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Abstract. Stochastic expansions of likelihood quantities are usually derived
through ordinary Taylor expansions, rearranging terms according to their asymptotic
order. The most convenient form for such expansions involves the score function, the
expected information, higher order log-likelihood derivatives and their expectations.
Expansions of this form are called expected/observed. If the quantity expanded is
invariant or, more generally, a tensor under reparameterisations, the entire contri-
bution of a given asymptotic order to the expected/observed expansion will follow
the same transformation law. When there are no nuisance parameters, explicit rep-
resentations through appropriate tensors are available. In this paper, we analyse the
geometric structure of expected/observed likelihood expansions when nuisance pa-
rameters are present. We outline the derivation of likelihood quantities which behave
as tensors under interest-respecting reparameterisations. This allows us to write the
usual stochastic expansions of profile likelihood quantities in an explicitly tensorial
form.
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respecting reparameterisation, nuisance parameter, profile likelihood, tensor.

1. Introduction

Inference problems, such as estimation and testing, are unaffected by reparametri-
sations of the model. Accordingly, inference procedures are required to follow a coherent
behaviour under reparameterisations. This means that inferential conclusions should
not depend on the choice of parameterisation. Many likelihood based procedures meet
the requirement of parameterisation invariance. Notable instances are the maximum
likelihood estimator and the likelihood ratio test statistic. On the other hand, the Wald
test statistic is a well known example of a likelihood procedure which is affected by the
parameterisation. For a discussion, see Barndorff-Nielsen and Cox ((1994), Section 1.5)
and Pace and Salvan ((1997), Section 2.11).

Asymptotic expansions are widely used in likelihood theory. They provide valuable
insight into inference procedures and are a basic tool for studying first and higher order
properties. It is of course desirable that, when taking an asymptotic expansion of an
invariant likelihood quantity, parameterisation invariance is maintained throughout the
expansion, both in the leading and in the higher order terms.

The main approaches for obtaining invariant or “geometric” asymptotic expansions
are reviewed in Barndorff-Nielsen and Cox ((1994), Chapter 5). An intrinsically ge-
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ometric technique for invariant Taylor expansions is introduced in Barndorffi-Nielsen
(1987). However, the most useful form of a likelihood expansion is the so-called ex-
pected/observed expansion, whose derivation is not directly based on geometric argu-
ments. Geometrical aspects can nonetheless be brought in, as is illustrated in Barndorfl-
Nielsen and Cox ((1994), Section 5.3) and further elucidated in Pace and Salvan (1994).
These geometric results are based on the assumption that the whole parameter is of
interest.

Most of modern likelihood theory deals with inference in the presence of nuisance
parameters and is based on the profile likelihood and related statistics. In this set-
ting, invariance under interest respecting reparameterisations is a key requirement (cf.
Barndorff-Nielsen and Cox (1994), Section 1.5). No systematic study concerning in-
variance of likelihood expansions in the presence of nuisance parameters seems to be
available so far.

The aim of the present paper is to provide a framework that allows us to write
expected/observed likelihood expansions in a geometric form when nuisance parameters
are present. To this end, we first define interest respecting tensors, which are quantities
that behave tensorially under interest respecting reparameterisations. We show how to
build recursively interest respecting tensors. The construction is inspired by the manip-
ulation needed to get interest respecting tensors from the more familiar tensors under
global reparameterisations. Terms of a given order in the expected/observed expansion
of an invariant profile likelihood quantity may then be represented through contractions
of interest respecting tensors, so that invariance under interest respecting reparameter-
isations is apparent. Throughout the paper, the expected/observed expansion of the
profile log-likelihood ratio statistic will be used as a key example.

Here we take a coordinate-bound approach with an explicit representation for the
nuisance parameter. The choice of a coordinate-bound approach is close to the usual al-
gorithmic way of doing likelihood expansions, see e.g. Barndorff-Nielsen and Cox ((1994),
Chapter 5), DiCiccio and Stern (1994), Li (2001). Of course, the requirement of an ex-
plicit representation for the nuisance parameter leaves out invariant likelihood expansions
in the more general and natural setting. For some hints in this direction, see Severini
((2000), Section 7.4.2). In addition, no attempt will be made to provide an interpre-
tation of terms of expected/observed expansions according to the geometrical theory of
statistical manifolds. Hence, interest respecting tensors will be used as a mere device to
bring out parameterisation invariance.

The layout of the paper is as follows. Section 2 introduces some notation and
preliminary material. Geometric aspects of expected/observed likelihood expansions are
reviewed in Section 3. Section 4 deals with interest respecting tensors. Some notable
instances of these new tensorial quantities derived from the log-likelihood function are
illustrated in Section 5. Section 6 describes how interest respecting tensors may be used
to write interest respecting expected/observed expansions. Technical details related to
the material in Section 4 are collected in the Appendix.

