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Abs t rac t .  Stochastic expansions of likelihood quantities are usually derived 
through ordinary Taylor expansions, rearranging terms according to their asymptotic 
order. The most convenient form for such expansions involves the score function, the 
expected information, higher order log-likelihood derivatives and their expectations. 
Expansions of this form are called expected/observed. If the quantity expanded is 
invariant or, more generally, a tensor under reparameterisations, the entire contri- 
bution of a given asymptotic order to the expected/observed expansion will follow 
the same transformation law. When there are no nuisance parameters, explicit rep- 
resentations through appropriate tensors are available. In this paper, we analyse the 
geometric structure of expected/observed likelihood expansions when nuisance pa- 
rameters are present. We outline the derivation of likelihood quantities which behave 
as tensors under interest-respecting reparameterisations. This allows us to write the 
usual stochastic expansions of profile likelihood quantities in an explicitly tensorial 
form. 

Key words and phrases: Asymptotic expansion, higher order asymptotics, interest 
respecting reparameterisation, nuisance parameter, profile likelihood, tensor. 

1. Introduction 

Inference problems, such as estimation and testing, are unaffected by reparametri- 
sations of the model. Accordingly, inference procedures are required to follow a coherent 
behaviour under reparameterisations. This means that inferential conclusions should 
not depend on the choice of parameterisation. Many likelihood based procedures meet 
the requirement of parameterisation invariance. Notable instances are the maximum 
likelihood estimator and the likelihood ratio test statistic. On the other hand, the Wald 
test statistic is a well known example of a likelihood procedure which is affected by the 
parameterisation. For a discussion, see Barndorff-Nielsen and Cox ((1994), Section 1.5) 
and Pace and Salvan ((1997), Section 2.11). 

Asymptotic expansions are widely used in likelihood theory. They provide valuable 
insight into inference procedures and are a basic tool for studying first and higher order 
properties. It is of course desirable that,  when taking an asymptotic expansion of an 
invariant likelihood quantity, parameterisation invariance is maintained throughout the 
expansion, both in the leading and in the higher order terms. 

The main approaches for obtaining invariant or "geometric" asymptotic expansions 
are reviewed in Barndorff-Nielsen and Cox ((1994), Chapter 5). An intrinsically ge- 
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ometric technique for invariant Taylor expansions is introduced in Barndorff-Nielsen 
(1987). However, the most useful form of a likelihood expansion is the so-called ex- 
pected/observed expansion, whose derivation is not directly based on geometric argu- 
ments. Geometrical aspects can nonetheless be brought in, as is illustrated in Barndorff- 
Nielsen and Cox ((1994), Section 5.3) and further elucidated in Pace and Salvan (1994). 
These geometric results are based on the assumption that the whole parameter is of 
interest. 

Most of modern likelihood theory deals with inference in the presence of nuisance 
parameters and is based on the profile likelihood and related statistics. In this set- 
ting, invariance under interest respecting reparameterisations is a key requirement (cf. 
Barndorff-Nielsen and Cox (1994), Section 1.5). No systematic study concerning in- 
variance of likelihood expansions in the presence of nuisance parameters seems to be 
available so far. 

The aim of the present paper is to provide a framework that allows us to write 
expected/observed likelihood expansions in a geometric form when nuisance parameters 
are present. To this end, we first define interest respecting tensors, which are quantities 
that behave tensorially under interest respecting reparameterisations. We show how to 
build recursively interest respecting tensors. The construction is inspired by the manip- 
ulation needed to get interest respecting tensors from the more familiar tensors under 
global reparameterisations. Terms of a given order in the expected/observed expansion 
of an invariant profile likelihood quantity may then be represented through contractions 
of interest respecting tensors, so that invariance under interest respecting reparameter- 
isations is apparent. Throughout the paper, the expected/observed expansion of the 
profile log-likelihood ratio statistic will be used as a key example. 

Here we take a coordinate-bound approach with an explicit representation for the 
nuisance parameter. The choice of a coordinate-bound approach is close to the usual al- 
gorithmic way of doing likelihood expansions, see e.g. Barndorff-Nielsen and Cox ((1994), 
Chapter 5), DiCiccio and Stern (1994), Li (2001). Of course, the requirement of an ex- 
plicit representation for the nuisance parameter leaves out invariant likelihood expansions 
in the more general and natural setting. For some hints in this direction, see Severini 
((2000), Section 7.4.2). In addition, no at tempt will be made to provide an interpre- 
ration of terms of expected/observed expansions according to the geometrical theory of 
statistical manifolds. Hence, interest respecting tensors will be used as a mere device to 
bring out parameterisation invariance. 

The layout of the paper is as follows. Section 2 introduces some notation and 
preliminary material. Geometric aspects of expected/observed likelihood expansions are 
reviewed in Section 3. Section 4 deals with interest respecting tensors. Some notable 
instances of these new tensorial quantities derived from the log-likelihood function are 
illustrated in Section 5. Section 6 describes how interest respecting tensors may be used 
to write interest respecting expected/observed expansions. Technical details related to 
the material in Section 4 are collected in the Appendix. 

2. Notation and preliminaries 

Let 5 r = {Pe : 0 E O c_ ]~P} be a parametric family of probability distributions 
defined on a sample space y and dominated by a a-finite measure #. The parameter 
space O is assumed to be an open non-empty subset of l~p. Let us denote by p(y; 8), 
y E Y, the density of P0 with respect to # and by 1(0) = /(0;y) = logp(y;t?) the 
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log-likelihood function based on the sample da ta  y. We assume, for each 0 E O, tha t  
p(y; 0) > 0 for every y E Y. We assume in addit ion tha t  l(O) is a smooth function of 0 
and that  the maximum likelihood est imator  t~ exists and is a solution of the likelihood 
equation (Ol/O0)(O) = 0. Moreover, we assume tha t  the usual additional regularity 
conditions hold ensuring validity of the Bar t le t t  identities (cf. Barndorff-Nielsen and 
Cox (1994), Section 5.2). 

