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A b s t r a c t .  We propose numerical and graphical methods for outlier detection in 
hierarchical Bayes modeling and analyses of repeated measures regression data from 
multiple subjects; data from a single subject are generically called a "curve." The 
first-stage of our model has curve-specific regression coefficients with possibly autore- 
gressive errors of a prespecified order. The first-stage regression vectors for different 
curves are linked in a second-stage modeling step, possibly involving additional regres- 
sion variables. Detection of the stage at which the curve appears to be an outlier and 
the magnitude and specific component of the violation at that stage is accomplished 
by embedding the null model into a larger parametric model that can accommodate 
such unusual observations. We give two examples to illustrate the diagnostics, de- 
velop a BUGS program to compute them using MCMC techniques, and examine the 
sensitivity of the conclusions to the prior modeling assumptions. 

Key  words and phrases: Autoregressive errors, BUGS, graphical diagnostics, model- 
based diagnostics, outlier accommodation models, diagnostics for multi-stage models. 

1. Introduction 

This paper  proposes outl ier  detect ion methods  for a class of hierarchical  Bayesian 
linear models tha t  are widely used to analyze da ta  consisting of repea ted  measurements  
on each of a set of subjects.  In da t a  from designed experiments ,  the measurements  are 
usually taken at ordered t ime points or locations a l though in observat ional  studies this 
need not  be the case. In any event, each subject 's  da ta  is referred to as a curve .  The  
goal of our  diagnostics is to determine,  for each curve, t ha t  e i t he r  there  is no evidence 
of model  violations at any of the hierarchical stages or  to identify the stage(s) where 
model  assumptions are violated and specific details of the model  violation(s).  

The  analysis of repea ted  measures da t a  occurs frequently in medicine, epidemiology, 
psychology, and many  other  disciplines. One popular  frequentis t  m e th o d  of analysis 
of such da ta  is based on the specification of a two-stage r andom effects model  (Laird 
and Ware  (1982)). Several variations on this basic theme are presented in Crowder  
and Hand  (1990), Linds t rom and Bates  (1990), and Lindsey (1993); a tu tor ia l  review 
is given in Cnaan  et al. (1997). The  Bayesian analysis of repea ted  measures da t a  is 
typical ly based on hierarchical generalizations of mixed effects models. Ear ly  references 
are Berger  and Hui (1983) and Wakefield et al. (1994). In recent years such models 
have found increasingly fruitful appl icat ion in bo th  medicine and epidemiology (see for 
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example Palmer and Miiller (1998); Joseph et al. (1999); Tan et al. (1999); Pauler and 
Laird (2000, 2002); Lambert et al. (2001); Berlin et al. (2002)). 

There are several Bayesian approaches to outlier detection with respect to a given 
model. One approach identifies as outliers those observations whose realized errors with 
respect to that model have high posterior probabilities of being "large." The fundamental 
idea is contained in Zellner (1975) and is applied to the linear model and more general 
hierarchical models in Chaloner and Brant (1988) and Chaloner (1994), respectively. 
Weiss (1995) extends this approach to repeated measures data. Hodges (1998) exploits 
the geometric properties of a linear model representation of hierarchical Bayes models 
to derive analogues of classical diagnostics (see also Landlord and Lewis (1998) for an 
exposition of frequentist ideas regarding outlier analysis in multilevel data). 

Another approach is to embed the null model into a larger parametric model that 
can accommodate unusual observations. Outlier detection then consists of parametric 
inference based on the extended model. For example, using variance inflation and/or  
location-shiR extensions of normal linear models, this approach is applied in Pettit  and 
Smith (1985), Sharples (1990), and Verdinelli and Wasserman (1991). Carota et al. 
(1996) provide a comprehensive account of related model elaboration methodology. 

The model extension techniques of the previous paragraph follow Principle D2 of 
Weisberg (1983) by turning a problem of null model criticism into one of parametric 
inference. However, because they use more complex models, Bayesian outlier diagnos- 
tics are, in general, more computationally intensive than their frequentist counterparts. 
Thus Bayesian diagnostics need not display the computational simplicity of Weisberg's 
Principle D3.  

This paper uses the approach of extending a null model to analyze a widely-used, 
three-stage hierarchical Bayesian linear model for repeated measures data. Stage I of the 
model (the likelihood) specifies a regression with curve-specific coefficients and allows 
autoregressive measurement errors of a known order to account for dependencies among 
the residuals on the same curve. Stage II of the model describes the variability in the 
(random) curve-specific regression coefficients using a second set of (Stage II) regressors 
and unexplained random variation. Lastly, Stage III of the model specifies priors for the 
hyperparameters in Stage II. 

For each curve, our goal is to determine whether or not that curve shows evidence 
of a measurement error outlier (a Stage I violation) and whether or not the regression 
coefficient vector for that curve is, after possibly accounting for covariates, inconsistent 
with the regression vectors of the remaining curves (a Stage II violation). We provide 
numerical and graphical tools to identify specific sources of Stage I and II violations. 
This is accomplished by introducing two location-shift outlier indicators for each curve, 
one at each stage. The Stage I outlier indicator equals unity when a measurement error 
is present while the Stage II outlier indicator equals unity when a regression coefficient 
error is present; both indicators are equal to zero when the null model is adequate. 
The extended model Mso includes curve-specific vectors to measure the magnitude of 
model violations at each stage. Then, as an example, posterior values of these quantities, 
calculated for each curve, can be used as null model diagnostics. An initial version of this 
approach, based on a much simpler model, is given in Ho et al. (1995) where it is applied 
to an artificial example similar to the example of Section 4. The more complicated 
model of this paper is required to analyze the data  presented in the substantive example 
of Section 5. 

Our proposed diagnostics follow Principle D~ of Weisberg (1983), emphasizing the 
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use of graphical summaries. These summaries are a contribution to the difficult problem 
of determining and describing what does or does not constitute a representative curve 
fl'om a set of longitudinal data  (Jones and Rice (1992); Segal (1994)). 

The remainder of this paper is organized as follows. Section 2 states the hierar- 
chical null model while Section 3 introduces the extended model and uses it to define 
diagnostics. Section 4 provides a simple example illustrating the diagnostic in an ide- 
alized set-up. Section 5 applies the technique to a set of bone data that  was analyzed 
in Peruggia et al. (1994). Some extensions are discussed in Section 6. The proposed 
diagnostics can be evaluated using the output from a BUGS program (Spiegelhalter et 
al. (1996)) which is available from the first author. 