2. Notation and preliminaries

Let 7 = {Py : 6 € © C RP} be a parametric family of probability distributions
defined on a sample space J and dominated by a o-finite measure p. The parameter
space © is assumed to be an open non-empty subset of RP. Let us denote by p(y;8),
y € Y, the density of Py with respect to u and by 1(0) = (6;y) = logp(y;6) the
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log-likelihood function based on the sample data y. We assume, for each 8 € O, that
p(y;8) > 0 for every y € Y. We assume in addition that [(f) is a smooth function of 4
and that the maximum likelihood estimator 8 exists and is a solution of the likelihood
equation (81/060)(6) = 0. Moreover, we assume that the usual additional regularity
conditions hold ensuring validity of the Bartlett identities (cf. Barndorff-Nielsen and
Cox (1994), Section 5.2).

Throughout the paper we use index notation and the Einstein summation conven-
tion. We denote generic components of § by 67,6%,..., with r,s,... = 1,...,p. The
elements of the score vector are [, = (0/007)(#). Higher order log-likelihood derivatives
are denoted by

Iy = loyon, = —L__(g)

Bon = tmeetm = e 90mm
The expected information matrix ¢ = ¢(#) has generic element i,; = Fg(—!l,;). We denote
by 2" an element of the matrix inverse of . Further likelihood quantities to be considered
are I” = i"l,, vr,, = E¢(lR,,), HR,, =R\ = VRin> VRim,Sn,...U, = Eo(lr 15, - lv,)-

Let w = w(f) be an alternative parameterisation of F, i.e. a smooth one-to-one
transformation from @ to w. We denote components of w by w”,w?,..., with 7#,3,... =
1,...,p. Let 6(w) be the inverse function of w(f) and let L = (96" /0" )(w), %5 =
(620" 0w Ow?®)(w), and so on, denote partial derivatives of components of #(w) with re-
spect to components of w. Conversely, let wl = (Ow” /007)(0), wi, = (6°w™ /867 86°)(6),
and so on, denote partial derivatives of w(#) with respect to components of 8. Notice
that wl62 = 6%, where 67 is the Kronecker delta (65 =1if s=rand 65 =0ifs#7r). A
likelihood quantity with indices 7, 3, . .. is understood as referred to the w parameterisa-
tion.

Reparameterisation does not alter the log-likelihood function itself, whereas it affects
log-likelihood derivatives and their moments. For instance,

lf = lrgg
lrs = Ls070% + 1,67,

A collection of smooth real functions Téi’" = Tg:‘ (8) = T717m(0) is called an (m,n)
tensor on F, or, equivalently, a tensor of contravariant rank m and covariant rank n, if
under reparameterisation it obeys the transformation rule

FioFm AT T, T FmgS1 ... QS
(2.1) T5) 5 =T g wry - wimbsy - 057

For instance, I, is a (0, 1) tensor, 4,5 is a (0, 2) tensor, I" is a (1,0) tensor. A (0,0) tensor
is a parameterisation-invariant quantity. If 75 is an (m,0) tensor and Ug,, is a (0,m)
tensor, their contraction TH~Upg_ is invariant. Tensors are therefore instrumental in
writing likelihood expansions in a geometric form.

3. Invariant expected/observed expansions: a review

3.1 Nuisance parameters absent
Let f(6) = f(0;y) be a parameterisation-invariant statistic, also called a scalar func-
tion, defined on a copy of @ that represents the range space of the maximum likelihood
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estimator. Let us assume that f(f) is of order O,(n?) under repeated sampling of size
n. Stochastic expansions for f (9) are often obtained from the ordinary Taylor formula,
which is not parameterisation-invariant, depending on the coordinate system adopted
for the statistical manifold F. An important aim of a geometric stochastic calculus is to
obtain an asymptotic expansion for f(f) of the form

(3.1) F(6) = £(6) + by + by + b3 + by + Op(n®~5/2)

where each term b,, is a scalar function of order Op(nﬂ”m/ %), m = 1,2,3,4. More
generally, if f(0) is a geometric object, such as a tensor, it is desirable that each term
b, should follow the same transformation law as f(6).

One possibility for obtaining the geometric expansion (3.1) is through the ordinary
Taylor formula followed by a posteriori elicitation of geometric ingredients. Taylor’s
formula gives

(32) F@) = FO)+ (0~ 07 + 3 fra(0— )"

+ éfrst(g - G)TSt + 2_14frstu(0 - B)TStu +--,

where f. = (8f/907)(0), f.s = (8*f/86756°)(6), and so on, (§ — )" = (4" — 67),
(0 —6) = (6 — 6)"(@ — 6)° and so on. In order to preserve invariance a suitable
expansion for  — 8 has to be inserted into (3.2), see Barndorff-Nielsen and Cox ((1994),
Section 5.3) and Pace and Salvan ((1994), Section 3). The resulting expansions are called
expected/observed. They are expressed in terms of the score function, the expected
information, higher order log-likelihood derivatives and their expectations. They also
depend on derivatives of f(f) and on their expectations.

Erample 1. Expected/observefi expansion of the log-likelihood ratio. The expected/
observed expansion of W(8) = 2(1(8) — 1(9)) is
(3.3) W(6) = By + By + B3 + Op(n~%?),
with
B; =14,,l"l°
By = %urstlrlslt + H.JA"°

1 1
B3 = E(Vrstu + 3ivarsttuw)lTlsltlu + ‘éHrstlrlslt

+ 1Yo Hio 7131+ Y H Ho o 1718
Unlike the leading term Bj, neither By nor Bj is written as a contraction of tensors.