Throughout  the paper we use index notat ion and the Einstein summation conven- 
tion. We denote generic components  of 0 by 0 ~ , 0 s , . . . ,  with r , s , . . .  = 1 , . . . , p .  The 
elements of the score vector are l~ = (Ol/O0 ~) (0). Higher order log-likelihood derivatives 
are denoted by 

Oral 
1 R m  = I r l . . . r , ~  - -  O O r l  . . .  cOOt," ( 0 ) .  

The expected information matr ix  i = i(O) has generic element i~s = Eo(- l rs ) .  We denote 
by i ~s an element of the matr ix  inverse of i. Further  likelihood quantit ies to be considered 
are 1 ~ = i~Sls, URm = Eo(In,"), HRm = lRm -- uR,", UR,",S ...... Vq = Eo(Inmlsn "" "Iuq). 

Let w = w(O) be an al ternative parameter isat ion of jc, i.e. a smooth one-to-one 
t ransformation from 0 to w. We denote components of w by w ~, w S , . . . ,  with r, s , . . .  = 
1 , . . . , p .  Let O(w) be the inverse function of w(O) and let 0~ = (O0~/Owe)(w), 0~  = 
(020~/0J&z~)(aJ) ,  and so on, denote part ial  derivatives of components  of O(w) with re- 

(o   lOOrOOS)(o), = spect to components of w. Conversely, let w~ = 
and so on, denote partial  derivatives of w(0) with respect to components of 0. Notice 

8 8 8 tha t  a40 e = 5~, where 5~ is the Kronecker delta (Sg = 1 if s = r and 5~ = 0 if s ~ r). A 
likelihood quant i ty  with indices r,  s , . . .  is unders tood as referred to the w parameterisa- 
tion. 

Reparameterisat ion does not alter the log-likelihood function itself, whereas it affects 
log-likelihood derivatives and their moments.  For instance, 

ls = 40~ 

l ~  = l~O~O~ + 40;~ 

i ~  = z~OfO~ 

~ bJraJ  s 
i f r f ~ l  02 r . 

A collection of smooth real functions TR~s~ = TR,"s~ ( 0 ) =  T r~...,~''~,~,_,(0~ is called an  (m, n) 
tensor on T ,  or, equivalently, a tensor of contravariant  rank rn and covariant rank n, if 
under reparameterisat ion it obeys the t ransformat ion rule 

(2.1) T2~1""~2 ~ rr; . . .Z:w:i  " ~ t . . . O S - n  " ' "  - " " " ( " t ) r m  O g l  8 n  " 

For instance, l~ is a (0, 1) tensor, i~s is a (0, 2) tensor, l ~ is a (1,0) tensor. A (0, 0) tensor 
is a parameterisation-invariant quantity.  If T R~ is an (m, 0) tensor and Us.. is a (0, m) 
tensor, their cont rac t ion  TR,"UR~ is invariant. Tensors are therefore ins t rumental  in 
writing likelihood expansions in a geometric form. 

3. Invariant expected/observed expansions: a review 

3.1 Nuisance parameters absent 
Let f(0) = f(0;  y) be a parameterisat ion-invariant  statistic, also called a scalar func- 

tion, defined on a copy of O tha t  represents the range space of the maximum likelihood 
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estimator. Let us assume that f(0)  is of order Op(n ~) under repeated sampling of size 

n. Stochastic expansions for f(0)  are often obtained from the ordinary Taylor formula, 
which is not parameterisation-invariant, depending on the coordinate system adopted 
for the statistical manifold 5 r. An important aim of a geometric stochastic calculus is to 
obtain an asymptotic expansion for f (0)  of the form 

(3.1) f(0) = f(O) + bl + b2 + 53 + 54 + Op(n ~-5/2) 

where each term bm is a scalar function of order Op(nZ-m/2) ,  m = 1,2,3,4. More 
generally, if f(0)  is a geometric object, such as a tensor, it is desirable that each term 
b,~ should follow the same transformation law as f(O). 

One possibility for obtaining the geometric expansion (3.1) is through the ordinary 
Taylor formula followed by a posteriori elicitation of geometric ingredients. Taylor's 
formula gives 

(3.2) f(O) = f(O) + f,.(O - O)r + I f,.~(O _ 0),. s 

1 ~ 0)~, t 1 ~ o)r.tu , + -~frst( -- + -~ f r s tu (  -- + " "  

where fr = (Of/O0r)(O), frs = (O2f/OOrOOs)(O), and so on, (0 - 0) r = (~r _ 0r), 

(0 - 0) ~ = (0 - 0)~(0 - 0) s and so on. In order to preserve invariance a suitable 
expansion for 0 - 0 has to be inserted into (3.2), see Barndorff-Nielsen and Cox ((1994), 
Section 5.3) and Pace and Salvan ((1994), Section 3). The resulting expansions are called 
expected/observed. They are expressed in terms of the score function, the expected 
information, higher order log-likelihood derivatives and their expectations. They also 
depend on derivatives of f(O) and on their expectations. 

Example 1. Expected/observed expansion of  the log-likelihood ratio. The expected/ 
observed expansion of W(0) = 2(l(0) - l(0)) is 

(3.3) W(O) = B1 + B2 -4- B3 A- Op(n-3/2) ,  

with 

B1 = irslrl s 
1 

B2 = -~VrstlrlSl t + Hrslr l  s 
3 

t33 = ~ (u~s t~  + 3i~wV~vVt~)l~lSl t l  u + H~stl~ISl t 

+ imuprsvHtwlrlSlt + i~H~vHswl~ l  ~. 

