically 
distributed (i.i.d.) random variables with mean zero and finite variance a 2. 

The model (1.1) is known as the chirp signals in statistical signal processing litera- 
ture. Chirp signals are quite useful in various areas of science and engineering particu- 
larly in physics, sonar, radar and communications. For example, chirp signals are used 
to estimate trajectories of moving objects with respect to fixed receivers. In addition, 
in situations where interference rejection is important chirp signals provide a successful 
digital modulation scheme. For instance, consider a radar illuminating a target. Then, 
the transmitted signal will be affected by 
ative motion between the target and the 
and differentiable, the phase shift can be 

a phase shift induced by the distance and rel- 
receiver. Assuming this motion is continuous 
adequately modeled as r = c + aot  + flot 2, 

where a0 and ~0 are related to speed and acceleration or range and speed depending on 
what the radar is intended for and on the kind of waveforms transmitted, see for example 
Rihaczek ((1969), 56-65). It leads to the chirp signal model (1.1). 
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The problem of estimation of the parameters of chirp signals is quite important. 
Several methods are available in the literature, see for example the work of Abatzoglou 
(1986), Kumaresan and Verma (1987), Djuric and Kay (1990), Gini et el. (2000), Huang 
et al. (1999), Besson et al. (1999) and Saha and Kay (2002). Most of the methods that 
have been suggested in the literature yield maximum likelihood estimators. Although 
several methods are available in the literature, but  the theoretical properties of the least 
squares estimators (LSE's) have not been discussed anywhere. The main aim of this 
paper is to obtain the theoretical properties of the LSE's under the appropriate model 
assumptions. 

Note that the model (1.1) is a non-linear model. Therefore, it is not possible to 
obtain any finite sample property of the LSE's (Jennrich (1969)). All the results have to 
be asymptotic in nature. Several sufficient conditions (see for example Jennrich (1969), 
Wu (1981) or Kundu (1991)) are available in the literature which guarantee the con- 
sistency and the asymptotic normality of the LSE's. It is shown in Kundu and Mitra 
(1996) that even a particular case of this model (1.1), namely when fl0 = 0, does not 
satisfy the sufficient conditions of Jennrich (1969) or Wu (1981). Therefore, it is clear 
that the present model also does not satisfy those sufficient conditions. Because of the 
complex structure of the model it is not immediate how the LSE's will behave in this sit- 
uation. For the non-linear models as considered by Jennrich (1969), Wu (1981) or Kundu 
(1991), it is observed that the rate of convergence of the LSE's is usually Op(N 1/2) (here 

z Op (N a) = Z means N~ is bounded in probability), whereas here the rate of convergence 
of the LSE of c~ ~ is OB(N 3/2) and for/30 it is OB(Nb/2). 

In this paper we use the following notations: almost sure convergence will be denoted 
by a.~., , d ' >, the convergence in distribution will be denoted by ,' and C will denote 
arbitrary constant and it may be different at different places. The rest of the paper 
is organized as follows. In Section 2, we define the LSE's of the model parameters of 
(1.1) and obtain their consistency properties. The asymptotic distributions of the LSE's 
are obtained in Section 3. The consistency and the asymptotic normality properties of 
an estimator of a 2 are discussed in Section 4. Generalized chirp signals are considered 
in Section 5. Some simulation results are presented in Section 6 and finally we draw 
conclusions in Section 7. 

2. Consistency property of the least squares estimators 

In this section first we define the LSE's of the parameters of the model (1.1) and 
then we obtain the consistency property of the LSE's. We use the following notations; 
0 = (AR, AI,  c~,/3). Here AR and AI denote the real and imaginary parts of the complex 
amplitude A and 0 ~ A ~ = ( R, A~ c~~ denotes the true parameter value of 0. The 
LSE's of 0 ~ say t) = (-4R, ,4I, &,/)) can be obtained by minimizing 

N 

Q(AR, AI,  a,/3) = E [y(n) - AeJ("n+Zn2)12 
n = l  

with respect to AR, AI, a and/3. We make the following assumptions of the model (1.1). 

ASSUMPTION 1. A ~ = A ~ + j A  ~ is an arbitrary complex number, a ~ fl0 E (0, 7r) 
and e(n)'s are i.i.d, complex valued random variables. Let us write e(n) = eR(n) + 
jet(n) ,  where eR(n) and ei(n) are the real and imaginary parts of e(n). It is assumed 
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( r  2 

that  E(eR(n))  = E(e i (n ) )  = O, V (en (n ) )  = V(e t (n ) )  = ~- and eR(n) and et(n)  are 
independently distributed. 