Expected/observed expansions such as (3.3) are not explicitly written in terms of
tensors and further manipulation is required for a geometric structure to become visible.
In McCullagh and Cox (1986) a technique is suggested for recovering invariant terms in
the expansion of the log-likelihood ratio statistic. Their contribution inspired much of
subsequent work on invariant Taylor series in statistics (see Barndorff-Nielsen and Cox
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(1994), Section 5.6). In Pace and Salvan (1994) a geometric formulation is produced
for the expected/observed expansion of a generic smooth function f(8). In particular, it
is shown that expected/observed expansions may be derived also from invariant Taylor
expansions. As a result, expected /observed expansions may be written using ingredients
clearly recognizable as tensors.

Ezample 2. Geometric expected/observed expansion of the log-likelihood ratio. In
Pace and Salvan (1994) the terms B2 and Bj of (3.3) are re-written as

1
(3.4) By = gnstlrmt + T

1 1
(3.5) B; = Enstulrmtl" + gTr‘stlrlslt + YT T 1715,

Above, TR, , Ty, , Tj{m are (0,m) tensors obtained recursively from the collections
of log-likelihood derivatives and their expectations, following a procedure introduced
by McCullagh and Cox (1986) and further developed by Barndorff-Nielsen (1986) and
Barndorff-Nielsen and Blaesild (1987), see also McCullagh ((1987), Section 7.2.3). Their
particular instances appearing in (3.4) and (3.5) are given by

(3.6) Trst = Urst + Vr;stB] = 2’/7‘,8,t

Trstu = Vrstu + Vr;stu [4] + ivav;rst;tu [3] - ivarstw;tu [6]
(37) T:; =H, - Vt,rslt
(38) Tr; - Hrs - Vt;T‘slt

ret = Hog - ivav;rust[?)] - (Vu;rst - ivav;rsVu;tw [3])lu

The symbol [k] indicates the sum of & similar terms obtained by all suitable permutations
of the indices, except for the obvious symmetry relations. Moreover, the quantities
VR,.;S, above are defined as

n
VRm;Sn = E E VRm,Snl,...,th’

h=18,/h

where, for h < n, the symbol ES,, /h indicates summation over all the partitions of S,
into h non-empty subsets Sy,,...,Sn,. For instance vyt = Vp ot + Uy st and Uy spy =
Vp sty + Vr s tu [3] + Vrostu-

3.2 Nuisance parameters present

Consider now inference about a function of the parameter, ¥ = ¥(8), with ¢(-)
a smooth function with range ¥ C R* k < p. Often 1 is a component of a given
partition 6 = (¢, x) of § into subparameters ¢ and X, with x considered as a (p — k)-
dimensional nuisance parameter. Inference problems about 1 are unaffected by one-to-
one reparameterisations of 1. Moreover, the choice of the nuisance parameterisation
is immaterial. For simplicity of discussion, we assume hereafter that § = (,x). An
interest respecting reparameterisation of F is then a reparameterisation w = (p,£),
where ¢ = (1) and £ = £(3, x), with ©(¥) a one-to-one function of . Conversely,

Y =9Y(p) and x = x(p,£).
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Denote by Iy and [, blocks of the score vector corresponding to 9 and to Y, respec-
tively. Let, in addition, iy, gy, iy denote blocks of the expected information 4 and
i%¥, {¥X §XX denote blocks of the matrix inverse of i.

We will use indices a, b, ¢, . . ., with range {1, ..., k}, when referring to components of
¥, and Greek letters «, 3,7, ..., with range {1,..., p— k}, when referring to components
of x. Hence, for instance, l,, has generic component I, = (9l/0Y*)(¥,x), a = 1,...,k,
while I, has generic component I, = (81/0x*)(¥,x), & = 1,...,p — k. Moreover, i%5
denotes a generic element of the matrix inverse of iy,

Likelihood inference about 1 is usually based on the profile log-likelihood I, () =
1(%, Xv), where Xy is the maximum likelihood estimator of x for a given ¢ (see Barndorff-
Nielsen and Cox (1994), Section 3.4). We assume that ¥y is a solution with respect to
x of the partial likelihood equation I, (1, x) = 0. Hypothesis testing and construction of
confidence regions about ¢ are based on the profile log-likelihood ratio statistic

Wo (%) =20, () — L. () = 21, %) — LW, Xy))s

whose asymptotic null distribution is x? under regularity conditions.

Under an interest respecting reparameterisation (g, £), indices a, b, . .. are used for
the components of ¢, while indices &, 3, ... refer to the components of £. A likelihood
quantity denoted by indices @,5,...,a, f3,... is understood as referred to the (p, &) pa-
rameterisation. Notice that ¥2 = 0 and ¢% = 0. Moreover, from w!82 = 62, we get

Vaph = b
X5 %a = —X&€a
Xaé5 = 63.

The profile log-likelihood and the profile log-likelihood ratio statistic are invariant
under interest respecting reparameterisations. An interest respecting reparameterisa-
tion, however, affects log-likelihood derivatives and their moments. For instance, from

U, &) = 1Y (p), x(p,€)) we have

la =l +laxg

ld = laxg

igh = b VYL + iabXTVLI2] + iapXSX)
iap = lapXEX5.