Unlike the leading term B1, neither B2 nor B3 is written as a contraction of tensors. 

Expected/observed expansions such as (3.3) are not explicitly written in terms of 
tensors and further manipulation is required for a geometric structure to become visible. 
In McCullagh and Cox (1986) a technique is suggested for recovering invariant terms in 
the expansion of the log-likelihood ratio statistic. Their contribution inspired much of 
subsequent work on invariant Taylor series in statistics (see Barndorff-Nielsen and Cox 
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(1994), Section 5.6). In Pace and Salvan (1994) a geometric formulation is produced 
for the expected/observed expansion of a generic smooth function f(t)). In particular, it 
is shown that expected/observed expansions may be derived also from invariant Taylor 
expansions. As a result, expected/observed expansions may be written using ingredients 
clearly recognizable as tensors. 

E x a m p l e  2. Geometr i c  expec ted /observed  expansion  o f  the log-likelihood ratio. In 
Pace and Salvan (1994) the terms B2 and B3 of (3.3) are re-written as 

1 
(3.4) B2 = -2TrstlrlSl t + T~ l~ l  s 

d 

1 1 i V W T + T  + irls (3.5) B3 = -- 'rrstul~lSlt l  u + T ~ t  lrlsl t  + -  - r v - s w -  - �9 
12 3 

Above, ~-nm, TR m, T+ m are (0,m) tensors obtained recursively from the collections 
of log-likelihood derivatives and their expectations, following a procedure introduced 
by McCullagh and Cox (1986) and further developed by Barndorff-Nielsen (1986) and 
Barndorff-Nielsen and Blmsild (1987), see also McCullagh ((1987), Section 7.2.3). Their 
particular instances appearing in (3.4) and (3.5) are given by 

(3.6) T~st = v~st + v~;st[3] = 2~%s,t 

7rstu ---- L'rstu + Ur;stu[4] + ivwL'v;rsUw;tu[3] -- iVWTrsvUw;tu[6] 

(3.7) T + = H~s - ut,~sl t 

(3.8) T ~  = g ~  - , t ; ~ l  t 

T~st = Hrst  - iVWpv;rsHwt[3] -- (l]u;rst -- iVWpv;rs~'u;tw[3])lU. 

The symbol [k] indicates the sum of k similar terms obtained by all suitable permutations 
of the indices, except for the obvious symmetry relations. Moreover, the quantities 
URm;S~ above are defined as 

l]Rm;Sn = ~ E PR,n,S,~t ..... Snh, 
h=l Sn/h 

where, for h < n, the symbol Y]~Sn/h indicates summation over all the partitions of Sn 
into h non-empty subsets S,~1,..., Snh. For instance vr;st = Vr,st + vr,s,t and vr;stu = 

~'r,~t~ + -~,~,t~[3] + ~,~,t,~. 

3.2 Nuisance  parame te r s  presen t  

Consider now inference about a function of the parameter, r = r with r 
a smooth function with range g2 C ]R k, k < p. Often r is a component of a given 
partition 0 = (r X) of 0 into subparameters r and X, with X considered as a (p - k)- 
dimensional nuisance parameter. Inference problems about r are unaffected by one-to- 
one reparameterisations of r Moreover, the choice of the nuisance parameterisation 
is immaterial. For simplicity of discussion, we assume hereafter that 0 = (r X). An 
interest respecting reparameterisation of 9 c is then a reparameterisation w = (~o, ~), 
where ~ = ~(r  and ~ = ~(r X), with ~(r  a one-to-one function of r Conversely, 
r = r  and X = X(~, ~). 
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Denote by 1r and 1 x blocks of the score vector corresponding to r and to X, respec- 
tively. Let, in addition, ir162 icx ,  ixx denote blocks of the expected information i and 
ir162 iCx, ixx denote blocks of the matrix inverse of i. 

We will use indices a, b, c , . . . ,  with range {1, �9  k}, when referring to components of 
~b, and Greek letters a,/3, 7,- --, with range {1, . . . ,  p - k } ,  when referring to components 
of X. Hence, for instance, 1r has generic component l a -~- ( O l / O ~ 2 a ) ( ~ ,  ~ ) ,  a = 1 , . . . ,  k, 
while l x has generic component l~ = (OI /Ox~) (r  a = 1, . . .  ,p  - k. Moreover, zx x.c~ 
denotes a generic element of the matrix inverse of ixx. 

Likelihood inference about r is usually based on the profile log-likelihood I v (r = 
l (r 2r where 2r is the maximum likelihood estimator of X for a given r (see Barndorff- 
Nielsen and Cox (1994), Section 3.4). We assume that ))r is a solution with respect to 
X of the partial likelihood equation l x ( r  X) = 0. Hypothesis testing and construction of 
confidence regions about ~b are based on the profile log-likelihood ratio statistic 

= = 2 )  - 1 ( r 1 6 2  

whose asymptotic null distribution is X~ under regularity conditions. 
Under an interest respecting reparameterisation (~, ~), indices ~, b, . . .  are used for 

the components of ~, while indices &, ~ , . . .  refer to the components of ~. A likelihood 
quantity denoted by indices 5, b , . . . ,  5, ~ , . . .  is understood as referred to the (~, ~) pa- 

8 8 rameterisation. Notice that Ca~ = 0 and ~a = 0. Moreover, from wrO ~ = 5~, we get 
a 

X a ~ g a  = - - X ~ a  

a (i 

The profile log-likelihood and the profile log-likelihood ratio statistic are invaxiant 
under interest respecting repaxameterisations. An interest respecting repaxameterisa- 
tion, however, affects log-likelihood derivatives and their moments. For instance, from 
l(~, ~) = l(r  X(~, ~)) we have 

la = l~x~ 
(3.9) 

�9 �9 a b - (~ b i . a . f ~  = Z~b)/~r + ~XaX~ 
i ~  ' ~ ~ = z ~ X ~ X  3. 