Now we can state the following result: 

THEOREM 2.1. I f  0 ~ = (A~ A ~ c~ ~ ~ is an interior point of the parameter space 
o = ~ • ~ • [o, ~] • [o, ~l and if the e~or random variables e(n) 's satufy Assumption 1 
and IA ~ > O, then O, the LSE  of  O ~ is a strongly consistent estimator of O ~ 

To prove Theorem 2.1, we need the following lemmas. 

LEMMA 2.1. Let us denote 

SC,M = { 0 : 0  = ( A R , A I , a , / 3 ) ,  I0 - 0~ > C, ]ARI <_ M, IAI] <_ M } .  

Suppose e(n) 's are i.i.d, random variables satisfying Assumption 1. I f  for  any C > 0 
and for  some M < oo 

lira inf 1 o~sc,M ~ [Q(O) - Q(o~ > 0 a.s. 

then O, the LSE  of O ~ is a strongly consistent estimator of O ~ 

PROOF OF LEMMA 2.1. The proof is simple and can be obtained along the same 
line as the proof of Lemma 1 of Wu (1981), therefore it is omitted. 

LEMMA 2.2. Let {X(n)} be a sequence of i.i.d, real valued random variables with 
mean zero and finite variance a 2, then as N ~ oc 

N 

sup 1 E X ( t )  c~176 ~:~ O. 
a,b N t = l  

PROOF OF LEMMA 2.2. Consider the following random variables: 

Z(t)  --- ~ X ( t )  if Ix(t)l  _< t3/4; 

t 0 otherwise. 

Then 

~-:P[X(t)  r z ( t ) ]  = 
t = l  

P[IX( t ) I  > t 3/4] = E P[IX(s)I  > 83/4] 

t = l  t = l  2t-l_~s<2 t 
(~3 OO 

-< E E P[IX(1)[ > 2(t-1)3/41 -~ E 2tpNx(1)[  > 2(t-1)3/41 

t = l  2 t-1 <~8~2t t= l  
(2<3 _<~--~2~_<~~ ~EIX(1)I 2 6 ~ 2  -t/2<oo. 

t = l  t = l  
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(Note tha t  the third  inequality follows from the Markov inequality.) Therefore,  Z(t) and 
X(t)  are equivalent sequences (Chung (1974)). So 

(2.1) sup 
a,b 

I N  
COS(bt2) E X(t)cos(at) ~ ' 0  

t = l  
N 1 

r sup ~ E Z(t) c~176 
a,b t = l  

~_2; 0. 

Let U(t) = Z(t) - E(Z(t)) .  Now observe that  

sup~,b N1 EE(Z( t ) ) cos (a t ) cos (b t2  - < -NZ[E(Z(t))It=I = N t = l  I <~3/" xdF(x)  --+ 0 

as N --+ c~, where F(-) is the distr ibution function of X(n) .  Therefore, proving (2.1) is 
equivalent to prove 

N 

(2.2) sup 1 a,b -N E U(t) cos(at) cos(bt 2) ~:~" 0. 
t = l  

Now we prove (2.2). For any a, b and e > 0 and 0 < h < 1 4-~-~, we have 

P ZU(t )cos(a t )cos(b t2)  >_~ < 2e-hNc H EehU(t)cos(at)cos(bt 2) 
t = l  t = l  

N 

< 2e -hNC l - I (1  + h 2 a  2) <_ 2e -hN~+Nh2a2 " 

t=l 

The first inequality follows from the Markov inequality (see also Kundu  and Mitra  
(1996)). Note tha t  V(U(t)) = V(Z(t))  < V(X( t ) )  = a s. It simply follows from the  

1 and for Ix I < �89 e * < l + x + x  2, definition of Z(t). Since [hU(t)cos(at)cos(bt2)l <_ ~ _ _ 
the second inequality holds true. 

1 therefore for large N,  Choose h = 4N---ff~, 

[ 1N cos(bt ] (2.3) P E U(t)cos(at) >_ e ~ 2e -N1/ae/4+a2/(16N1/2) ~ 2e -N1/4e/4.  

t = l  

Let J = N 6, Choose J points ( a l , b l ) , . . . , ( a y , b 2 )  such tha t  for any point (a,b) in 
[0, ~r] • [0, 7r], we have a point  (ak, bk) satisfying 

71" 7r 
[ak --a I < ~ and Ibk - b I <_ N---g. 

Now Taylor series expansion can be used to est imate [ cos(bt 2) - cos(bkt2)[ _< t2[b - bkl 
and [cos(at) - cos(akt)[ _< [tl[a - ak[. Therefore, 

N c~ 1 E U(t){cos(at)cos(bt 2) - cos(akt) 
N t = l  
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<- N ~-~"U(t)c~176 - 

] + ~ U(t) cos(bkt2){cos(at) - c o s ( a k t ) }  

t=l  

_ ~ - ~  t 3 / 4 t 2  7v 1 N 
< C ~ _  v -N~ + - ~  t3/4t 

t = l  t= l  

_ + - - + 0  a s  N - - + o c .  