(3.9)

The profile score (91, /0¢)(y) with generic component l,(), Xy) transforms under
interest respecting reparameterisations as

o, -
8(,06' (QO) = la(l/f,Xw)d’a;

see e.g. formulae (4.36) and (9.99) in Pace and Salvan (1997).

Expected/observed expansions are used also in the study of asymptotic properties
of profile likelihood quantities. The most notable instance is analysed in the following
example.

Ezample 3. Ezpected/observed expansion of the profile log-likelihood ratio: invari-
ance of the leading term. The expected/observed expansion of W, (¢) has the form

W, () = By + By + By + 0,(n~%2).
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It is obtained by writing W, (1) as the difference between W (3, x) = 2(1(#, X) — l(%, X))
and W" (x) = 2(1(, %u) — (1, X)) and applying (3.3) to both W (¢, x) and W" (x). In
particular,

W'(x) = B + By + B; +0,(n™*?),

where Bip = iqpl®lP, with [* = i;glﬂ. Hence, the leading term of W, () is
By =By~ B} =i, l"l° —iqgl®P.

As is well known (see e.g. Cox and Hinkley (1974), chapter 9, formula (55)), Bf may be
rewritten as

(3.10) By =I}i*"l,,

with Iy = ly — Bjly, where 8% = iy, {ixx} ' is the matrix of regression coefficients of
ly on l,,. The vector l_¢ is often called the efficient score for ¥.

Let us denote by I, a generic component of [. Under interest respecting reparam-
eterisations, [, transforms as

or, using matrix notation, _ ~

lp = w;rle
where v, is the matrix with generic element ¢ (see e.g. Sartori et al. (2003), Sec-
tion 3.1). Moreover, i¥¥ transforms as i*? = @%@}, (see e.g. Barndorff-Nielsen

and Cox (1994), formula (8.3)). Hence, invariance of (3.10) under interest respecting
reparameterisations follows.

For higher order terms in the expansion of W, (%) a detailed analysis of behaviour
under interest respecting reparameterisations has not been carried out. In particular,
no tensorial representation is available for such terms, similar to the one displayed in
Example 3 for the leading term. As underlined by Barndorff-Nielsen and Cox ((1994),
p. 153), no major simplification of higher order terms in the expansion of W, (1) seems
to occur. See also the Appendix of DiCiccio and Stern (1994) and Li ((2001), formula
(5)) for expressions of the term of order O,(n~1/2).

Other familiar instances of expected /observed expansions of profile likelihood quan-
tities concern the profile score and its expectation. These are given in McCullagh
and Tibshirani (1990) and are used to define an adjustment of the profile likelihood.
Barndorff-Nielsen (1994) highlights the tensorial behaviour under interest respecting
reparameterisations of quantities appearing in the leading term of the expectation of the
expected/observed expansion of the profile score.

4. Interest respecting tensors

4.1 Definition

We encountered in Subsection 3.2 some instances of likelihood quantities showing
a very simple behaviour under interest respecting reparameterisations. Those instances
motivate the following definition.
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An interest respecting tensor of rank ((mq,ms), (n1,n2)), with my,me,n1,n2 € N,
is a collection of smooth real functions

A Tm Q1" Qg Q1 Cyn
1 2 1 2
T 'nmy = Doy, o, (0)
which, under interest respecting reparameterisations, obeys the transformation rule
Amy Fmy Amy Pmy a5y 1 bny iy Qmy ﬁnz
Tgn An, TB 1Ay Par’ Soam1¢ "'¢5n15a1 T §am2 Xﬂ1 : Xﬁ

Ay T a1 Gmy Q1 & . .
where Tp™: ™ = T " . 5. 5 v B "% (w). We will refer to m; and mgy as the interest
n1 no "1 1

contravariant and the nuisance contravariant rank of TB

m1 sz

, respectively. A similar
distinction is made for the covariant ranks n{ and ns.

A ((0,0), (0,0)) interest respecting tensor is invariant under interest respecting repa-
rameterisations. Both the profile score (8/81)l,, () and the efficient score I, are interest
respecting tensors of rank ((0,0), (1,0)), while i¥¥ is a ((2,0), (0,0)) interest respecting
tensor and 4,4 is a ((0,0), (0,2)) interest respecting tensor.

When nuisance parameters are absent, collections of tensors may be obtained recur-
sively from the collections of log-likelihood derivatives and their expectations, following
the procedure developed by Barndorff-Nielsen (1986), see the instances in Example 2
Tensors under global reparameterisations do not, however, necessarily behave as inter-
est respecting tensors, even when calculated in an orthogonal parameterisation. This is
already apparent from (3.9).

We will show below how to obtain interest respecting tensors recursively from a
collection of functions that behave as tensors under global reparameterisations. The
requirement of global tensorial behaviour may be limited to a subset of coordinates, as
is pointed out in Subsection 4.4.