The profile score (O lp /0 r  (r with generic component la(r ;~r transforms under 
interest respecting repaxameterisations as 

= l a ( r  
0V a 

see e.g. formulae (4.36) and (9.99) in Pace and Salvan (1997). 
Expected/observed expansions axe used also in the study of asymptotic properties 

of profile likelihood quantities. The most notable instance is analysed in the following 
example. 

Example 3. Expected/observed expansion of the profile log-likelihood ratio: invari- 
ance of  the leading term. The expected/observed expansion of Wp (~b) has the form 

P P 
W v ( r  ) = S 1 + B2 + B 3 + Op(n-3 /2) .  
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It is obtained by writing W e (r as the difference between W(r  X) = 2(/(r ; ~ ) - / ( r  X)) 
and W r (X) = 2(/(r162 - / ( r  X)) and applying (3.3) to both W(r  X) and W ~ (X)- In 
particular, 

#~ r ,P 

W ~ ' ( X )  = B 1 + B 2 + B 3 + O p ( n - 3 / 2 ) ,  

where B 1 i,~5['~[ ~, with [~ "~Z = = , x x l S .  Hence, the leading term of Wp(r is 

p ~p 

B 1 = B1 - B 1 = i~ , l r l  s - ic~Z-[a[ ~. 

P 
As is well known (see e.g. Cox and Hinkley (1974), chapter 9, formula (55)), B 1 may be 
rewritten as 

P ~ i r 1 6 2  (3.10) B 1 = ~ ~r 

with [r = lr - ~ l  x, where ~ -- i c x { i x x }  -1  is the matrix of regression coefficients of 

Ir on 1X. The vector [r is often called the efficient score for r 
Let us denote by la a generic component of [r Under interest respecting reparam- 

eterisations, [a transforms as 
/a - = lab)a, 

or, using matrix notation, 
[~v T -  

= r 1 6 2  

where r is the matrix with generic element r (see e.g. Sartori et  al. (2003), Sec- 
tion 3.1). Moreover, i r162 transforms as i ~ = ~ / r162162162  (see e.g. Barndorff-Nielsen 
and Cox (1994), formula (8.3)). Hence, invariance of (3.10) under interest respecting 
reparameterisations follows. 

For higher order terms in the expansion of W p  (r a detailed analysis of behaviour 
under interest respecting reparameterisations has not been carried out. In particular, 
no tensorial representation is available for such terms, similar to the one displayed in 
Example 3 for the leading term. As underlined by Barndorff-Nielsen and Cox ((1994), 
p. 153), no major simplification of higher order terms in the expansion of Wp (r seems 
to occur. See also the Appendix of DiCiccio and Stern (1994) and Li ((2001), formula 
(5)) for expressions of the term of order O p ( n - U 2 ) .  

Other familiar instances of expected/observed expansions of profile likelihood quan- 
tities concern the profile score and its expectation. These are given in McCuUagh 
and Tibshirani (1990) and are used to define an adjustment of the profile likelihood. 
Barndorff-Nielsen (1994) highlights the tensorial behaviour under interest respecting 
reparameterisations of quantities appearing in the leading term of the expectation of the 
expected/observed expansion of the profile score. 

4. Interest respecting tensors 

4.1 D e f i n i t i o n  
We encountered in Subsection 3.2 some instances of likelihood quantities showing 

a very simple behaviour under interest respecting reparameterisations. Those instances 
motivate the following definition. 
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An interest respecting tensor of rank ((rnl, m2), (nx, n2)), with ml,  m2, nl ,  n2 e N, 
is a collection of smooth real functions 

~ - ~ m  I Frn  2 al ""am 1 o~1 ""Gem 2 
n l A n  ~ = Tbl...b~l~l...~,~" (0) 

which, under interest respecting reparameterisations, obeys the transformation rule 

~ArR1 Fro2 - -  - - e m l  Fro2 al " . . . . . .  " am1 a/~b-1 " ~)~:~ ~ot~ ~Otm 2~rn2 ~1 . . ~n2 
"l Bn  1 fi~n 2 - -  "l 'Bnl An2  ~ a l  ~ a m l  ~ b l  _ ) ~ 1  " X ~ n  2 ' 

~Am I Pm 2 al ""am 1 &l ""()trn 2 where :/B.~s = Tb~...b.~Zl...Z.2 (co). We will refer to ml and m2 as the interest 
- - A m  1 Prn 2 contravariant and the nuisance contravariant rank of :/)~-1 ~-2 ' respectively. A similar 

distinction is made for the covariant ranks nt and n2. 
A ((0, 0), (0, 0)) interest respecting tensor is invariant under interest respecting repa- 

rameterisations. Both the profile score (0/0r  v (r and the efficient score [r are interest 
respecting tensors of rank ((0, 0), (1, 0)), while i r162 is a ((2, 0), (0, 0)) interest respecting 
tensor and ixx is a ((0, 0), (0, 2)) interest respecting tensor. 

When nuisance parameters are absent, collections of tensors may be obtained recur- 
sively from the collections of log-likelihood derivatives and their expectations, following 
the procedure developed by Barndorff-Nielsen (1986), see the instances in Example 2. 
Tensors under globM reparameterisations do not, however, necessarily behave as inter- 
est respecting tensors, even when calculated in an orthogonal parameterisation. This is 
already apparent from (3.9). 

We will show below how to obtain interest respecting tensors recursively from a 
collection of functions that  behave as tensors under global reparameterisations. The 
requirement of global tensorial behaviour may be limited to a subset of coordinates, as 
is pointed out in Subsection 4.4. 

4.2 Recursive equations for covariant interest respecting tensors from global covariant 
tensors 

Let TR~ be a (0, n) tensor under a reparameterisation co -- co(O) of 9 c. It obeys the 
transformation rule 

T,% = T~I...~" = Trl...r. gr~.. �9 O~". 