2. The hierarchical Bayes null model 

We use a hierarchical regression model with random coefficients to describe data in 
which each of a collection of subjects contributes a curve, typically in time or space. We 
allow for the random coefficients of the different curves to be related by their regression 
on curve-specific and coefficient-specific covariates. 

To describe the model formally, let I denote the number of subjects, 0~ the vector 
of zeroes of length n, In the vector of ones of length n, In  the identity matrix of order n, 
and diag(v) the m x m diagonal matrix with elements on the main diagonal given by the 
vector v = (Vl , . . . ,  vm). Also, let Nn(',  ") denote the multivariate normal distribution of 
dimension n, and IG(a,  b) denote the inverse gamma distribution with shape parameter a 
and scale parameter b whose density is given by p(w I a, b) = (F(a)wa+l)-lba e x p ( - b / w ) ,  
for w > 0. In the model specified below we assume conditional independence unless 
otherwise stated, i.e., the random variables at any level of the model are independent, 
given the hyperparameters at the next level. 

Stage I. F o r i = l , . . . , I ,  

(2.1) Y i  = X i f l i  + ~?i, 

where Yi = (Yi,1,..., y/,j ,)T is the vector of measurements for the i-th curve, Xi  is a 
di • L design matrix,/~i is an L • 1 vector of parameters, and Wi is a Ji • 1 vector of 
measurement errors having the autoregressive structure 

I]i , j  -'~ r  -~ " ' "  + ~ m i n ( j , P ) I ] i , j - m i n ( j , P )  -{- g i , j ,  for j = 1 , . . . ,  di, 

where the ei,j are N(0, a~) innovations for i = 1 , . . - , I  and j = P + 1 , . . . ,  Ji, while 
e l , 1 , . .  �9 , e i ,  P are zero-mean normal innovations with arbitrary variances ar 12 , . . .  , a2e for 
i = 1 , . . . ,  I (this is done because we do not require conditional stationarity of the ~i,j 
given the autoregressive parameters). 

Stage II. Let 7' (~/1-7,.. 7- y = . ,7 'n)  , a~ = (a~[1],... ,a~[L]) T, and r = 

( r  r  Then 

(2.2) /3~l I"/,er~ '~ N(z~"/t,a~[l]) , for i = 1 , . . . , I  and l =  1 , . . . , L ,  

where zit is a Kt • 1 vector of covariates specific to t h e / - t h  component of the Stage I 
regression vector for curve i, "/t is the corresponding Kt • 1 hierarchical regression coef- 
ficient vector, 

r ,.~ Np(Op,  Er = diag(a~[ l ] , . . . ,  a~[P])), 
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2 ~ IG(a~, b~), O" e 

(2.3) a 2 ~ IG(aej be~), for j =  l , . . . , P .  Ej 

The hyperparameters  Er ae, b~, aej, and bes, J = 1 , . . . ,  P ,  are assumed to be known. 

Stage III. 

"h NKt(#.y[l],diag(a~[l,1],. .  2 r .,a,~[1,Kz])), for l = 1 , . . . , L ,  

(2.4) ~r~[/] ~ IG(al,bz),  for 1 = 1 , . . . , L .  

a~[l, k], az, and bt, for l = 1 , . . . ,  L and The hyperparameters  #7 [/] (a Kz x 1 vector), 2 
k = 1 , . . . ,  Kl,  are assumed to be known. 

This model assumes tha t  the regression coefficients t3a, while curve-specific, are 
nevertheless related to one another.  This is reflected in two aspects of the model. First ,  
the means of the normal prior distributions for the ~a depend on curve-specific covariates, 
za ,  through a Stage II regression structure; the vector of regression parameters  used 
to model (r162 is ~'l. Second, for a fixed regressor l, addit ional dependence is 
introduced among the parameters  f l lz , . - - ,  flIl (across curves) by assuming tha t  they  are 
conditionally independent  given a common variance, a~ [1], drawn from an inverse gamma 
distribution. 

An impor tant  special case of model (2.1)-(2.4) occurs when there is no other curve- 
T specific covariate information. This case corresponds to sett ing Kz = 1 and za"/l  = 7l 

in Stage II, as we do in the example of Section 4. In addition, sett ing the order of the 
autoregressive filter, P ,  to zero in Stage I yields a model with independent  measurement  
errors. 

3. Location-shift outlier detection 

Our proposed diagnostics for detecting location-shift outliers are based on an ex- 
tended version of model (2.1)-(2.4) tha t  contains two outlier indicators for each curve, 
one indicator at each of Stages I and II, and two corresponding location shifts. The di- 
agnostics use the posterior distr ibutions of the outlier indicators and the location shifts. 
After presenting the extended model, we describe its features. As in the case of the null 
model, we always assume conditional independence. 

Stage I. For i = 1 , . . . , I ,  

(3.1) Yi  = Xii3i  + 6Yci + rli, 

where 5 7 takes value 0 or 1, ci is a Ji x 1 measurement-shift  vector, and the distr ibution 
of the r/i is the same as in the null model (see equation (2.1)). 

Stage II. Let d = ( d l l , . . . , d l L , . . . , d i l , . . . , d l L )  T, where du is a shift in the 

Stage I regression coefficient ~it, "}' = (~'~,..-,~/LT) T, and ~Z = (5~ , . . . , 5~ ) ,  where 

5/~ takes value 0 or 1. Then  

(3.2) 13il ]'7, d, 6P, o'~ ~ N(z~ '7 ,  + 5~da,a~[l]), 
for i = 1 , . . . , I  and 1 = 1 , . . . , L ,  
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(3.3) 

The hyperparameters  
known. 

ci ~ Nj,(#~ld~,a2clj~),  for i = 1 , . . . , I ,  

57 I Py ~ Ber(py)  for i = 1 , . . . , I ,  

r ~.. Np(Op ,  Er  = d iag(a~[1] , . . . ,  a~[P])) ,  

2 IG(ae,  b~), 

~2 ..~ IG(a~j b~j), for j = 1, P. g j  ' �9 . . , 

pc, ar Er a~, b~, a~ ,  and be~, j = 1 , . . . ,  P ,  are assumed to be 

Stage III. 

*/t N~t " ~ 2[/,Kl])),  for l =  1, . .  L, (/zT[t], d,ag(a7 [1, 1 ] , . . . ,  a~ ., 

di t~N(#d[ l ] ,a2[ l ] )  for i = l , . . . , I  and l = l , . . . , L ,  

5 ~ ] p ~ B e r ( p ~ )  for i = l , . . . , I ,  

a2~[l].~IG(al,bl),  for l = l , . . . , L ,  

where the hyperparameters /z7  [/] and #d[/], for l = 1 , . . . ,  L, and a 2 [l, k], at, bl, and a 2 [/], 
for l = 1 , . . . ,  L and k = 1 , . . . ,  Kl,  are assumed to be known. 