Therefore for large N, we have 

I 1N 1 P slip EU(t)cos(at)cos(bt2) > 2~ 
L o,b g ~=1 

< P max u( t )  eos(akt) cos(bkt 2) > ~ 
-- k<_N 6 

t= l  

~_ 2N6e-N1/%/4. 

Since ~-~N~=I 2N6e -N~/%/4 < cx~, therefore because of Borel-Cantelli lemma (2.2) holds 
true and that  proves Lemma 2.2. 

COROLLARY OF LEMMA 2.2. As N ~ co, the following results are also true. 

(a) 

(b) 

(c) 

N sin(at) sin(bt 2) sup E X(t)  ~:~" O, 
a,b t= l  

N 

sup 1 E X ( t ) s i n ( a t ) c ~  
a,b N t=l  

N 

sup 1 E X ( t ) c ~  
a,b "N t= l  

(d) sup 
a,b 

1 g 
- ~  E tkX(t)  c~ e~ a_~. O, 

t=l  

k = 1, 2, . . .  

(d) is true for other combinations of sine and cosine functions like (a), (b) and (c). 

PROOF OF THEOREM 2.1. In this proof we denote ~ by 0N = (-4RN, AIN, &g, ~N)  

to emphasize that  0 depends on the sample size. If ~N is not consistent for 8 ~ then 
either 

Case I. For all subsequences {Nk} of {N}, IAR~ [ + [AINk [ --~ c~. Then 

lk(Q(bN~) - Q(O~ -~ co. 
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But as 0Nk is the LSE of 0 ~ 

Q(ON~) -- Q(O ~ < O, 

which leads to a contradiction. So ON is consistent for 0 ~ 

Case II. For at least one subsequence {Nk} of {N}, ONk E SC,M for some C > 0, 
and an 0 < M < oc. Now consider 

1 ] 
[Q(0) - Q(0~ = ~ ]y(n) - AeJ(~"+~n2)[ 2 - ~ le(n)[ 2 

n=l n=l 

= fl(O) + f2(O) (say) 

where 

N 

1 ~-~[(AO cos(cO n + flOn2 ) _ AR cos(an + fin 2) fl(O) = -~ 
n = l  

- A ~ sin(a~ + ~~ + AI sin(an + ]3n2)) 2] 
N 

1 E [(A~ sin(a~ +/3~ - AR sin(an + j3n 2) +N 
n = l  

+ A ~ cos(a~ + ~~ - AI cos(an + ~n2) )  2] 

2 N 
f~(O) = N y ~  eR(n)(A~ cos(a~ + Z~ 2) -- AR cos(an + Zn 2) 

n ~ l  

- A ~ sin(a~ +/3~ 2) + AI sin(an + 13n2)) 
N 2 

+ -N E el(n)(A~176 +/~~ -- ARsin(an + ~n 2) 
n = l  

+ A ~ cos(a~ + / ~ ~  -- A1 cos(an + ~n2)). 

Using Lemma 2.2 and its corollary it follows that 

(2.4) lira sup f2(o) = 0 
N----~oo OESc,M 

Now consider the following sets: 

&.S. 

SC, M,1 = { 0 : 0  = (AR, AI ,a ,~) ,  JAR -- A~ > C, IARI <_ M, [AI[ <_ M}, 

SC,M,2 = { 0 : 0  = (AmAI , a , ~ ) , IA I  - A~ > C,[AR! <_ M, IAtl <_ M},  
SC,M, 3 = { 0 : 0  = ( A n ,  Ai ,a ,  t3) , la-a~ >_ C,[AR[ <_ M, IAI [ _< M}, 

SC, M, 4 = { 0 : 0  = (AR, AI ,a ,~) ,  1/3 - ~o[ > C, [AR[ <_ M, [Az[ < M}. 

Note that SC, M C SC, M,1 U SC, M,~ U SC,  M, 3 (3 SC,  M, 4 = S ( s a y ) .  Therefore, 

(2.5) lim inf 1.[Q(0) - Q(0~ > lira inf 1.[Q(O) - Q(0~ 
- -  OCSc,M IV 06S 1Y 
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First we show that 

(2.6) lim inf 1.[Q(0) - Q(0~ > 0 
- -  OcSo ,M, j  1V 

a . s .  

for all j -- 1 , . . . ,  4 and because of (2.5) that would imply 

(2.7) li__~m inf 1 [Q(O) - Q(O~ > 0 
OESo,M 1u 

a . s .  