W h e n  the reparameterisation is interest respecting, the above equation specialises, be- 
cause 0 a -- r = 0. Some instances of this are c~ 

T a T Ta = a C a +  ~Xa 

T~ : T~Xg 

Ta5 T ./.a.l.b T -a  ~r 2, ~ fl : ab'(/ya~u ~ -~- a c , ~ a X ~  [ ] -[- T~ZXaX b 
a oz o~ (4.1) Taa = Ta~r + T~/~XaX~ 

(4.2) Ta z a fl = T,~ZX~X~. 

Note that T~ and T ~  transform as interest respecting tensors of rank ((0, 0), (0, 1)) 
and ((0, 0), (0, 2)), respectively. 

Interest respecting tensors T~ of rank ((0, 0), (nl, n2)), with nx +n2 = 1, are obtained 
by solving the recursive equations 

(4.3) T~ = T~ 
O~ - -  Ta -='Ta ~- /3aTa, 
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with ~ " "a~ = ~a~xx  , a generic element of the matrix of regression coefficients ~ .  
Only the behaviour of T~ has to be checked. Detailed calculations are given in the 

Appendix, showing that  2Da behaves as a ((0, 0), (1, 0)) interest respecting tensor. 
Similarly, interest respecting tensors 2P<~ of rank ((0, 0), (nl, n~)), with n~ + n2 = 2, 

are obtained by solving the recursive equations 

T ~  = T ~  

(4.4) T~Z = Taz + fla T ~  

Tab = Tab ~- ~b~'Fa/~ [ 2] -~- ~aa~b~Tc~ �9 

See the Appendix for a check of the tensorial behaviour of T~. 
Following the same scheme, we may obtain interest respecting tensors of higher 

ranks. In particular, interest respecting tensors Trst of rank ((0, 0), (n~, n J ) ,  with n~ + 
n~ = 3, are obtained by solving the recursive equations 

(4.5) 

Ta~ : Ta~ 

= aT T~ T~ + ~a ~ 

T ~  : ~o~ + ~o~[21 + ~ ~  
0 r- a Z ~- T~b~ = T~b~ + ~[T~b~ [3] + fib r T ~  [3] + ~ ~b/~ T ~ .  

Interest respecting tensors Tr~t~ of rank ((0, 0), (nl,  n2)), with nl  + n2 = 4, are obtained 
by solving the recursive equations 

Ta~ = Ta~5 + ~T~5 

(4.6) Tab,y5 = Tab'~ + ~b~Ta~6[2] +/~a~/~b~Taz~6 
~ ~ ~- 

Tob~ = ~ob~ + ~r [3] + ~o,~[3] + 9~ ~b ~ T~ 

Relations (4.3), (4.4), (4.5) and (4.6) show a close resemblance with those of 
McCullagh ((1987), Section 5.5.2) for cumulants of orthogonalised variables. Note, how- 
ever, that  the tensorial behaviour of Tr,T<~,. . .  under interest respecting reparameter- 
isations does not depend on the specific definition o f / ~ ,  but only on the validity of 
its transformation law, see formula (A.1). See also Barndorff-Nielsen and Jupp ((1988), 
Section 3). Nevertheless, the choice ~ : ~aZ~xx" "~Z is very natural in the statistical context. 

Tensors defined in terms of log-likelihood derivatives are of special importance when 
dealing with likelihood expansions. When global reparameterisations are considered, 
McCullagh and Cox (1986) and McCullagh ((1987), Section 7.2.3) show that  there exists 
locally at each point 00 6 0  a reparameterisation such that  log-likelihood derivatives 
of each given order behave tensorially. Moreover, the tensorial second and higher-order 
derivatives are uncorrelated with the score. When attention is restricted to interest- 
respecting reparameterisations, a similar result holds. Consider the local reparameteri- 
sation 

1 e 1 e 00)rst (~ - ~ o )  ~ : c~(O - Oo) ~ + ~ . c ~ ( o  - Oo) ~ + ~ c ~ ( o  - +.. . ,  
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with 

and so on. 
satisfy relations such as 

and 

5~ & a ---- O, 5t 5~ c~ 5~ & . 
Ca = 5 a ,  Co~ Ca ----- ( ~ s ~ a ,  Cs  ---- (~s, 

s o~ a . 
Crs = 5a]~rs  , CrS 

~ a & 5~ s s a . 
c~-~t = 5 a s  % t  = ~,~ (s + ~ s  

Above, /~n.~ = i v ~ , n ~  �9 Log-likelihood derivatives l ~  
C~ rn 

= s [  , 

I.  = Is, 

= + ~ b  l~z)  + ~b ( [~  + ~c a)  + ~bls~ - , 

= ~ -  ~ ) + ~ . [ ~ ,  l~. fo. + ~ [ . z  + zo.(l~ + 
ls~ [ .~ + ~s~(lo + 

and so on, showing tha t  they  coincide with the interest  respect ing tensors obta ined  by 
applying relat ions (4.3), (4.4), and so on, to the global tensors It, Its - fl~Iv, and so on. 

4.3 Recurs ive  equat ions f o r  contravariant  in teres t  respecting tensors  f r o m  global con- 
t ravariant  tensors  

In the previous subsect ion we have discussed how to obta in  interest  respect ing covari- 
ant tensors s tar t ing from covariant tensors TR~ of rank (0, n). An analogous argument  
holds if we s tar t  from contravariant  tensors T s'~. Let T sm be an (m, 0) tensor  under  a 
reparameter i sa t ion  w = w(O) of ~ .  It obeys the t ransformat ion  rule 

T S m  ~___ T s 1  *'*Sin ~__ T 8 1 . . . S m ~ l j 8 8 1 o .  " 0 . ] ~ .  