4.2 Recursive equations for covariant interest respecting tensors from global covariant
tensors
Let Tg, be a (0,n) tensor under a reparameterisation w = w(f) of F. It obeys the
transformation rule
Tg, =T, = Trpoor, 050 - - 027

When the reparameterisation is interest respecting, the above equation specialises, be-

cause 02 = ¢2 = 0. Some instances of this are

T = Tos + Taxg

Ts = Tuxs

Top = Tap¥sp + TaaoxZ (2] + TapX2Xe
(4.1) Taa = Taa$2X2 + TapXSX2
(4.2) Ts5 = Ta,axax[,-

Note that T, and T, g transform as interest respecting tensors of rank ((0, 0}, (0,1))
and ((0,0), (0,2)), respectively.

Interest respecting tensors T;. of rank ((0,0), (n1,ny)), with n; +ny = 1, are obtained
by solving the recursive equations

(4.3)

Il

'ﬂl 'ﬂl

Ta
T, +ﬂaTa,
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with 8¢ = ’L'agi;g, a generic element of the matrix of regression coefficients ﬂz.
Only the behaviour of T, has to be checked. Detailed calculations are given in the
Appendix, showing that T, behaves as a ((0,0),(1,0)) interest respecting tensor.

Similarly, interest respecting tensors T, of rank ((0,0), (n1,n2)), with ny +ns = 2,
are obtained by solving the recursive equations

Taﬁ = Tag
(4.4) Tup = Tap + B2 Tus
Tab = Tab + ﬁfTaﬁ [2} + /Bgﬂbﬁ,fa,&

See the Appendix for a check of the tensorial behaviour of T.

Following the same scheme, we may obtain interest respecting tensors of higher
ranks. In particular, interest respecting tensors Tp.s; of rank ((0,0), (n1,n2)), with n; +
ng = 3, are obtained by solving the recursive equations

Topy = Taﬁw

Taﬁv = _aﬂw + Be Taﬁv

Taty = Tuby + B Tapy[2] + BB Tapy

Tove = Tape + B Taby (3] + BF B Tap (3] + B2 BL B Tap-

(4.5)

Interest respecting tensors T;.¢s, of rank ((0,0), (n1,n2)), with n; +ng = 4, are obtained
by solving the recursive equations

Tapys = Tapys
Topys = Tapys + BT wpys
(4.6) Tatys = Tatys + B Taprs|2) + BEBL Topys
Tabes = Taves + B Tabys[3] + 57 B Taprys[3] + B2 BE B Toupys
Tubed = Taved + B3 Tavcs 4] + B2 85T abys[6] + B B2 85T us514)
+ ﬂf; fﬂlﬂﬁfam&

Relations (4.3), (4.4), (4.5) and (4.6) show a close resemblance with those of
McCullagh ((1987), Section 5.5.2) for cumulants of orthogonalised variables. Note, how-
ever, that the tensorial behaviour of T, T, ... under interest respecting reparameter-
isations does not depend on the specific definition of 5%, but only on the validity of
its transformation law, see formula (A.1). See also Barndorff-Nielsen and Jupp ((1988),
Section 3). Nevertheless, the choice 3¢ = ia,gz';‘ﬁ is very natural in the statistical context.

Tensors defined in terms of log-likelihood derivatives are of special importance when
dealing with likelihood expansions. When global reparameterisations are considered,
McCullagh and Cox (1986) and McCullagh ((1987), Section 7.2.3) show that there exists
locally at each point 8y € © a reparameterisation such that log-likelihood derivatives
of each given order behave tensorially. Moreover, the tensorial second and higher-order
derivatives are uncorrelated with the score. When attention is restricted to interest-
respecting reparameterisations, a similar result holds. Consider the local reparameteri-

sation

- - 1, 1,
(0 = wo)" = c[(6 = B0)7 + 577, (6 — 00)" + 57CLou (6 — 60) + -,
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with
& =62, <‘1=0 ¢ =6363, <& =163
. = 6282, = 65 (B2 + B3 Brs);
at—éa fst, t_ég( rst+13:: :“lSt;

and so on. Above, 8y = i""vy g,,. Log-likelihood derivatives I, R, = ml(u})
satisfy relations such as

+ B3 la,

R nad N
||
'm

8
I
g

and

lab = (lap + Bab[2] + BB lap) + B(le + Bla) + B,
loa = l_aa ﬂﬁlaﬁ + ﬁ:a(l + ﬂryl’y) + ﬂaa ik
log =lopg + ﬁZﬂ(la + ﬂgl’y) + ﬁzﬁ_’w

and so on, showing that they coincide with the interest respecting tensors obtained by
applying relations (4.3), (4.4), and so on, to the global tensors I,., l,.s — 8%, and so on.

4.3 Recursive equations for contravariant interest respecting tensors from global con-
travariant tensors
In the previous subsection we have discussed how to obtain interest respecting covari-
ant tensors starting from covariant tensors T, of rank (0,n). An analogous argument
holds if we start from contravariant tensors 7°~. Let T~ be an (m,0) tensor under a
reparameterisation w = w(f) of F. It obeys the transformation rule

Tsm — Tsl"'s"" — Tsl...smw:: .. 'UJSm.

Sm

Under interest respecting reparameterisations, the above equation specialises, because
wg = % = 0. Some instances of this are

T =T} ]
T = 7o 4 TS
T® =T*plpy
Tﬁ& _ Tabgog 4 + Taa €gx
= ToEZe] + To€2el[2) + TPede).
Note that T* transforms as a ((1,0), (0,0)) interest respecting tensor and that 7°*®
transforms as a ((2,0), (0,0)) interest respecting tensor. .
Recursive equations defining ((mj,ms2), (0,0)) interest respecting tensors 7", with
my1 + mg =1, are
Te — Ta

(4.7) l _
T* = T* — goTe.