Stage IV. 

(3.4) py ~ Beta(uy ,  vy), pz ~ Be ta (uz ,  vz)  

where the hyperparameters  u~, v~, uz, vz are assumed to be known. 

The  interpretat ion of model  (3.1)-(3.4) is the following. 
a. Each curve is allowed to have or not have a Stage I deviat ion (for 5~ = 1 or 0, 

respectively) and have or not have a Stage II deviat ion (for 5~ -- 1 or 0, respectively).  
b. A Stage I mean shift occurs for each curve independent ly  with an unknown 

probabi l i ty  pg; fir = 1 indicates tha t  one or more components  of the  i - th  curve exhibit  
an anomaly. The magni tude of the shift, ci, can vary from curve to curve and its 
components  identify the anomalies within each curve. 

c. In Stage II, a shift occurs independently in the mean of each Stage I regression 
coefficient with an unknown probabil i ty  pz; 5~ --- 1 indicates tha t  one or more of the 
Stage I regression coefficients of the i- th curve exhibit  an anomaly  after accounting for 
their Stage II regression structure.  The  magni tude of the shift, da,  is specific to bo th  
the curve and regression component .  

d. The  prior means for the proport ions of Stage I and Stage II outliers are uy / (uy  + 
Vy) and u z / ( u z  + vz), respectively, and the prior precision of these means increases in 
Uy + Vy and u~ + v/~, respectively. 
The prior means of the two shift vectors, defined by tLc and trail], would ordinarily be  
taken to be zero al though our BUGS program allows for nonzero choices should specific 
subject  ma t t e r  considerations suggest this be the case. 

As a first diagnostic, we propose the examinat ion of the posterior  probabili t ies 

(3.5) pY = P{5  y = l l y  } and p~ -- P{5~ -- 1 l Y} 
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for each curve i. These probabilities can be conveniently displayed in [0, 1] 2 or simply 
tabulated. They convey a global assessment of the presence of outliers relative to model 
(2.1)-(2.4) in the light of the data. Curve i is judged to contain one or more Stage I 
(measurement) outlying components when pY is high; curve i is judged to contain one 

or more Stage II (regression) outlying coefficients when p~ is high. 
When there is evidence that the i-th curve is a Stage I outlier, our second diagnostic 

seeks to determine the component(s) of Yi where the model violation(s) occur. We do 
this by examining the posterior distributions of the shift vector 

(3.6) 6 7 x ei. 

Similarly, when there is evidence that the i-th curve is a Stage II outlier, the posterior 
distribution of the shift vector 

(3.7) • ai ,  

where di = (di l , . . . ,  dig)T, can be examined to gain insight about  the specific regressors 
exhibiting deviations. Examples will be given in Sections 4 and 5. 

Given M independent draws from the posterior distributions of the parameters in 
model (3.1)-(3.4), i.e., {{/3~ m) ' ~i~(m) , di(m) ' ~iY(rn) ' r ' "rt'h(ra) , re'T2(m) , !'~(rn) , v/3"T2(m) ~MIm=l, 
estimators of the posterior probabilities (3.5) and of the means of the shift vectors (3.6) 
and (3.7) can be derived either by averaging the appropriate elements of the draws or 
by the Rao-Blackwellized method suggested by Gelfand and Smith (1990). 

The next two sections illustrate the use of the proposed diagnostics in two examples. 
The first example is constructed to evaluate the performance of the diagnostics in a case 
that can be easily understood visually. We show how the sensitivity of the diagnostics to 
the prior can be assessed. The second example considers a set of thicknesses of cortical 
bone that was previously analyzed in Peruggia et al. (1994) and illustrates the use of 
the diagnostics in a situation in which it is not obvious which observations are outliers. 
Several static graphical methods are introduced to help interpret the estimated posterior 
quantities. 

4. Worked example Simple linear regression with repeated measures 

This first example is constructed to illustrate the performance of the diagnostics in 
a case that can be explained graphically. The data  set consists of 20 curves, each having 
10 measurements. For j = 1 , . . . ,  10, the i-th curve, Yi,  was generated to have j - th  
component 

(4.1) Yi,j -- bil + bi2 • j + ~ij, 

where, within a curve, the ~ij follow a first-order autoregressive model with parameter 
0:5 and have unit-variance innovations while the ~ij from different curves are mutually 
independent. The intercepts, {bn }, were generated independently as N(0, 0.04) and the 
slopes, {bi2}, were generated independently as N(0.4, 0.01). We introduced Stage I errors 
in Y1 and Y20 by adding 3.0 to the 3rd component of Y1 and the same amount to the 
4th component of Y20. In addition, two Stage II errors were created; the intercept for 
curve Y19, b19,1, was modified by adding 3.0 to its original value and the slope of curve 
Y2o, b20,2, was increased by 1.0. These modifications are clearly visible in Fig. 1 which 
shows a time series plot of the data. 
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Fig. 1. Plot of {(j, Y/,j) : i = 1, . . . ,  20;j = 1, . . . ,  10}. The third component of Y1 is unusually 
large relative to the majority of the curves; Y20 has a large slope and one component (the 4th) 
is large relative to the others; Y19 has a large intercept but no components have measurement 
outliers. 

We based our analysis on model  (2.1)-(2.4),  with equat ion (2.1) specified as 

Y~,j = ~il + /3~  • j + ~]ij. 

The  {/~1 } were independent  and identically normal ly  dis t r ibuted as were the {fl~2}- Th e  
{~ij}j  followed a first-order AR model.  The  shape and scale hyperparamete r s  of the 
inverse ga m ma  distr ibutions for the variances of the intercepts  flil and slopes/~i2, call 
them a~l and a~2 in this example,  were taken to be the informative choices aal = 3.0 = 
az~ and bzl = 1.0 = bz2 which have mean  0.5 and variance 0.25. 

The  prior variance for the autoregressive coefficient r was set equal to 4.0 which 
allows bo th  s ta t ionary  and non-s ta t ionary  models. Th e  shape and scale hyperparamete rs  
of the inverse gamma distr ibut ions for the innovations of the ~?i were set equal to ae = 3.0 
and bc = 1.0, except  for the first innovation tha t  was assumed to follow an IG(1.0,  1.0) 
distr ibution.  The  components  of the measurement  error  shifts ci were taken to have the 
common mean value zero and variance 4.0. 

