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A b s t r a c t .  This paper considers a semiparametric model which parameterizes only 
the conditional density of a response given covariates and allows the marginal dis- 
tribution of the covariates to be completely arbitrary when responses are missing. 
Different estimators with asymptotic normality for the mean of the response variable 
are derived, respectively, in the two cases where auxiliary information is available or 
not. The resulting asymptotic behaviors show that the use of auxiliary information 
improves inference via empirical likelihood approach. 

Key words and phrases: Asymptotic efficiency, missing response, resampling impu- 
tation. 

1. Introduction 

In the study of the association between a response variable Y and various covariates 
and the inference on the mean of a response variate, some responses may be missing 
for various reasons such as unwillingness of some sampled units to supply the desired 
information, loss of information caused by uncontrollable factors, failure on the part of 
investigator to gather correct information, and so forth. In fact, missingness of responses 
is common in opinion polls, market research surveys, mail enquires, socio-economic in- 
vestigations, medical studies and other scientific experiments. 

Let X be a d-dimensional vector of factors and Y be a response variable influenced 
by X. In practice, one often obtains a random sample of incomplete data  

(1.1) (Xi, Y~, 5i), i = 1, 2 , . . . ,  n, 

where all the Xi's are observed and 5/ = 0 if Yi is missing, otherwise 5i = 1. In such 
circumstances, most statistical packages will drop observations with missing response 
data from the analysis. This can result in a much reduced effective sample size, serious 
loss of efficiency and considerably biased estimator when a substantial proportion of ob- 
servations is missing. An alternative strategy is to impute the missing responses with 
predicted values from a regression of the missing response on the available covariable and 
then apply standard methods to the complete data set as if they were true observations. 
Cheng (1994) explored the usefulness of a basic nonparametric estimation scheme for 
the missing data (1.1) by focusing on the case where some Y may be missing at random 
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(MAR). In Cheng's paper, he applied kernel regression imputation to estimate the mean 
of Y, and established the asymptotic normality of a trimmed version of this estimator. 
Recently, Wang and Rao (2002a) used kernel regression imputation to develop empirical 
likelihood based inference for the mean of Y. Wang and Rao (2001, 2002b) considered 
linear regression models and used linear regression imputation to develop empirical like- 
lihood based inference for the mean of Y and the regression coefficients, respectively. It 
should be pointed out that use of regression imputation to treat missing responses has 
in recently years attracted interest. We refer the readers to Little and Rubin (1987) for 
an excellent account of the regression imputation methods for missing responses. 

In this paper, we consider a semiparametric model which parameterizes only the 
relation of interest, f (y  I x, 0), and allows the marginal distribution G(-) of X to be 
completely arbitrary. Throughout this paper, we make MAR assumption. The MAR 
assumption implies that 5 and Y are conditionally independent given X (see, e.g., Little 
and Rubin (1987)). That is, P(5 = 1 I Y,X)  = P(6 = 1 I X). We are interested in 
inferences on the mean of the response Y. First, we use the observed data  to estimate 0 by 
likelihood and semiparametric likelihood approaches, respectively, in the two cases where 
auxiliary information is available or not. Then, based on the estimators of 0, we impute 
the missing responses with predicted values and define four semiparametric estimators of 
# respectively. It should be noted that the method of empirical likelihood developed by 
Owen (1988, 1990) provides a means of determining nonparametric confidence regions 
for statistical functionals. However, this paper just uses it to develop sharper inferences 
when some auxiliary information is available. 

The rest of this paper is organized as follows. In Section 2, we define a likelihood 
based imputation estimator and a weighted one by incorporating auxiliary information 
via empirical likelihood technique. In Section 3, we define a semiparametric empirical 
likelihood based imputation estimator and a weighted one by incorporating a different 
form of auxiliary information via a semiparametric empirical likelihood technique. 

2. Likelihood based imputation estimators 

Let the complete data  (X1,Y1) , . . . ,  (Xn, Yn) be randomly drawn from the semi- 
parametric population f (y  I x, O)dG(x). Let 6~ be the indicator whether or not Y~ was 
observed for i = 1, 2 , . . . ,  n. Under MAR assumption, one obtains a sample of incomplete 
data (Xi,Yi,6i), i = 1 ,2 , . . .  ,n. Based on the incomplete data  set, in this section, we 
first define a resampling parametric imputation estimator for 0 and then construct two 
semiparametric estimators for the mean of the response using regression imputation. 

Based on the observed data  [(X~, Y~, 5i)}in=1, the likelihood function for 0 is 

n 

1-I f6"(Yi l Xi, O). 
i=1  

Let 0n be the MLE of 0 satisfying 

(2.1) 
n 

~-'] 6 01ogf(Yi l X~, O) 
00 

i=1 

= 0 .  

2.1 Estimation for # under regression imputation 
Let m(Xi, O) -- f y f (y  I Xi, O)dy and Y~,n = m(Xi, On). Note that  E(m(Z,  0)) = #. 