Under  interest  respect ing reparameter isat ions,  the above equat ion specialises, because 
5 ws = ~s  = O. Some instances of this are 

T a a a = T  ~v a 

T a a a ~ a = T ~ a + T  ~s 

Ta~ ,-,,ab a = ~ qOa~fl b 
r a S ~  q .ab .  a ,,-5~ a s  ~ 

T a 3  T a b ~ - a c : ~  a s  a ~ T s ~ f : a f : ~  

Note tha t  T a t ransforms as a ((1, 0), (0, 0)) interest  respect ing tensor  and tha t  T ab 

t ransforms as a ((2, 0), (0, 0)) interest  respect ing tensor.  
Recursive equat ions defining ( (ml ,  m2), (0, 0)) interest  respect ing tensors ~ r ,  wi th  

m l + m 2  = 1, axe 

(4.7) T a = ,~a 
T s ~ s  s -a = - ~ T  . 

Only the behaviour  of T~ has to be checked. See the Appendix  for details. 
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Similarly, interest respecting tensors 7 ~ of rank ((ml, m2), (0, 0)), with ml + m2 = 
2, are obtained by solving the recursive equations 

Tab -= ~ab 

(4.8) Ta;~ = Ca~ _ f l b ~ b  

TaZ = _ + Z Z27 

Following the same pattern, it is straightforward to write the recursive equations 
giving interest respecting tensors of rank ((ml, m2), (0, 0)) with m~ + m2 -- 3, 4, and so 
Oil .  

4.4 Other interest respecting tensors 
The technique illustrated in the previous subsections allows us to obtain interest 

respecting tensors also starting from quantities that are not global tensors themselves. 
These quantities should, however, share with global tensors an appropriate part of their 
transformation rule under interest respecting reparameterisations, as far as specific sub- 
sets of coordinates are concerned. 

Consider for instance the quantities 

(4.9) tra = HT~ -- YZ,Ta[ ~, 

with [a = zxxl~..~Z Notice that  when r indexes a nuisance component (4.9) is the same as 
(3.7) referred to the submodel with ~ fixed. Under interest respecting reparameterisa- 
tions, the quantities t~a transform according to the rules 

a c~ a ta~ = taa~aX~ + ta~XaX~ 

t ~  = t ~ X ~ X  ~. 

These rules are the same as (4.1) and (4.2) holding for a global (0, 2) tensor, as far as 
pairs of indices a, a and a , /3  are concerned. Hence, using the first and second equation 
in (4.4), 

(4.10) [aa = taa - f l~t~,  

is a ((0, 0), (I, i)) interest respecting tensor. 
The construction above may be extended as follows. Let {CRm} be sequence of 

likelihood quantities that behaves as a costring of covariant degree zero under global 
reparameterisations (see e.g. Pace and Salvan (1994), Section 2, for details). Notable 
instances of such quantities are IR~, vRm and HR.~. In addition, let 

ZxxlZ~,ra 

and so on. Let ta = Ca. Consider now the quantities {t~a,taz}, { t ~ z , t a ~ } ,  and so 
on, obtained as solutions of recursive relations of the form 

c a .  = t a .  + 

Gaa. : tan, + ~ a ~ a t ~ , [ 2 ]  "+" ~ , t C a  -f- ~aa,tr 



522 LUIGI PACE AND ALESSANDRA SALVAN 

Under interest respecting reparameterisations, taa and t~z transform according to 
the rules 

a o~ ot ta~ = t a ~ X ( ~  + taf~XaXa 

t ~  = t ~ X ~ X ~ ,  

which are part of the transformation law of global covariant tensors of degree two, spe- 
cialised to interest respecting reparameterisations (see Subsection 4.2). Hence, relations 
(4.4) may be applied to give interest respecting tensors t ~  and t ~  as the solutions of 

(4.11) t ,~ = Ea~ 
ta~ t ~  + " -  = ~ a  tc~j3 - 

Notice that, with C~a = H~a, relations (4.11) give the ((0, 0), (1, 1)) interest respecting 
tensor (4.10). 

Similarly, taa~ and taz~ follow, under interest respecting reparameterisations, the 
same transformation law as the corresponding components of a global (0, 3) tensor. 
Hence, relations (4.5) may be used to obtain interest respecting tensors taz~ and taa~- 
It is straightforward to obtain interest respecting tensors with higher ranks. 

5. Notable likelihood interest respecting tensors 

As an immediate consequence of the results in the previous section, we may obtain 
an interest respecting score [r starting from the (0, 1) tensor l~ as 

or, using matrix notation, 

()( 
where the first block is the efficient score for g). 

We get an interest respecting expected information i starting from the (0, 2) tensor 
its. Equations (4.4) give 

�9 " O t f ~  " 
t a b  = i a b  - -  ~ a o ~ g x x g b ~  

-ia~ = 0 

Using matrix notation, 

0 ~-~ 

�9 .-1- and = " Note that g is the covariance with ~r162 = (ir162 -1 = i r 1 6 2  - ~r162 ~xx ~• 
matrix of [e. 
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Similarly, from the construct ion of contravariant interest respecting tensors, we may 
define the interest respecting tensors [r s tar t ing from the (1,0) tensor l r as 

(5.1) [~ = l~ 
a [ " = l ~ + ~ a l  . 

The elements of the matr ix inverse ~-1 of ~ may be derived as interest respecting 
tensors of rank ( (ml ,  m2), (0, 0)), with ml  + m2 = 2, start ing from the (2, 0) tensor irS. 
Indeed, using (4.8), 

(,b = lab 

( 5 . 2 )   a/3 = 0 

- -  t ~ a t J b t  . 