The  prior  means of the intercepts  /3il and slopes /3~2, 71 and 72, were set equal 
to zero and 0.5, respectively. The i r  variances were bo th  set equal to 4.0. Th e  vector  
d~ -- (dil, di2) T corresponds to the 2 x 1 shift for the intercept  and slope of curve i. Each 
component  of d / w a s  given prior mean zero, a null value represent ing no shift. Th e  prior  
variances of bo th  shift components  were set equal to  4.0. These  variances are eight t imes 
larger t han  the means of the prior variances of /3i l  and /~i2 and allow for substant ia l  
deviations should the da ta  suggest tha t  they  are needed. 

The  values of the hyperparamete rs  in the expanded  version of the model  were set as 
follows. In Stage IV, the  prior mean  probabili t ies of a Stage I error,  py, and a Stage II 
error, p~, were bo th  set equal to 0.15 and the prior  probabi l i ty  tha t  e i ther  of these values 
exceeds 0.30 was set equal to 0.10; this yields uy -- 1.5 = uz and v~ = 8.5 = v~. 

Using our BUGS program, we obta ined  draws from the  poster ior  dis t r ibut ion of 
the model  parameters .  We discarded the first 2,000 warm-up cycles and compu ted  
diagnostics based on the next  5,000 iterations. Table 1 lists the Bayes est imates  of the 
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Table 1. Es t ima tes  of p~ and  p.~ for the  example  of Section 4. 
es t imates  of s t anda rd  error are shown in parentheses.  

Over lapping ba tch  mean  

i 1 2-18 19 20 

p? 1 .00 (0.00) min = 0.00 m ax  = 0.00 0 .00  (0.00) 1 .00 (0.00) 

0 .01  (0.00) min : 0.01 max  = 0.02 0 . 8 0  (0.03) 0 .54  (0.04) Pi 

E 

o -  / z  

-- , T r 

I 4 5 5 7 8 9 10 

Fig. 2. Index plot of e s t imated  poster ior  expected Stage I shifts, E{5~ y x ~ [y}, for i = 1 , . . . ,  20. 
The  lines connect ing  the  10 expected shifts  for Y l  and  Y20 are labeled "1" and  "20," respec- 
tively. The  lines connect ing  the  expected shifts for curves Y2-Y19 are indis t inguishable  and 
essentially lie on  the  hor izonta l  line t h r o u g h  zero. 

posterior probabilities pY and p~ for each curve, along with overlapping batch mean 
estimates of standard error for curves Y1, Y19, and Y20 (Chen and Schmeiser (1993)). 
Curves Y1 and Y2o are strongly indicated to contain one or more components with 
measurement errors. Curve Y19 is singled out as a regression coefficient outlier with 
curve Y20 having the second largest estimated p~ which is 0.54. No other curve shows 
evidence of either type of model inadequacy. 

To provide more detailed information about the nature of the violations identified 
in Table 1, we estimated the means of the posterior distributions of the Stage I and 
Stage II shifts, E{5 y x c~ l Y} and E{6~ x di I Y}. Figure 2 is an index plot in which the 
ten estimated components of E{5~ x c~ I Y} are connected. Clearly, Y1 is designated 
as a Stage I outlier because of its third component, Y20 is designated as a Stage I 
outlier because of its four th  '* " component, while Y 2 , . . . ,  Y19 show no evidence of Stage I 
outlyingness. 

Similarly, we estimated the means of the posterior distributions of the Stage II 
shifts for the intercept, ~il, and the slope, ~i2, which are E{5~ x d i l l Y }  and E{5~ • 
d~ l Y}, respectively. The expected (intercept, slope) shifts are: (0.01,-0.002) for Y1, 
(1.95,-0.02) for Y19 and (0.02,0.60) for Y20. For Y 2 - Y I s  the intercept estimates 
range between -0.01 and 0.01 and the slope estimates range between -0.02 and 0.02. 
These values show clear evidence that Y19 has a non-conforming intercept and moderate 
evidence that Y~0 has a non-conforming slope. 
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The extent to which the model allows the curves and the individual measurements 
to vary has a significant impact in determining what  the model regards as an outlier. 
The impact  for our Bayesian model can be quantified by conducting a sensitivity analysis 
of the model conclusions to the prior assumptions by s tudying how the variances a~, a~l , 

and a~2 affect the posterior probabilities of declaring individual curves to be outliers at  

each stage (pY and p/~) and the posterior mean shifts at each stage (E{6 y x c i l Y }  and 

E{6/z • di l Y})" 
For this purpose, we decided to vary the prior parameters  be, b~l, and b~2 which 

2 a~l, and a~2 , respectively, while holding control the scale of the prior distributions for a s , 
all other parameters  fixed. The rationale for this choice begins by recalling tha t  our 
model took a~ ~ IG(as, be), a~  ..~ IG(a,l,bi31) , and ag2 .-~ IG(a~2,b~2 ) where (ae, bs) = 
( a ~ ,  b~)  = (a~2 , b~2 ) = (3.0, 1.0). This inverse gamma distr ibution has mean 0.5 and 
variance 0.25, so tha t  its coefficient of variation (CV) is equal to 1.0. If an alternative 

2 leads to a model favoring larger measurement  errors than  the IG(as, be) prior for a s 
IG(3.0,  1.0) prior, then it should be more difficult to declare individual components  of 
Yi  to be Stage I outliers (and vice versa). 

We decided to investigate al ternative inverse gamma prior distributions all having 
CV equal to 1.0, with means ranging from a minimum of 0.25 to a maximum of 1.0. 
An easy calculation shows tha t  this is equivalent to keeping as = 3.0 and s tudying 
b~ E [0.5, 2.0] (with the parameter izat ion of the inverse gamma distr ibution tha t  we 
use, the mean increases with be). In a similar way, if an alternative IG(a~l , b~) prior 
for agl leads to a model favoring larger departures of/31 from its prior mean than  the 
IG(3.0,  1.0) prior, then it should be more difficult to declare individual intercepts to 
be outliers (and vice versa). An analogous s ta tement  holds for the slopes. For the 
same reason as described above we keep a ~  = a02 = 3.0 and vary b~l E [0.5, 2.01 and 

[0.5, 2.0]. 
Having decided which prior parameters  to vary and the ranges over which each is to 

be studied, one must determine the four diagnostics identified above as functions of the 
prior parameters.  When  only the single MCMC run at  the original prior parameters  is 
available, the most frequently used method  for assessing the impact  of alternative values 
of these parameters  on the inferential conclusions is Importance  Sampling (Robert  and 

Table 2. Bayes estimates of the posterior probabilities P~9 

b~ 
0.575 
1.025 
0.725 
1.325 
1.925 
1.775 
1.475 
0.875 
1.175 
1.625 
1.0 

b~l b~2 P~9 
0.875 1.175 0.76 
0.575 1.475 0.81 
1.775 1.775 0.51 
1.925 1.025 0.33 
1.325 1.625 0.39 
0.725 0.725 0.65 
1.025 1.925 0.53 
1.175 0.875 0.69 
1.475 0.575 0.41 
1.625 1.325 0.38 
1.0 1.0 0.80 

for the sensitivity study of Section 4. 

s , e .  