Only the behaviour of 7% has to be checked. See the Appendix for details.
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Similarly, interest respecting tensors 77 of rank ((my,ms), (0,0)), with m; +ms =
2, are obtained by solving the recursive equations

Tab — Tab
(4.8) T°8 =T — g7
TP = TP _ goTP[9] + B BPT.

Following the same pattern, it is straightforward to write the recursive equations
giving interest respecting tensors of rank ((mj,ms), (0,0)) with m; + mo = 3,4, and so
on.

4.4 Other interest respecting tensors

The technique illustrated in the previous subsections allows us to obtain interest
respecting tensors also starting from quantities that are not global tensors themselves.
These quantities should, however, share with global tensors an appropriate part of their
transformation rule under interest respecting reparameterisations, as far as specific sub-
sets of coordinates are concerned.

Consider for instance the quantities

(4.9) tra = Hra — V3 ral®,

with 1% = {28[5. Notice that when r indexes a nuisance component (4.9) is the same as

XX B - . . .
(8.7) referred to the submodel with 9 fixed. Under interest respecting reparameterisa-
tions, the quantities ¢, transform according to the rules

taa = taaWgXs + taﬂxgxg

td{;’ = iaﬁXng-
These rules are the same as (4.1) and (4.2) holding for a global (0,2) tensor, as far as
pairs of indices a, a and «, 3 are concerned. Hence, using the first and second equation
in (4.4),
(410) t_aa =toa — ﬁgtaﬂ

is a ((0,0),(1,1)) interest respecting tensor.

The construction above may be extended as follows. Let {Cg, } be sequence of
likelihood quantities that behaves as a costring of covariant degree zero under global
reparameterisations (see e.g. Pace and Salvan (1994), Section 2, for details). Notable
instances of such quantities are g, , Vg, and Hg,_. In addition, let

ﬂfa = ii,;yn,ra
ﬁfaﬁ = ii’;f/n,mﬁ

and so on. Let t, = C,. Consider now the quantities {toa,tag}, {taas,tasy}, and so
on, obtained as solutions of recursive relations of the form

Caa = taa + Batc

Cap = tag + Bostc

Caap = taap + Blatcsl2] + B ptca + Boagtc
Copy = tapy + ﬂgﬁtm [3] + ﬂig%(-
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Under interest respecting reparameterisations, t,o and t,s transform according to
the rules

laa = taoﬂ/)gxg + taﬁxgxg
t&B = aﬂXng

which are part of the transformation law of global covariant tensors of degree two, spe-
cialised to interest respecting reparameterisations (see Subsection 4.2). Hence, relations
(4.4) may be applied to give interest respecting tensors t,5 and {,, as the solutions of

tap = tap

(4.11) i _
tap = tap + Bgtap-

Notice that, with Cro = Hrq, relations (4.11) give the ((0,0), (1,1)) interest respecting
tensor (4.10).

Similarly, t,0s and t,g, follow, under interest respecting reparameterisations, the
same transformation law as the corresponding components of a global (0,3) tensor.
Hence, relations (4.5) may be used to obtain interest respecting tensors f,5, and aag-
It is straightforward to obtain interest respecting tensors with higher ranks.

5. Notable likelihood interest respecting tensors

As an immediate consequence of the results in the previous section, we may obtain
an interest respecting score [, starting from the (0, 1) tensor [, as

Lo =1, — 5%,
lo =1,

lX lX

where the first block is the efficient score for 1.
We get an interest respecting expected information 7 starting from the (0,2) tensor
irs. Equations (4.4) give

or, using matrix notation,

Tab = fab — iaai;)’iibﬁ
Tag =0

o = iaﬂ.

;= Ty 0
0 Ty )’

with Zyy = ((¥%)71 = dyy — iyyigaixy and Ty, = iy. Note that 7 is the covariance
matrix of ly.

Using matrix notation,
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Similarly, from the construction of contravariant interest respecting tensors, we may
define the interest respecting tensors [” starting from the (1,0) tensor I" as

l_a = Ja

(5.1) _ o4 gore.

The elements of the matrix inverse 7~! of 7 may be derived as interest respecting

tensors of rank ((my,mg), (0,0)), with m; + my = 2, starting from the (2,0) tensor i"*
Indeed, using (4.8),

iab — l-ab
(5.2) =0
ioeﬁ _ Balgﬂ ab

Note that [ = 79[, and [* = 7*8]4, showing that the notation used here is consistent with
that in Example 3. Also note that I, 7, I” and 7= coincide with score, information and
their contravariant counterparts in an orthogonal interest respecting reparameterisation.
However, in general interest respecting tensors do not have such a simple interpretation.

Ezample 4. Ezpected/observed expansion of the profile log-likelihood ratio. The in-
terest respecting tensors [” are useful to highlight a regular structure in the expected/
observed expansion of W, (). This is due to the implied orthogonality of the blocks of
components of I” regarding the interest and the nuisance parameter.