Note that  [a = Vb[b and [a = ~/3[/3, showing that  the notat ion used here is consistent with 
that  in Example  3. Also note tha t  it, ~, [~ and ~-1 coincide with score, information and 
their contravariant counterpar ts  in an orthogonal  interest respecting reparameterisat ion.  
However, in general interest respecting tensors do not have such a simple interpretat ion.  

Example  4. Expec ted /observed  expansion of  the profile log-likelihood ratio. The in- 
terest  respecting tensors [~ are useful to highlight a regular s t ructure  in the expec ted /  
observed expansion of W v (r  This is due to the implied orthogonali ty of the blocks of 
components  of [~ regarding the interest and the nuisance parameter .  

Wi th  the same nota t ion as in Examples 1 and 3, we have B1 = ~ s l r l  s. Indeed, from 
(3.3), 

B1 = irsUl  s = iablal b + ia/3Ul/3 [2] + i a z l~ l  ~. 

Using (5.1) to express l a and l ~ in terms of [~ and [~, we obtain  

a /3. r a ~  
B 1  : ( i a b  - -  f laaiaa[2] + / ~ f l b  za/3)l l + ( i a / 3  - fla~i~/3)/a[/312] + i~/3[a[ z = ~ab[a[ b + ~aZ[a[/3. 

r 
From Example 3, B 1 = ia/3[a[/3. Hence, 

p 
B 1 = B1 - B 1 

in accordance with (3.10). 
Similarly, using (5.1), we obtain 

where i~st a n d / ~  have 
(4.5) and (4.4) with T ~ t  

=  abP?, 

1 
B2 = :F, r s t F ? [  + [-IrsFP, 

J 

the  same expression as the solutions of the  reeursive equations 
and Tr~ replaced by Ur~t and Hr~, respectively. In particular,  

Uaa/3 = ~aa/3 - t3a~a/3~ 

[lab = gab  -- ZgH~b[2] + Za~3b~g,/3 

= H a s  - Z H /3 

Hao  = Ha/3. 
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We also get 

so that 

B2 = r,~z~P[Z[~ + I-Ic~zP[ ~, 

B 2 = B2 - B 2 f%t[rp[t  + HrsF[S _ 1 

P 

The same analysis as above can be done for B 3 . It turns out  tha t  all the summands  
having only Greek indices cancel out. This points out  the general pat tern.  

The  most  interesting feature of the  above example is the relatively simple form of the 
P 

te rm B 2 . However,  quanti t ies such as #r,t and /~ r s  do not behave as interest respecting 
tensors, so tha t  the obta ined expansion is not geometric. 

6. Interest respecting expected/observed expansions 

Let us denote  by 0 = (r162 the constrained maximum likelihood est imator.  A 

profile likelihood quant i ty  has the general form g(t}, ~)) = g(0, t); y). Suppose tha t  g(0, 0) 
is invariant under  interest respecting reparameterisations^or, more generally, an interest 
respecting tensor. Let us assume, in addition, that  g(0, 0) is of order Op(n ~) under 

repeated  sampling of size n. The expec ted /observed  expansion of g(0, 0) is obta ined 
through the ordinary Taylor formula for g(t~, 0) around (0, 0), followed by subs t i tu t ion  
of suitable expansions for 0 - 0 and 0 - 0. These are given by formula (3.6) in Pace and 
Salvan (1994) referred to the full model  f and to the submodel  with r fixed, respectively. 
Note  that  an expansion for 0 - 0 is essentially an expansion for ;~r - X- The resulting 

^ ~ 

expansion for g(0, 0) has the form 

(6.1) 
P P P 

g(0, 4) = g(O, o) + bl + b~ + b3 + b4 + Op(n~-~/~), 

P 

where each te rm b m is of order Op(nZ-m/2) ,  m = 1, 2, 3, 4. 
P 

The  terms b m in (6.1) will not be  explicitly wri t ten in terms of interest respecting 
tensors. The  techniques developed in Section 4 may be used to bring out  a geometric 
s tructure,  i.e. to obtain  an interest respecting expec ted /observed  expansion. We do not  
give detailed formulae for a generic function g(0, t~), but  rather  we will i l lustrate below 
the main ideas with reference to the profile log-likelihood ratio stat ist ic  and to the profile 
score. 

Example 5. Geometric expected/observed expansion of the profile log-likelihood ra- 

tio. The function g(0, 0) = Wp (r is of the form gl (4) + g2 (0), with g1(4) = - W ~ (X) = 
-2 ( l (0 )  - l(0)) and g2(0) = W(0)  = 2(l(0) - l(0)). 

Consider first the geometric expansion 

r r 
W~ (x) = ~ei~f e + B2 + B~ + o,,(n-~/2), 



TENSORS AND NUISANCE PARAMETERS 525 

where B 2 and B 3 are of order O p ( n  - 1 / 2 )  and O p ( n - 1 ) ,  respectively, and are given by 
(3.4) and (3.5) referred to the submodel  with ~p fixed. In particular,  

B~ = ~3"[~[~[3" + T~;["[ ~, 

with 

"4' _ g '  
Note that  T~33" and Ts  

((0, 0), (0, 2)), respectively. 
M o r e ove r, 

(6.2) 

where 

r 
"r~3. ~ = ~-a~3" = 2uc,,fl,.~ 

T -~k ~,3 = H ~ 3  - v'~; ~3['~" 

are interest respecting tensors of rank ((0, 0), (0, 3)) and 

r 

T2+fl ~ = Ha3  - v~,~3[ "y 

T - r  a33" : Hazy  - VCue;~zgr - (ue;aZ'y - VCue;~3u~;3"r 

Again, ~-~ ~, T + and T~ are interest respecting tensors of rank ( (0 ,0) , (0 ,4) ) ,  33" 3 f13" 
((0, 0), (0, 2)) and ((0, 0), (0, 3)), respectively. 