Because of (2.5), using Lemma 2.1, Theorem 2.1 is proved provided we can show (2.6). 
First consider j = 1 to prove (2.6). So using (2.4), it follows that 

li__m_m inf N [Q(0) - Q(0~ 
OCSc,M,1 

---- lim inf f l  (0) 
- -  OCSC,M,1 

N 

= lim inf 1 E [(A~ c~176 + fl~ - AR c~176 + •~ 
IAR-A~ I>C N 

- -  n = l  

+ (A ~ sin(a~ + ~~ - A n  sin(a~ + ~~ 

= inf (A~ - - A R )  2 > C 2 > O. 
IAR_AORI>C 

For other j ,  it can be shown along the same line and that proves (2.7). 
Theorem 2.1 is proved. 

Therefore, 

3. Asymptotic distribution of the LSE's 

In this section we provide the asymptotic distribution of the least squares estima- 
tors, obtained in the previous section. The asymptotic distribution of the least squares 
estimators of the parameters of the model (1.1) can be stated as follows: 

T H E O R E M  3.1. Under Assumpt ion  1, as N ~ cx~ 

[N1/2(fiR _ AoR), N 1 / 2 ( . ~  _ AO), N3/2(& _ ao), N5/2(~ _/30)1 d Na(0, 2a2~),  

here N4(0, 2a2E)  denotes a 4-variate normal  distribution with mean vector 0 and the 
dispersion matrix  2~2]E. The matrix  ]E has the following structure: 

1 
(3.1) E - 

IA012 

02 02 0 0 18A 0 _ l h A  o A R q-9A I _ 4 A R A  I 
2 

9AR +Az _ 1 8 A  o 15A o _ 4 A O  AO o~ o~ 
2 

lSA ~ - 1 8 A  ~ 96 - 9 0  

- 1 h A  ~ 15A ~ - 9 0  90 

It is interesting to note that the rate of convergence of the estimators of the linear 
parameters is N 1/2, whereas the rates of convergence of the estimators of the non- 
linear parameters a r e  N 3 /2  and N 5/2 respectively. It indicates that the accuracy of ~ is 
maximum followed by & and then the linear parameters. 
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PROOF OF THEOREM 3.1. We use the following notation: 

[0Q(8) 0Q(8) OQ(8) OQ(8)] 
Q'(8) = [ OAR ' OAI ' Oa ' aZ J 

and Q"(8) is a 4 x 4 matr ix  of the second derivatives of Q(8). Now expanding Q'(0)  
around 80 , by Taylor series, we obtain 

(3.2) Q'(O) - Q'(8 ~ = (0 - 8~ 

here 0 is a point on the line joining 0 and 8 ~ Suppose D is a 4 x 4 diagonal matr ix  as 
follows: 

D = d iag{N -1/2, N -1/2, N -3/2, N-5/2}.  

Since Q'(0)  = 0, therefore (3.2) can be wri t ten as 

(3.3) (0 - 8 0 ) 0  -1 ---- - [Q ' (O~  [OQ"(O)D]-I, 

as [DQ"(O)D] is an invertible matr ix  almost surely for large N.  From Theorem 2.1, 
it follows tha t  0 converges to 8 ~ almost surely as N ~ co. Since Q(8) is a continuous 
function of 8, 

lim [DQ"(O)D] = limoo[DQ"(8~ ]. 
N----~ oo 

Now using the facts 

it can be seen tha t  

N N 
aim 1 E 1 1 E 1 g--,oo ~ n = ~, lim n 2 = - 

N---* oo N - 3  3 '  
n = l  n = l  

N N 
lim 1 E n 3  1 1 E  1 g---+oo N-4 ~- ~, lim n 4 = - 

N---~oo N - ~  5 '  
n = l  n ~ l  

0 - A  ~ 2 0 
20 - 5  A '  ] 

2AO | 
(3.4) lim [OQ"(8~ = 2 d ~ -~ R = ~-1 .  

g ~  _ A  o d o 2 02 1 02 

_ h A  o 2 .  2 0 1 02 2 0 2  -~AR ~ l d l  ~ l A [  J 

Therefore, using Lemma 2.1 

lim [DQ"(O)D]- I=  lim [DQ"(8~  ~E, 
N---* cx) N--*oo 

where E is the same as defined in (3.1). Now consider the 1 x 4 vector [Q' (8~ where 