With the same notation as in Examples 1 and 3, we have By = 7,5{"l®. Indeed, from
(3.3),

By =iy l"1" = igpl®l® + igpl®lP[2] + igpl®lP.

Using (5.1) to express [ and [* in terms of [* and [*, we obtain
B1 = (iab = Baal2] + B2BF iap) Pl + (iap — Bap)*IP[2] + iapl®lP = 15l + 1,51%0P,
From Example 3, Br = 7,50*1P. Hence,

By =B, — B} =1,°P,
in accordance with (3.10).

Similarly, using (5.1), we obtain
1 o
BQ - gprstlrlslt + Hrslrlsv

where 7,5, and H,, have the same expression as the solutions of the recursive equations
(4.5) and (4.4) with T,.s; and T}, replaced by v, and H,, respectively. In particular,

Pabe = Vabe — BVabe[3] + BB vapel3] — BB BIVapy
Daba = Vaber — B Vaap (2] + 82 8] Vs

Vaaf = Vaag — BaVapy

Vapy = Vagy

Hyp = Hap — B2 Hon[2] + BB Hap

f_faa = Hyo — ,@gHaﬂ

H,3 = Hyp.
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We also get
1 o o
By = gaamzazﬁn + Hyl®1?,
so that

1
B, = By— By = 3 Pratl PT + Hy T — 200, ° D — Ho 1P

1 o R, — _ [
= gﬂabcl‘lﬂ’lc + Dbl 4 Daupl®l1P + Hopl®lP + 2H,01°1°.

The same analysis as above can be done for Bg . It turns out that all the summands
having only Greek indices cancel out. This points out the general pattern.

The most interesting feature of the above example is the relatively simple form of the
P —
term B, . However, quantities such as rs; and H,s do not behave as interest respecting
tensors, so that the obtained expansion is not geometric.

6. Interest respecting expected/observed expansions

Let us denote by § = (v, Xy) the constrained maximum likelihood estimator. A

profile likelihood quantity has the general form g(é 6) = g(@ 6;y). Suppose that g(é 6)
is invariant under interest respecting reparameterisations or, more generally, an interest
respecting tensor. Let us assume, in addition, that g(,8) is of order Op(n?) under
repeated sampling of size n. The expected/observed expansion of g(0 6) is obtained
through the ordinary Taylor formula for g(6, 6) around (6, 6), followed by substitution
of suitable expansions for § — 6 and 8 — 8. These are given by formula (3.6) in Pace and
Salvan (1994) referred to the full model F and to the submodel with 1 fixed, respectively.
Note that an expansion for § — 8 is essentially an expansion for xy — x. The resulting

expansion for g(é, é) has the form
(6.1) 9(6,8) = 9(6,8) + by +by +bs +by +O0p(nf5/?),

where each term b:l is of order O,(nf~™/2), m =1,2,3,4.

The terms b,, in (6.1) will not be explicitly written in terms of interest respecting
tensors. The techniques developed in Section 4 may be used to bring out a geometric
structure, i.e. to obtain an interest respecting expected/observed expansion. We do not
give detailed formulae for a generic function g(é7 6), but rather we will illustrate below
the main ideas with reference to the profile log-likelihood ratio statistic and to the profile
score.

Ezample 5. Geometric expected/observed expansion of the profile log-likelihood ra-
tio. The function g(f, é) W, (1) is of the form g, () + g2(6), with g, () = -w* (x) =
—2(1(6) — 1(9)) and g2(8) = W(8) = 2(1(9) - 1(6)).

Consider first the geometric expansion

P

W (x) = Tapl®l? + By + By + Op(n~%/?),
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where By and Bj are of order O,(n~/?) and O,(n1), respectively, and are given by
(3.4) and (3.5) referred to the submodel with 1 fixed. In particular,

¥ 1 v - e -
B, = gramzazﬂn + T 1°0P,
with

"
Tapy = Tafy = 2Va,B8,y
_ =
Ta,B = Hop — Vayapl”-
Note that T(fm and T, ; are interest respecting tensors of rank ((0,0),(0,3)) and
((0,0), (0,2)), respectively.
Moreover,

(6.2) By = o rapnsl*PIP 4 ST PPD + 00T TR TP,
where

TZﬂ»y& = Vapys + Vasoys[4] + T Veiapeivys[3] — T Tapev/civs (6]
T:; = Hop — V%aﬁp

_w
Taﬁ'y = Hopy — iecVe;aﬂHC’YB] — (Usiapy — iecyﬂaﬂy‘sﬁdzﬂ)l—s'

Again, Tzﬁw? T:; and T, " are interest respecting tensors of rank ((0,0),(0,4)),
((0,0), (0,2)) and ((0,0), (0, 3)), respectively.

As a second step, we consider expansion (3.3) for W(8) with B, and B3 expressed
in terms of tensors under global reparameterisations, as in (3.4) and (3.5).