As a second step, we consider expansion (3.3) for W ( O )  with B2 and t73 expressed 
in terms of tensors under global reparameterisat ions,  as in (3.4) and (3.5). 

Following the same algebra as in Example 4, i.e. expressing l ~ and i "s in terms 
of [r and V s, respectively, the geometric expression (3.4) for the summand  B2 may be 
rewri t ten as 

1 
(6.3) B2 = = { r s t [ r [ s [  t + Tr-slrl s 

where Trot and T ~  are interest respecting tensors obta ined from the tensors (3.6) and 
(3.8) using the recursive equations (4.5) and (4.4), respectively. In particular,  

"Tabc ~" T a b c  - -  f l 2  T a b c [ 3 ]  -1- f l2  fl~b r~3c [3] -- a a  r43 a3" T t-" a t-" b t-" c ap3" 

3" T 

3' 

CaZ'y = Ta33" , 

and 

= - S T -  T s  
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Similarly, we get 

(6.4) B3 = ~ rst~ ~ + 3 ~vw~ iris 

where ~ t ~  and T~t are interest respecting tensors obtained by solving equations (4.6) 
and (4.5)_with T~t~ = "r~t~ and T~st = T~t, respectively. Finally, the interest respecting 
tensors T~.,~w are obtained as solutions of (4.6) with T~w~ = T+T+~. 

The term of order Op(n -~/2) in the geometric expected/observed expansion of 
P ,p r 

W e (r is given by B 2 = B~ - B 2 . Since ~-~fi~ = ~-~Z~, the corresponding terms cancel 
out in the expansion for W e (r On the other hand, 

Let 

Obviously, ~;~Z behaves as a ((0, 0), (1,2)) interest respecting tensor. Hence, 

. 1  
B2 = ~abc [a~b[~ + ?~b [a[a~b + (~Za -- ~;az)la[Z[~ + T ~ l  a[b + 2T~[  a~a. 

The term of order Op(n -1) in the geometric expected/observed expansion of Wp (r 

is B 3 = B3 - B  3 , with B3 and B 3 given by (6.4) and (6.2), respectively. No straight- 
forward simplification takes place in the difference B3 - B 3 ,  because, for instance, 
~ a ~  r ~-~Z~6. Indeed, while Ca~5 depends on the matrix inverse of i, the tensor 

r 
~-aZ~5 depends only on the matrix inverse of ixx. 

Example 6. Geometric expected/observed expansion of the profile score. The ex- 
pected/observed expansion of a generic component of the profile score is (cf. e.g. Pace 
and Salvan (1997), equation (9.88)) 

1 /2 la(~2, ~ r  ~- [a -~- ( H a s  - ~flaHafl)[ c~ -~- 5 (  ac~ -- ~aVC~"f) [~[~ "~- O p ( n - 1 / 2 ) ,  

where [a is of order Op(nl/2), while the remaining summands are of order Op(1). The 
leading term [a is a ((0, 0), (1, 0)) interest respecting tensor. Using the Bartlett identity 
u r ~  + vr,~Z + v~,Z[2] + Ur,a,Z = 0, the term of order Or(1 ) may be rewritten as 

1 

where ta~ is the ((0, 0), (1, 1)) interest respecting tensor given by (4.10), while ~a;afl is 
given by (6.5). 

It is easy to see that Eo( t~[  ~) = 0. Hence, 

Eo(la(r162 = - ~ z  7a;~Z + O(n-1),  

in agreement with Barndorff-Nielsen and Cox ((1994), formula (8.61)). 
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Appendix 

We first show that  T~ obtained from (4.3) behaves as a ((0, 0), (1,0)) interest re- 
specting tensor. Under an interest respecting reparameterisation (~,~), /3~ transforms 
a s  

(A.1) c~ a a = (/3a + 

Hence, the second equation in (4.3) transforms as 

T a a a a ~ -  /3 atba + T,~X~ = Ta + (/3~ Ca + X a ) ~ T z x , ~  �9 

Using the identity a /~ ~ Xa = 6~ on the right-hand side and equations (4.3) on the left-hand 
side, we get 

= 

so that  Ta = T~r showing that  T~ behaves as a ((0, 0), (1, 0)) interest respecting tensor. 
Consider now the transformation laws of T~  obtained from (4.4). The tensorial 

behaviour of T~Z is obvious. The tensorial behaviour of T~Z is easily shown following 
the same arguments used for T~. We only need to show that  Tab is an interest respecting 
((0,0), (2,0)) tensor, assuming that  T ~  and Ta# are ((0,0), (0,2)) and ((0,0), (1, 1)) 
interest respecting tensors, respectively. The third equation in (4.4) transforms as 

a b a a T a ~ = ~/~ab /3 b /3 ~ ~ .  a 3' T~b~bar ~ -4- T~,~r [2] + ,~XaX~ + (/35 Cb + X~ )~Z( ~-rCaXB)[2] 

a a .a'Lc6~(/3,8~/2b - 13 f l -  3' 5 

Substitution using equations (4.4) on the left-hand side, use of the identity a ~ = 5 g  

and straightforward simplifications give Ta~ - a b = Tabr162 Therefore, Tab behaves as a 
((0, 0), (2, 0)) interest respecting tensor. 

Finally we check the tensorial behaviour of T~ obtained from (4.7). The second 
equation in (4.7) transforms as 

a & a & ~/%6~ a a a & - b  
T ~a + T  ~a = - ( / 3 a r  ~flb. 

Using the identities XaPba a = - - X ~ b  and X ~  ~ a = 5~ on the right-hand side and equations 
(4.7) on the left-hand side, we get 

- a  r o t - a  & ~/~& a - a  & ~ a r  T ~ a + (  ~ ~a, = -/3 T 

so that  T~ = T a ~ ,  showing that  T~ behaves as a ((0, 1), (0, 0)) interest respecting 
tensor. 
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