(3.5) [Q'(8~ T 
2 N , ~ [ ~ : 1  c . ( . )  cos(s~ + ~~ + ~ 1  c,(n) sin(~% + ~~ 

2 0 N : N_. f f~[mREn=leR(n)ns in(aOn+f~On2)+m 0 N 

+ N--~/2[A~ EnN=I e ' (n )ns in (a~  + ~~ -- A ~  E ~ = I  e I (n)nc~176 + f~~ 

2 0 N N ~--~/~ JAR Y~n=~ r n~ ~i"( ~~ + Z ~ + A? ~ . = 1  ~R(n) n~ r176 ~~ + Z~ 
+ N--~/2[A~ E L 1  el(n)n2 s i n ( s 0 n  + ]30n2) -- A ~  E L I  e / (n )n2  c ~ 1 7 6  + f~~ 
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Since all the elements of [Q'(0~ satisfy the Lindeberg-Feller's condition (Chung 
(1974)), therefore as N --~ c~, 

(3.6) [Q'(O~ ~ N4(0, 2o'2y]-1), 

where E -1 is the same as defined in (3.4). Therefore from (3.2) and (3.6), Theorem 3.1 
follows immediately. 

4. Consistency and asymptotic normality of 6- 2 

In this section first we provide the consistency of 5 2, an estimator of a 2, which is 
given by 

We have the following consistency result of 5 2 . 

THEOREM 4.1. Under Assumption 1 as given in Theorem 2.1, if N -~ co, then 5 2 
is a strongly consistent estimator of a 2. 

To prove Theorem 4.1, we need the following lemma. 

LEMMA 4.1. I f  ~ and ~ are the LSE's  of s ~ and/3o respectively, then as N -~ oc 

N(& - s ~ a~. 0 and N2(/3 - / 3  ~ %~" 0. 

1 where PROOF OF LEMMA 4.1. Multiply both sides of the equation (3.3) by ~ I 4 ,  
I4 is the 4 x 4 identity matrix, we obtain 

It is clear from (3.5) that Q'(O~ ~:2~" v ~  0. Therefore, ( 0 -  0 ~  -1 ~-'~" 0. It implies 
Lemma 4.1. 

PROOF OF THEOREM 4.1. 

where 

Let us write 1 Q ( 0 )  as follows: 

NQ(O)  = T1 + T2 + T3 + T4 + Th, 

T1 -- -~ eR(n) 2 + e i (n)  2 

2 eR(n)(  A ~  cos( s ~  + / 3~ -- -4R cos(&n +/3n2)) T2 = 

N n=l 
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Ta = 

T4 = 

__ 

n = l  e I ( n ) ( n ~  c ~ 1 7 6  -~- ~~  --  -'4I COS((~n -[- ~ n 2 ) )  

2 el(n)(A ~ sin(s~ + 3~ 2) - AR sin(&n + r + N  
k n = l  

N 1 
~ [ A ~ 1 7 6  + 3~ ARcos(an + ~ )  
n = l  

- A/~ sin(a~ + 3~ + -4x sin(&n + l)n2)] 2 
N 

1 
E[A~176 + 3~ - Ai cos(&n + r 2) 
n = l  

�9 + A ~ sin(s~ + 3~ 2) - An sin(&n + r 2. 

Note that because of strong law of large number T1 ~2; a2. Because of Lemma 2.2 
and its corollary, T2 ~-~" 0 and T3 ~:--~" 0. Also note that 

0 < T 4 _ <  
N 

1 E[A~176 +/3~ 2) - -4n cos(&n + 3n2)] 2 
n = l  

N 

1 E [ A 0  sin(aO n +/3On2)_ .4i sin(&n + ~n2)] 2. + N  
n = l  

Consider 

N 

1 E[AOncos(aOn + 3On2 ) _ ftRcos(&n -t-/)n2)] 2 
N 

n = l  
N 

2 
-< ~ ~-~.( A~ - ~ t )  2 cos2(a~ + 3~ 

n = l  

2 N 
+ N E "4~(c~176 + 3 ~  cos(&n + 3n2)) 2 

n = l  

(as 2x 2 + 2y 2 - (x + y)~ > o) 
2 N 

_< 2(A~ - AR) 2 + -~ E A~[(& -- a~ + (8 -- 3~ 
n = l  

(using Taylor series expansion) 
a.8. 

O~ 

because An ~:~ A ~ N(& -a~ ~2~- 0 and N2(/3-/3 ~ ~=~" 0. Along the same line it follows 
that 

N 1 E[A~176 + 3~ 2) - Az sin(&n + r ~:J; 0, 
n = l  

therefore, it follows that T4 ~:-~ 0. Similarly T5 ~--~ 0. It proves Theorem 4.1. 