0.04 
0.06 
0.03 
0.03 
0.04 
0.07 
0.06 
0.05 
0.04 
0.03 
0.03 
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Casella (1999)}; we use Importance Sampling for this purpose in the bone strength 
analysis of Section 5. 

In the present application, as well as others of moderate computational expense, it 
is feasible to make a few additional MCMC runs using alternative be, b~l, and b/~ 2 values 
and to interpolate the output to obtain estimates of the posterior quantities of interest 
over a dense grid of (be, b51, b~2)-values in [0.5, 2.0] a. The remainder of this section shows 

how we used this method to assess the sensitivity of p1~9 to (b~, b/~l, ba2). 
We selected ten vectors (be, b~L, b•2 ) in [0.5, 2.0t a (in addition to the original values). 

We then used our BUGS program to estimate the corresponding P~9- This provided 
n = 11 points to be used for interpolation which are listed in Table 2. We chose the ten 
additional (be, bz~, bz2) input sites to be "space filling" over [0.5, 2.0] 3, in the sense that  
these 10 points maximize the minimum Euclidean interpoint distance among all possible 
ten-point Latin hypercube designs on [0.5, 2.0] 3 (Johnson et al. (1990) and McKay et al. 
(1979)). Latin hypercube designs allocate the (be, b~,  bz2 ) points in such a way that the 
projection of the 10 design points onto any of the be, b,j~ and b~2 axes gives a uniformly 
distributed point spread over [0.5, 2.0]. We used the ACED software of Welch (1985) to 
compute the required input design. 

Our PlZ9 interpolator was an empirical kriging predictor based on a stationary 
Gaussian stochastic process with product power exponential correlation (Sacks et al. 

Fig. 3. Sensitivity analysis for the simple linear regression example. Estimated posterior 
probabilities P~9 as a function of the scale parameters of the prior distributions for the variances 
of the innovation error (be) and of the regression coefficients (b& and b/~ ). 
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(1989); Koehler and Owen (1996)). We interpolated Pr at an equispaced grid of 4096 
(= 163) (b~, bzl, bz2 ) values; several tools can be used to study the results. Because there 
are only three parameters that are varied in this example, we used trellis plots (Becket 
et al. (1996)) to provide detailed information about  the effects of each parameter on the 
diagnostic. Figure 3 shows the interpolated Pr as a function of (be, b~l, b~2). 

The primary conclusion is that Pr is more sensitive to the choice of b~l than to 
the choice of either bz2 or be. Consistent with our intuition, larger a ~  values make 

deviations in the individual intercepts appear less like outliers, thus making Pr decrease. 
A secondary conclusion is that, for fixed bz~, the posterior probability that Y19 contains 
a Stage II outlier is relatively constant in bz~ and b~, although large values of both bz~ 

and b~ generally yield lower posterior values for P~9 than other choices. This is also 
intuitive because, if larger measurement errors and larger variation in slopes are possible 
under the model, then an aberration in the curve's intercept may simply be due to a 
"wild" slope that causes the curve to intersect the vertical axis at a point distant from 
the intercepts of the remaining curves making the intercept look less like an outlier. 

We conclude by noting that the values plotted in Fig. 3 are affected by two sources 
of uncertainty. The first is uncertainty in the 11 estimates listed in Table 2 as quantified 
by the corresponding standard errors. The second source of uncertainty is introduced by 
the stochastic process prior that is at the heart of the kriging interpolator (see Sacks et 
al. (1989)); in our case the interquartile range of the standard errors due to interpolator 
uncertainty is [0.04, 0.07] over the 4,096 grid values used to construct Fig. 3. 

5. Worked example~Measuring bone strength 

The data for this example come from an observational study of patients admitted 
for evaluation and possible hip replacement surgery at the Hospital for Special Surgery 
in New York City. As part of the evaluation process, a series of CAT scans were made of 
the cross section of each patient's femur in the area near the lesser trochanter (a section 
of the femur close to the hip joint). Figure 4 displays a typical bone cross-section with 
two clearly delineated regions: a central area of honeycomb-like trabecular bone and a 
surrounding area of denser cortical bone. 

These data consist of 41 scans, which are a subset of those analyzed by Peruggia et 
al. (1994) to identify the factors associated with the distribution of bone strength. We 
illustrate the identification of outliers for one of the models of cortical bone thickness 
discussed by Peruggia et al. (1994). 

The thickness was measured counterclockwise starting from an anatomical landmark 
along a series of 72 equally spaced rays emanating from the centroid of each section. 
Figure 4 shows, for a typical section, the landmark (denoted by a small circle), the 
centroid, and the rays. A set of risk factors was available to explain differences in the 
subject 's cross-sectional thicknesses. The risk factors were the subject 's age (AGE), 
gender (G), and diagnosis (DX). The variable AGE was the subject 's age centered so 
that AGE = 0 corresponded to a 45 year-old subject and was scaled to range over ( -1 ,  1); 
the latter facilitated the prior modeling of the AGE-related regression coefficients. There 
were three DX categories: osteoarthritis (OA), juvenile rheumatoid arthritis (JRA), and 
other (OTH). OA is the most common cause of hip replacement surgery in older patients; 
its etiology is the breakdown of cartilage in the joint, typically due to injury or wear. 
JRA is a congenital disease which manifests itself early in life and affects the growth of 
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Fig. 4. A digitized image of the cross section of human bone through a slice taken at the lesser 
trochanter. 

the hip bones and connective tissue. Patients in the OTH category tend to have acute 
problems, such as injuries or bone cancer; prior to their evaluation they can be regarded 
as nearly normal. 