Following the same algebra as in Example 4, i.e. expressing [” and i"® in terms
of I" and 77°, respectively, the geometric expression (3.4) for the summand Bs may be
rewritten as

1 — -
(63) BQ - g’]-’rstlrlslt + Tr;lrls

where 7,.,; and T, are interest respecting tensors obtained from the tensors (3.6) and
(3.8) using the recursive equations (4.5) and (4.4), respectively. In particular,

Tabe = Tabe — ﬂgTach] + /BgﬂfTaﬂc [3] - ﬁ:ﬂfﬂzTaﬁ’Y
Tabe = Tabe — ,Bbﬁ'ra,@c [2] + /BbﬂﬁgTaﬁ’Y
Tafe = Tafe = B3 Tapy
TaBy = Tafy
and
o =Top — BET (2] + BB, Top
S _ B _
Tw=Tw— 5 Ta,B

o3

Tos =Top
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Similarly, we get
1 N
(64) B3 = ﬁﬁ'stulrlsltlu + § r_st e

where Tz, and Tr‘st are interest respecting tensors obtained by solving equations (4.6)
and (4.5) with Trgsy, = Trstu and Tpsp = T, respectively. Finally, the interest respecting

tensors T, s,y are obtained as solutions of (4.6) with Trysy = THT,.
The term of order Op(n~1/2) in the geometric expected/observed expansion of

W, (1) is given by B; = B, — Bj. Since 7': ., = Tap, the corresponding terms cancel
out in the expansion for W, (). On the other hand,

— _w J¢
Taﬁ = Hap — Vryapl” = Top — (Vasap — BaVayas)l®.
Let
(65) 7_—(1;&[3 = Va;aB — ﬁgl/’ﬁaﬁ'
Obviously, 7,,a3 behaves as a ((0,0), (1,2)) interest respecting tensor. Hence,

1 - o L o
B, = 3 Tabel P & Taal® P + (Tapa — Twap) VT + T 1 4 2T, I

The term of order Op(n™') in the geometric expected/observed expansion of W, ()
is B; = B3 — B;f , with Bz and B; given by (6.4) and (6.2), respectively. No straight-
forward simplification takes place in the difference Bz — B: , because, for instance,
Toapys F T;Pﬁ,ya. Indeed, while 7,3,s depends on the matrix inverse of i, the tensor

¥ o . .
Tosvs depends-only on the matrix inverse of 7y,

Ezample 6. Geometric expected/observed expansion of the profile score. The ex-
pected/observed expansion of a generic component of the profile score is (cf. e.g. Pace
and Salvan (1997), equation (9.88))

_ - 1 e
la(¢7>21/1) =l + (Haa - :BgHaﬁ)la + 5(’/00!,3 - ﬁg’/aﬁv)lﬁla + OP(n_l/Q),

where [, is of order O,(n'/?), while the remaining summands are of order O,(1). The
leading term [, is a ((0,0), (1,0)) interest respecting tensor. Using the Bartlett identity
VraB + Vrag + Vra,8[2l + Vra3 = 0, the term of order O,(1) may be rewritten as

- 1

aala - §fa;a[3l—al—ﬁ7

L

where #,, is the ((0,0),(1,1)) interest respecting tensor given by (4.10), while 7,45 is
given by (6.5). ~
It is easy to see that Eg(qel*) = 0. Hence,

. 1 6. -
Ee(%(%X«/:)) = _51 ﬁ'ra;aﬂ + O(n l)a

in agreement with Barndorff-Nielsen and Cox ((1994), formula (8.61)).
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Appendix

We first show that T, obtained from (4.3) behaves as a ((0,0), (1,0)) interest re-
specting tensor. Under an interest respecting reparameterisation (p,¢), 85 transforms
as

(A.1) Bs = (Bavs +x3)&a-

Hence, the second equation in (4.3) transforms as
Totg + TaXy = Ta + (5395 + X565 Toxa-

Using the identity {a - = 62 on the right-hand side and equations (4.3) on the left-hand
side, we get
(Ta + ﬁgTa)"/)g =T+ Bg"/)gTa;

so that Ty = T,v2, showing that T, behaves as a ((0,0), (1,0)) interest respecting tensor.

Consider now the transformation laws of T}, obtained from (4.4). The tensorial
behaviour of T,z is obvious. The tensorial behaviour of Tag is easily shown following
the same arguments used for T,. We only need to show that T, is an interest respecting
((0,0),(2,0)) tensor, assuming that T,g and T,5 are ((0,0),(0,2)) and ((0,0), (1,1))
interest respecting tensors, respectively. The third equation in (4.4) transforms as

Tur¥g¥g + Taa¥exg (2] + TapXeXg = Tup + (8508 + X§)65 (Tar2x3) 2]
+ (B2 + X2EBEUR + xD)ERTysx2X5-

Substitution using equations (4.4) on the left-hand side, use of the identity %2 = 67
and straightforward simplifications give T,; = Tabd)awb Therefore, T,; behaves as a
((0,0),(2,0)) interest respecting tensor.

Finally we check the tensorial behaviour of T obtained from (4.7). The second
equation in (4.7) transforms as

TeEq +T*EE = T* — (8o + x2)EET v}

Using the identities x2¢f = — xgéf and x3¢5 = 5% on the right-hand side and equations
(4.7) on the left-hand side, we get

TG + (T - BT°)Es = T - BeT°€5 + T8,

so that T® = T, showing that T behaves as a ((0,1),(0,0)) interest respecting
tensor.
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