CHIRP SIGNAL 539 

Now we make the following assumption to prove the asymptotic normality results 
of 6 .2 

ASSUMPTION 2. 

lowing conditions: 
Other than Assumption 1, eR(n) and ei(n) also satisfy the fol- 

E(eR(n ) )  4 < c~ and E ( e I ( n ) )  4 < c~. 

Now we state the asymptotic normality result of ~2. 

THEOREM 4.2. Under Assumpt ion  2, as N --~ c~ 

v/-~(~2 _ a2) d g(0 ,  a*), 

where a* = E ( e R(n ) )  4 + E ( e i ( n ) )  4 ~4 
2 "  

(4.1) 

PROOF OF THEOREM 4.2. 

{ V ~ a ~  _ _ _  

Note that 

, / ~ 2  _ _ _  

First we show that as N ~ cx~, 

v ~  (eR(~)2 + eI(~)2) A 0. 

]} V / ~  (eR(n) 2 + er(n) 2) = v/N(T2 + T3 + T4 + T5). 

Expanding cos(&n + ~n 2) and sin(&n + ~n 2) around (a~  + ~~ and applying Lemma 
4.1, it follows by some calculations that 

v ~ T 2  A 0, CKT3 A 0, v ~ T 4  A o, v ~ T 5  A o. 

Therefore (4.1) follows. Now using Central Limit Theorem and because of Assumption 2, 
it follows that 

(e~(n) 2 + e~(~) 2 - ~2) A N(0, ~ * ) .  

Therefore, the result follows immediately. 

5. Genera l ized ch i rp  s ignals 

In this section we consider the generalized chirp signals as considered by Djuric and 
Kay (1990) and discuss the properties of the least squares estimators of the unknown 
parameters. Djuric and Kay (1990) defined the generalized chirp signal as follows: 

�9 0 0 2 0 p 
y(n)  = A~ J(~ln+~2n +...+~pn ) + e(n).  

Here y(n)'s are the observed complex valued signals, A ~ and e(n)'s are the same as 
defined in Section 1. The unknown frequencies w ~  w ~ all belong to (0, r )  and p is 
a known fixed integer. Here also the problem is to estimate the unknown frequencies 
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Wl 0, . . . ,  wF0 and a 2 from a sample of size N,  namely y(1) , . .  ., y(N).  We mainly consider 
the least squares estimators of the unknown parameters  obtained by minimizing: 

N 

Q(Op) = ~ [y(n) - Ae j(~'~+'''+~'~') 12, 
n = l  

with respect to the unknown parameters  Op = (AR, At ,  ~ - ) 1 , ' ' ' ,  W p ) .  Here An and AI are 
0 0 0 0 the same as defined before. We denote,  Op = (An, A l , w l , . . .  ,Wp ~ as the true parameter  

= 0 value and 0F (An, AI,  &l, �9 �9 �9 &p) as the LSE's of 0 F. Now we can state the consistency 

result of 0p as follows. 

0 0 0 THEOREM 5.1. I f  0 ~ = (AR, A I , w l , . . .  ,w ~ is an interior point of the parame- 
ter space O F = ~ x ~ • [0, 77] x --. x [0, 77], the error random variables e(n) satisfy 
Assumption 1 and IA~ > 0, then Op is a consistent estimator of 0 ~ 

Note tha t  to prove Theorem 5.1, we need to extend Lemmas 2.1 and 2.2 for general 
p. Lemma 2.1 can be extended very easily for general p therefore it is not s tated here 
explicitly. The following lemma is an extension of Lemma 2.2 for general p. 

LEMMA 5.1. Let (X(n )}  be a sequence of i.i.d, random variables with mean zero 
and finite variance, then 

sup X(n)  cos (a ln ) - - ,  cos(apn p) 
al  ,... ,ap n = l  

~ 0 .  

PROOF O F  LEMMA 5.1. The proof goes exactly the same way as the line of proof of 
Lemnm 2.2 up to (2.3), wi th  the obvious modifications tha t  everywhere cos(an) cos(bn 2) 
is replaced by c o s ( a l n ) . - ,  cos(apnP). After (2.3), the following changes have to be made. 

Let J = N p(p+I), choose J points (a11 , . . . ,  a p l ) , . . . ,  ( a l j , . . . ,  aFj) ,  such tha t  for 
any ( a l , . . . ,  aF) �9 [0, 77] •  • [0, 7r], there exists a point ( e l k , . . . ,  aFk), such tha t  

77 71" 

In1 - alkl <_ Np+-------y,..., lap - apkl ~_ Np+---- T, 

for some 1 < k < J .  Now as N --* co, 

1 
N 

E U(n){cos(aln) . . .  cos(apn p) - cos(alkn). . ,  cos(apknP)} 
n = l  

[ E 77 1 N 
_ - -  n a/4. nP. < C -~ E n 3 / 4 "  n .  Np+l + . . .  + -~ 

n = l  n = l  

Therefore, for large N,  we have 

sup E U ( n ) c o s ( a l n ) . . . c o s ( a p n P )  > 
al  ,...~ap n = l  

< P max  - I k-<N'('+l) n=lEU(n)c~176 

P 

7r 
- - + 0 .  Np+I 

2Np(p+I)e-N1/%/4" 
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Since ~ N = I  NP(P+I)e-N1~%~4 < oc, therefore by Borel-Cantelli lemma the result follows. 