The roughly circular character of the cortical shell thickness suggested the follow- 
ing form for the Stage I model. The i-th curve was summarized by the curve-specific 
coefficients (#i, c~il, cti2, c~i3, ~il, ~i2, ~i3) from the Fourier fit 

(5.1) 
3 

Y/,j = #i + E[o~iS cos(2rf  x j /72)  + ,3ff sin(27rf x j/72)] + rhj 
f=l 

for i = 1 , . . . , 41  and j = 1 , . . . ,  72. Independence of the deviations from the Fourier 
series model was not tenable and we based the within-curve errors on the autoregressive 
model 

(5.2) ~?ij = r + r + e i j ,  

subject to the initialization conditions described in Section 2. 
In Stage II, the vector of the 41 Fourier intercepts (#1 , . . . ,  #41) was regressed on 

(5.3) 7it,1 -~- %,2I[G = MALE] + %,3I[DX = OA] + %,4I[DX = JRA] 

+ %,5AGE + %,,6AGE 2 

where the Stage II regression coefficients 3'~ = (3't,,1, Vt,,2, Vt,,3, Vt,,4, %,5, 3'~,6) are un- 
known and I[E] is the 0/1 indicator function of the event E. Equation (5.3) describes 
each subject's Stage I intercept #i by a quadratic equation in that  subject's AGE with 
an intercept that  is additive in the subject's gender and diagnostic-group. For example, 
%,1 is the intercept for a 45 year-old female in the OTH diagnosis group while 7t,,1 +3%3 
is the intercept for a 45 year-old female with OA. The same regression variables (with 
harmonic-specific regression coefficients) were used to summarize the variability in each 
of the 41 • 1 vectors corresponding to the six remaining harmonic coefficients. Peruggia 
et al. (1994) contains additional detail. 

We determined outliers relative to the null model (5.1)-(5.3). The extended model 
was specified as follows. In Stage II, the components of the thickness location shift, ci, 

2 4.0. The prior were assigned the common mean #c = 0 with fairly large variance, cr c --- 
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variances of the autoregressive parameters were set to be a~[1] -- 4 = a~[2]. The shape 
and scale parameters of the inverse gamma distribution of the first and second innovations 
~il and ci2 were set equal to 1. As was done in Section 4, the shape parameters and the 
scale parameters of all remaining inverse gamma distributions were set equal to 3.0 and 
to 1.0, respectively. 

In Stage III, the prior means of the six Stage II regression coefficients "Yu for the 
parameters (#1 , . . . ,  #41) of equation (5.3) were all set to zero and their prior variances 
were set to be (~2[,, 1 ] , . . . , ~ [ p ,  6 ] )=  (25.0,1.0,1.0,1.0,1.0,1.0). The fairly large vari- 
ance for the intercept of the regression equation of ( # 1 , . . . ,  #41) which is Vu,1, the mean 
thickness for a 45 year old female with OTH, allowed adequate support for values far 
from zero; the bulk of the prior support for the other regression coefficients was restricted 
to smaller values. Each vector of regression coefficients of the six sine and cosine har- 
monics was given zero prior mean and the prior variances 2 , ~.y[/, 6]) were set 
equal to (4.0, 1.0, 1.0, 1.0, 1.0, 1.0), for 1 = 2 , . . . ,  7. The variances of the intercept terms 
were set differently than the variances of the coefficients of the remaining regressors for 
the same reasons that suggested a similar assumption about the a 2 [#, k]. The means of 
all Stage II deviation magnitudes, dil, were set equal to zero (i.e., #dill = 0) and their 
prior variances were set equal to 4.0, i.e., ~[l]  = 4.0, for all 1. 

In Stage IV, for the reasons explained in Section 4, the parameters of the beta 
distributions for the probabilities py and pz of a Stage I and Stage II deviation were set 
equal to uy = 1.5 = u~ and Vy : 8 . 5  = 1)/3. 

Draws from the posterior distribution of the model parameters given the data  were 
generated using our BUGS program. The first 2,000 iterations were used as a warm-up 
for the algorithm. The estimates stated below were based on subsequent cycles of the 
M C M C  sampler spaced 10 apart, for a total of 2,500 samples. 

The estimated posterior probabilities p~ are all zero, indicating that  there are no 
bone sections containing measurement error outliers. Thus, the 7-term Fourier series 
expansion in equation (5.1) appears to approximate the thickness curve well for all 
41 bone sections. The largest estimated posterior probabilities of a Stage II outlier 
(standard errors) are p~ : p6 ~ : ps ~ = 1.00(0.00), P3~9 : 0.92(0.03), and pl~7 = 0.41(0.08). 
The standard errors were also computed using the overlapping batch means estimator 
of Chen and Schmeiser (1993). All other estimated posterior probabilities p~ are less 
than 0.07. Thus, our diagnostic identifies four bone sections (2, 6, 8, and 39) as Stage II 
outliers, and suggests that  bone section 17 might also have Stage II anomalies. We 
expect these bone sections to have one or more Fourier coefficients that  differ from the 
pattern of the corresponding coefficients for sections having similar covariates. 

There are several methods that  can be used to provide more detailed information 
about the bone sections identified as Stage II outliers. First, we assess how Stage II 
violations are reflected in the Stage I coefficients of the individual curves. We do this 

~--  V~2500 ~(m)a(~) by examining the size of the estimated shifts 6z~diu = 2500 -1 z--,m=l '~Zi '*iu , where 
{5(m) z(m)12500 Z~ , ~iu ~m=l, for i = 1 , . . . ,  41, are the 2,500 draws from the Gibbs sampler for those 
coefficients (based on the expanded model). Similar estimates can be constructed for 
each harmonic coefficient a~ /and/3 i / .  Figure 5 displays an index plot, over the 41 bone 
sections, of the estimated shifts for each of the seven Stage I Fourier coefficients. These 
estimated shifts should be large in the presence of a Stage II violation. For example, 
Fig. 5 shows that  the Fourier intercepts are ill-fit by the Stage II regression for bone 
sections 2, 6 and 39. Similarly all but one of the harmonic coefficients are poorly fit for 
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Fig. 5. Index plots  of the  es t imated  poster ior  mean  shifts for the  in tercept  and  the  six harmonic  
coefficients in the  Fourier expansion of equa t ion  (5.1). 

bone sections 8 and 39. 
A second diagnostic gives an overall view of how the presence of deviations in the 

Stage II regression model affects the fit of the data. This diagnostic compares the pre- 
dicted thicknesses based on the null and expanded models. Each of the seven coefficients 
in the Fourier model for each subject is estimated in two ways based on the MCMC 
draws from the corresponding model. The first estimate of #~ is ~nun _T ~null where z z.itL 7 ~ 
Anull 
"7~ is the estimated posterior mean of the Stage II regression coefficients based on the 

~exp - T  ~exp  ( ~  null model. The second estimate of #i is ~-i --- z i ~ ,  + ~, where ~-vexp is the ~ t t  
estimated posterior mean of the Stage II regression coefficients based on the expanded 
model and 5Z~ di~ is defined in the previous paragraph. Similar pairs of estimates can be 
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Fig. 6. Plots of the raw thickness Y i  (solid curve) and the two estimates given by equa- 
tion (5.4). The dashed and dotted curves are based on the null and expanded model,  respec- 
tively. Plots are provided for the four bone sections strongly indicated as outliers (2, 6, 8, 
and 39), the bone section marginally indicated as an outlier (17), and, for comparison, a bone 
section showing no indication of being an outlier (18). 

constructed for the other six Fourier coefficients. 
This second diagnostic is presented in Fig. 6. For each bone section identified as an 

outlier, we display index plots of the raw thickness curve (solid line) overlaid with two 
estimates of the mean curve 

3 

(5.4) ~ k ] +  ErA[k] COS(2~flc~i/ • j / 7 2 ) +  ~ ]  sin(27rf • j /72)] ,  
f = l  

for k E {null, exp}. 

The lack of fit of the null Fourier model without shift adjustment (dashed line) is most 
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pronounced for bone section 6. Lack of fit is also very clear for bone sections 2, 8, and 
39 (in the region of maximum thickness). 

Sensitivity analyses can be conducted in a way similar to that described in Section 4. 
In this more highly computational setting, we used importance sampling to investigate 
the effect of the inverse gamma prior distributions for the variance parameters a 2 a 2 ~, It, 
O"2o~1 , O'o~22, an32, a~l , a~2 , and a ~ .  For example, by varying the scale parameters of the 

above prior distributions over the lattice {0.67, 1.0, 1.33} 8, the estimated value of P~39 

ranged from 0.86 to 0.96. Qualitatively, the dependence of p3~9 on the scale parameters 
is similar to the one described for the 19-th observation in the example of Section 4. In 
particular larger values of the scale parameters lead to smaller estimated values of P~ag. 

6. Discussion 

We mention but  a few of the many methods to extend the basic model (2.1)-(2.4). 
If the within-curve measurements are not equally spaced, then an autoregressive error 
structure could still be specified as in Jones and Boadi-Boateng (1991). The case of 
innovation outliers can be modeled using shift indicators at the innovation level, in 
which case the impact of the deviations would be filtered through the AR structure. 

Given the relevant prior information, one could assume a more complicated (and 
possibly random) covariance structure for the regression parameters ~iz- A discussion of 
various possible specifications that would also apply to our setting is given in Section 2.3 
of George and McCulloch (1993). The basic model can also be expanded to allow outlier 
detection in n-stage hierarchical Bayesian models with n > 3. To check for assumption 
violations at Stage III or higher, deviation indicators and deviation magnitudes can be 
added to appropriate parameters of the prior distributions for which it is desired to 
detect deviations. Of course, this extension would introduce a tremendous amount of 
complexity to the problem. 

As mentioned in Section 3, Rao-Blackwellized estimates can be computed for any of 
the posterior diagnostics that  we recommend (Gelfand and Smith (1990)). We initially 
calculated Rao-Blackwellized estimates for pY and p~ but  found that, in our examples, 
they differed little from the tabulation estimates reported by our BUGS program. For 
this reason, we used the more automatic BUGS estimates of all posterior quantities in 
the examples of Sections 4 and 5. 

The diagnostics proposed in this paper are model-based--they assume a multi- 
stage, null model for repeated measures data; location shift extensions are added to 
the null model at various levels of the hierarchy. Alternative model elaboration steps 
to accommodate outliers (e.g., replacement of the normal priors by t-like priors) could 
also be entertained as in Wakefield et al. (1994) and, more recently, in Spiegelhalter and 
Marshall (1999). 

For data sets where the distinction between usual and unusual observations is clear- 
cut (as judged by the modeling assumptions and prior specifications) the Gibbs sampler 
for our extended model converges rapidly and the estimated probabilities that individ- 
ual observations are outliers are highly reliable. However, for data sets where either 
the number of "outliers" is large relative to the prior assumption or other anomalies 
occur, it is possible for the posterior distribution to assign large probability to several 
nearly disjoint regions of the parameter space. In such instances, the Gibbs sampler 
does not mix well over these regions, successive draws exhibit strong dependencies, and 
longer runs are required to obtain reliable estimates. A situation of this sort occurs in 
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the example of Section 5, where the estimate of plZ7 is only accurate to within +0.08 
despite being based on 2,500 subsamples from a total of 25,000 iterations of our BUGS 
code. A similar difficulty occurs in problems of Bayesian variable selection (George and 
McCulloch (1993)). Called by another name, such situations are related to the masking 
phenomenon described in Jnstel and Pefia (1996). 

Appropriate Metropolis-Hastings steps can be introduced to facilitate communica- 
tion between multiple regions (see, for example, George and McCulloch (1997)). The 
effectiveness of such a strategy, however, is highly dependent on having some knowledge 
of the structure of the posterior distribution. We are developing such algorithms for 
outlier detection models. 

Acknowledgements 

This material is based upon work supported by the National Science Foundation 
under Grant No. SES-0214574. The authors would like to thank the Hospital for Special 
Surgery, New York, NY for allowing use of the cortical bone data  analyzed in Section 5. 
They would also like to thank an Associate Editor and two referees for suggestions that  
improved the paper. 

REFERENCES 

Becker, R. A., Cleveland, W. S. and Shyu, M.-J. (1996). The visual design and control of trellis display, 
Journal of Computational and Graphical Statistics, 5, 123-155. 

Berger, J. O. and Hui, S. L. (1983). Empirical Bayes estimation of rates in longitudinal studies, Journal 
of the American Statistical Association, 78, 753-760. 

Berlin, J. A., Santanna, J., Schmid, C. H., Szczech, L. A. and Feldman, H. I. (2002). Individual 
patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: 
Ecological bias rears its ugly head, Statistics in Medicine, 21,371-387. 

Carota, C., Parmigiani, G. and Polson, N. G. (1996). Diagnostic measures for model criticism, Journal 
of the American Statistical Association, 91, 753-762. 

Chaloner, K. (1994). Residual analysis and outliers in Bayesian hierarchical models, Aspects of Un- 
certainty. A Tribute to D. V. Lindley (eds. P. R. Freeman and A. F. M. Smith), 149-157, Wiley, 
Chichester. 

Chaloner, K. and Brant, R. (1988). A Bayesian approach to outlier detection and residual analysis, 
Biometrika, 75, 651-659. 

Chen, M.-H. and Schmeiser, B. (1993). Performance of the Gibbs, hit-and-run, and metropolis samplers, 
Journal of Computational and Graphical Statistics, 2, 251-272. 