With the help of Lemma 5.1 and following the same line of proof as of Theorem 2.1, 
Theorem 5.1 can be proved. Now we provide the asymptotic distribution of 0p in the 
following theorem. 

THEOREM 5.2. Under Assumption 1, as N --~ c~ 

[x/N(-4R -- A~ V ~ ( A I  - A ~  - 021~ �9 , N ( 2 p + I ) / 2 ( ~ p  - 02~ 

d 
Np+2 (0, a2Ep+2), 

where Ep+2 is (p+2) • (p+2) positive definite matrix and it is defined through its inverse 
as follows: 

- 1  
~ p + 2  = 

1 0  1 0  1AO 1 0 - ~ A z  - 2 A I  " ' "  ~'1 I 
1 0 1 0 . 1 0 1 -~A R 5AR .. p+l AO 

1 0 1 0 1 iAO12 1 0 2  1 - ~ A ~  ~A R 5 z}AI . . .  IA~ 2 p + 2  
1 0 1 0 1 [AO[2  1 0 2  1 - s A I  -~A R ~ ~[A[ ..- [A~ 2 p + 3  

1 A 0 1 o 1 [AOl2 1 [AO{2 1 IAO[2 
-- -p+-Y I ~-~ A R ~ ~ "'" 2p+l 

PROOF OF THEOREM 5.2. The proof can be obtained along the same line of proof 
of Theorem 3.1 and it is omitted. 

It may be mentioned that  although we could not provide the explicit expression of 
Ep+2, but it can be obtained recursively using the standard matrix theory results (see 
Rao (1973)). For example, since we know the explicit expression for p = 2, therefore 
using that  we can obtain the result for p = 3 and so on. Note that a 2 can be estimated 
in this case as ~Q(Op) and Theorems 4.1 and 4.2 are valid in this case without any 
change. 

6. Numerical experiments 

In this section, we present some numerical experiments results to see how the pro- 
posed LSE's behave for finite samples and whether the asymptotic results can be used 
for small sample inferences. We consider the following model with p = 2: 

(6.1) y(n)  = Ae i(~n+z'~2) + e(n) 

with A = AR + j A i  = 4.93 § 1.91j, a = 1.84 and ~ = 1.99. We consider that eR(n) 
and ei(n) ,  the real and imaginary parts of e(n) are normally distributed i.i.d, random 
variables with mean zero and finite variance a2 and they are independently distributed. 
We consider a2 = 0.04, 0.10, 0.50 and 1.00 and the sample size N -- 100. For each a 2, we 
generate a dataset from the model (6.1) and compute the LSE's of AR, At, a and ~. We 
replicate the process five thousand times and compute the average estimates (AE) and 
mean squared errors (MSE) of all the parameters over five thousand replications. The 
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Table 1. The average estimates, their mean squared errors and asymptotic variances of param- 
eter a and ~ for different values of 6 2. 

62 = 0.04 62 = 0.10 62 = 0.50 ct 2 = 1.00 

AE 1 . 8 3 9 9 2 0  1 . 8 3 9 8 8 8  1 . 8 4 0 0 9 5  1.840286 

MSE 0A95047e-05 0.432194e-5 0.399056e-04 0.109926e-03 

AVAR 0.274747e-06 0.686867e-6 0.343434e-05 0.686868e-05 

AE 1 . 9 8 9 9 8 6  1 . 9 9 0 0 7 8  1 . 9 9 0 5 0 1  1.991370 

MSE 0.411410e-09 0.891097e-9 0.249901e-04 0.764466e-04 

AVAR 0.182669e-09 0.456672e-9 0.228336e-08 0.456672e-08 

T a b l e  2. T h e  95% cove rage  p e r c e n t a g e s ,  t h e  a v e r a g e  conf idence  l e n g t h s  a n d  t he  e x p e c t e d  

conf idence  l e n g t h s  of t he  L S E ' s  of  t h e  i n i t i a l  f r equency  c~ a n d  t h e  f r e q u e n c y  r a t e  ~ for d i f fe ren t  

va lue s  of  a 2. 