Cnaan, A., Laird, N. M. and Slasor, P. (1997). Using the general linear mixed model to analyse 
unbalanced repeated measures and longitudinal data, Statistics in Medicine, 16, 2349-2380. 

Crowder, M. J. and Hand, D. J. (1990). Analysis of Repeated Measures, Chapman &: Hall, New York. 
Celfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities, 

Journal of the American Statistical Association, 85, 398-409. 
George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling, Journal of  the 

American Statistical Association, 88, 881-889. 
George, E. I. and McCulloch, R. E. (1997). Approaches for Bayesian variable selection, Statistica Sinica, 

7, 339-374. 
Ho, Y.-Y., Peruggia, M. and Santner, T. J. (1995). Diagnostics for hierarchical Bayesian repeated 

measures models, 27th Symposium of the Interface: Computing Science and Statistics (eds. M. M. 
Meyer and J. L. Rosenberger), 387-391, Interface Foundation of North America, Fairfax Station, 
Virginia. 

Hodges, J. S. (1998). Some algebra and geometry for hierarchical models, applied to diagnostics (with 
discussion), Journal of the Royal Statistical Society, Series B, 60, 497-536. 



432 MARIO PERUGGIA ET AL. 

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance designs, Journal 
of Statistical Planning and Inference, 26, 131 148. 

Jones, M. C. and Rice, J. A. (1992). Displaying the important features of large collections of similar 
curves, The American Statistician, 46, 140-145. 

Jones, R. H. and Boadi-Boateng, F. (1991). Unequally spaced longitudinal data with AR(1) serial 
correlation, Biometrics, 47, 161-175. 

Joseph, L., Wolfson, D. B., Belisle, P., Brooks, J. O. 3rd, Mortimer, J. A., Tinklenberg, J. R. and 
Yesavage, J. A. (1999). Taking account of between-patient variability when modeling decline in 
Alzheimer's disease, American Journal of Epidemiology, 149, 963-973. 

Justel, A. and Pefia, D. (1996). Gibbs sampling will fail in outlier problems with strong masking, 
Journal of Computational and Graphical Statistics, 5, 176-189. 

Koehler, J. R. and Owen, A. B. (1996). Computer experiments, Handbook of Statistics (eds. S. Ghosh 
and C. R. Rao), 261-308, North Holland, Elsevier, Amsterdam. 

Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data, Biometrics, 38, 
963-974. 

Lambert, P. C., Abrams, K. R., Jones, D. R., Halligan, A. W. F. and Sherman, A. (2001). Analysis of 
ambulatory blood pressure monitor data using a hierarchical model incorporating restricted cubic 
splines and heterogeneous within-subject variances, Statistics in Medicine, 20, 3789-3805. 

Langford, I. H. and Lewis, T. (1998). Outliers in multilevel data  (Disc: P153-160), Journal of the Royal 
Statistical Society, Series A, General, 161, 121-153. 

Lindsey, J. K. (1993). Models for Repeated Measurements, Clarendon Press, Oxford. 
Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed effects models for repeated measures data, 

Biometrics, 46, 673-687. 
McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three methods for selecting 

values of input variables in the analysis of output from a computer code, Technometrics, 21, 223- 
245. 

Palmer, J. L. and Mfiller~ P. (1998). Bayesian optimal design in population models for haematologic 
data, Statistics in Medicine, 17, 1613-1622. 

Pauler, D. K. and Laird, N. M. (2000). A mixture model for longitudinal data  with application to 
assessment of noncompliance, Biometrics, 56, 464-472. 

Pauler, D. K. and Laird, N. M. (2002). Non-linear hierarchical models for monitoring compliance, 
Statistics in Medicine, 21,219-229. 

Peruggia, M., Santner, T. J., Ho, Y. Y. and Macmillan, N. J. (1994). A hierarchical Bayesian analysis 
of circular data  with autoregressive errors: Modeling the mechanical properties of cortical bone, 
Statistical Decision Theory and Related Topics V (eds. S. S. Gupta  and J. O. Berger), 201-220, 
Springer-Verlag, New York. 

Pettit ,  L. I. and Smith, A. F. M. (1985). Outliers and influential observations in linear models, Bayesian 
Statistics H (eds. J. M. Bernardo, M. H. DeCroot, D. V. Lindley and A. F. M. Smith), 473-494, 
North Holland, Elsevier, Amsterdam. 

Robert, C. P. and Casella, G. (1999). Monte Carlo Statistical Methods, Springer-Verlag, New York. 
Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer 

experiments, Statistical Sciences, 4, 409-423. 
Segal, M. R. (1994). Representative curves for longitudinal data via regression trees, Journal of Com- 

putational and Graphical Statistics, 3, 214-233. 
Sharpies, L. D. (1990). Identification and accommodation of outliers in general hierarchical models, 

Biometrika, T7, 445-453. 
Spiegelhalter, D. J. and Marshall, E. C. (1999). Inference-robust institutional comparisons: A case study 

of school examination results, Bayesian Statistics 6, Proceedings of the Sixth Valencia International 
Meeting (eds. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith), 613-630, Clarendon 
Press, Oxford. 

Spiegelhalter, D. J., Thomas, A., Best, N. G. and Cilks, W. R. (1996). BUGS Bayesian Inference Using 
Gibbs Sampling, Version 0.5, (version ii), MRC Biostatistics Unit, Cambridge, U.K. 

Tan, M., Qu, Y., Mascha, E. and Schubert, A. (1999). A Bayesian hierarchical model for multi-level 
repeated ordinal data: Analysis of oral practice examinations in a large anaesthesiology training 



HIERARCHICAL BAYES OUTLIER DETECTION 433 

programme, Statistics in Medicine, 18, 1983-1992. 
Verdindli, I. and Wasserman, L. (1991). Bayesian analysis of outlier problems using the Gibbs sampler, 

Statistics and Computing, 1, 105-117. 
Wakefield, J. C., Smith, A. F. M., Racine-Poon, A. and Gelfand, A. E. (1994). Bayesian analysis of linear 

and non-linear population models by using the Gibbs sampler, Applied Statistics, 43, 201-221. 
Weisberg, S. (1983). Comment on "Developments in linear regression methodology: 1959-1982", Tech- 

nometrics, 25, 240-244. 
Weiss, R. E. (1995). Residuals and outliers in repeated measures random effects models, Tech. Report, 

Department of Biostatistics, UCLA School of Public Health. 
Welch, W. J. (1985). ACED: Algorithms for the construction of experimental designs, The American 

Statistician, 39, p. 146. 
Zellner, A. (1975). Bayesian analysis of regression error terms, Journal of the American Statistical 

Association, 70, 138-144. 