a 2 = 0.04 a 2 = 0.10 a 2 = 0.50 a 2 -- 1.00 

O~ 

COVPER 0.96 0.94 0.86 0.81 
AVLEN 0.234893e-02 0.379345e-2 0.999770e-02 0.163162e-01 
EXLEN 0.205472e-02 0.324880e-2 0.726453e-02 0.102736e-01 

COVPER 0.93 0.94 0.83 0.73 

AVLEN 0.227434e-04 0.367300e-4 0.968022e-04 0.157981e-03 
EXLEN 0.198947e-04 0.314563e-4 0.703385e-04 0.994737e-04 

a sympto t i c  variances (AVAR) of each case are also repor ted  for compar i son  purposes .  
The  resul ts  are presented  in Table  1 for the  nonl inear  p a r a m e t e r s  a and  ~ only. In the  
first column in Table  1 the  first row represents  the average es t imate  of c~ for 0 -2 -~ .04 
and  second and thi rd  rows represent  the  MSE and AVAR of (~ respectively. Similar ly 
fourth,  fifth and  s ixth rows represent  the  corresponding resul ts  for ~. T h e  o ther  columns 
represent  results  for o 2 -- 0.10, 0.50 and 1.00. We also compu te  the  9 5 ~  confidence 
intervals for c~ and  fl over five thousand  replications.  T h e  results are r epor ted  in Table  2. 
In Table  2 for different (r 2, the  first row represents  the coverage percentages  ( C O V P E R )  
of c~ and the  cor responding  average confidence lengths (AVLEN) are in the second row. 
The  expec ted  confidence lengths (EXLEN) ,  ob ta ined  f rom theorem 3.1 using the  t rue  
p a r a m e t e r  values are r epor ted  in th i rd  row. Similarly the  results  for ~ are given in fourth,  
fifth and s ixth rows. 

T h e  following observat ions  are clear f rom the entries of Tables  1 and  2. I t  is observed 
tha t  as o 2 increases, the MSE ' s  and  biases of the es t imators  increase. I t  verifies the  
consis tency p rope r t y  of the LSE's .  The  biases are quite small  and the MSE ' s  are close to 
the a s y m p t o t i c  variances when  the  error  variances are small  bu t  when the error  var iances  
are large then  they  are quite different as expected.  Similarly, for different values of  0 2 , the  
average confidence lengths are qui te  close to  the  expec ted  confidence lengths of b o t h  the  
p a r a m e t e r s  when  the  error  var iances  are small  bu t  for large error variances they  are quite 
different. Moreover,  for large error  variances,  the  corresponding coverage probabi l i t ies  
are much  lower t h a n  the  nominal  level. These  findings are not  t ha t  surprising,  appa ren t ly  
for 0 2 -= 0.5 or a 2 = 1.0, the sample  size needs to be  much  larger for the  a s y m p t o t i c  
theories to work. 
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It should be ment ioned here tha t  in s imulat ion s tudy  the t rue  paramete r  values are 
used as initial est imators  to obtain the LSE's.  But  in pract ical  problems the following 
function which is analogous to the per iodogram function 

1 n N'~ly(n)e-j(~n+~n2) 2 /(A, #) : 

can be used. The  initial est imates of a and 3 can be obta ined by maximizing I(A, #) by 
two-dimensional grid search method.  It is a very impor tan t  pract ical  problem. It is well 
known tha t  even for a much simpler sum of sinusoidal model,  it is necessary to s tar t  with 
an ext remely  precise initial guess of the frequencies, namely Op(~l ), where Z = op(NA-Z), 
means N a Z  --+ 0 in probability. In case of chirp signal, it is expected tha t  we need 
the initial est imates of a and /3  as Op(-~) and Op(-~z) respectively. How to obtain those 
initial est imates is a challenging computa t iona l  issue and more work is needed in tha t  
direction. 

7. Conclusions 

In this paper  we consider the LSE's  of the parameters  of the chirp signals and discuss 
their  theoret ical  propert ies  when the addit ive errors are independent  and identically 
dis t r ibuted random variables with mean  zero and finite variance. It  is observed tha t  the 
LSE's  are consistent and asymptot ical ly  normally dis t r ibuted.  We also obtain the rates 
of convergence of the LSE's.  These results are not available in the l i terature.  We also 
consider the generalized chirp signals which was originally discussed by Djuric and Kay 
(1990) and discuss the asymptot ic  propert ies  of the LSE's  of the unknown parameters  of 
the generalized chirp signals. It is observed tha t  the LSE's  are s t rongly consistent and 
asymptot ical ly  normally distr ibuted.  The  simulation s tudy  indicates tha t  the asymptot ic  
results can be used in small sample inferences. 
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