Hence, we impute the missing Yi by Y/,,~ and construct the following semiparametric 
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estimator of # 
n 1 ~ ( ~ i y ~  + (1 - ~)~,.). 

i=1 

THEOREM 2.1. Under Conditions (C.Y) and (C.f),  we have 

v'~(~n,] - #) ~ N(O, a~) 

where ~ = S~S~S~ + 2S~SflS~ + S~ + S~ with 

Sa = E [s Ol~ f(ff_dl X, O) a l~ f (Y ] X,O) ] 
O0 T 

$2 : E [ ( 1 -  6)y01Og f ( Y I X ,  O)] 
00 

Sa z E [syOl~ f (Y  l X'O) ] 
O0 L ~ 

$4 = E[5(Y - E[Y I X])2], $5 = Var(E[Y I X]). 

Let 

S n l :  1 
n 

1 
Sn2~-- n 

S n 3 : 1  
n 

4 Z n i =  1 

5 z n i=1 

Then, the asymptotic 

i=1 

" ( 0  log f(Yi I Xi,O) ) 
E(li=I -- ~i)Y/ ~ N 0=0",~ ' 

f ys(y l x, vo)) 
2 

variance a~ can be estimated consistently by 

~2n : Sn2Sn/Sn2 -~- 2Sn2Sn/Sn3 7 L &4  Jr- &5- 

Most standard statistical software will drop incomplete cases from the analysis. 
V'n 5 Y~/V "n 5i. The resulting 'complete case' estimator is then defined as ~nl = z_~i=l i o z_.,i=l 

However, fi,~l is asymptotically biased since 5 can depend on X under MAR assumption. 

2.2 Weighting estimation for p with auxiliary info~vnation 
We assume that auxiliary information on X of the form EA(X) -- 0 is available, 

where A(.) = (Aa(-) , . . . ,Ar(-))  T, r > 1, is a known vector (or scalar) function; for 
example, when the mean or median of X is known in the scalar X case. 
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To use the auxiliary information, we first maximize 

n 

(2.2) 1-Ip  
i=1 

n subject t o  E i = I  Pi z 1, E n _ l  p~A(X~) = O. Provided that the origin is inside the convex 
hull of A(X1) , . . . ,  A(Xn) ,  by the method of Lagrange multipliers, we get 

1 1 
Pi = 

n 1 + ~TnA(Xi )' 

where Cn is the solution of the following equation: 

1 ~ A(X 0 
(2.3) 

i=1 1 + CTn A(Xi  ) = O. 

An empirical likelihood-based weighted estimator of p is then defined by 

n 

(2.4) ~,~,2 = E P~(giYi + (1 - 50~,n ). 
i=1 

THEOREM 2.2. Under Assumptions (C.Y), (C.f) and (C.A), we have 

- N ( 0 ,  

where ~ = a~ - A ~ A ~ I A 1  with A1 = E[(E[Y ] X ] -  #)A(X)] and A2 = E A ( X ) A T ( X ) .  

Clearly, #n,2 has smaller asymptoic variance than #~,1- This shows that  the use of 
auxiliary information on X of the form E A ( X )  = 0 by the weighting method improves 
inference. 

~2 2 can be estimated consistently by ~ n  a~n m -1 = ~ - A~IAn2A~I,  where a~n is defined 
in Subsection 2.1 and 

n i = l  

a n d  
n 

A,~2 = -1 Z A(XOAm(Xi ) .  
n 

As pointed out by a referee that Hellerstein and Imbens (1999) also uses empirical 
likelihood weights in a regression context, and the Horvitz-Thompson estimator deals 
with the missing data by weighting the complete observations, with weights equal to the 
estimated propensity score. That  is, the estimator is defined by 

1 ~ &Yi 

~ H T  n i=1 A n ( x i )  

where /~n(') is an estimator of A(x) = P(5 = i I X = x). Clearly, fiHT is a nonpara- 
metric estimator and does not use the assumed parametric structure and the auxiliary 
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information. This implies that  the estimator may not use information sufficiently. It can 
be shown that ~HT is asymptotically normal with asymptotic variance 

[ ~2 (x ) ]  + Var(m(X,0)),  ~ = E L A ( x )  j 

when An (x) is defined by kernel smoothing the participation indicator against covariate 
values, where a2(x) = E[(Y - E[Y I X]) 2 ] X = x]. It seems not easy to compare ~fiHT 
with fin,1 and fin,2 by comparing their asymptotic variances. We will compare them by 
simulation. 

It should be pointed out that OHT has a disadvantages, requiring a high dimen- 
sion smoothing technique to compute the propensity score when the propensity score is 
unknown completely. That  is, OHT has the so called "curse of dimension" problem. 

3. Semiparametric likelihood based imputation estimators with auxiliary information 

In some cases, auxiliary information with the form Er 0) = 0 is available. For 
example, this kind of information arises naturally in microeeonometrie models (Imbens 
and Lancaster (1994)). To use the auxiliary information, we maximize the following 
semiparametric likelihood with data (Xi, Y/, 5i), i = 1, 2 , . . . ,  n, 

Lo(O) -~ H(f(Y~ I Xi;O)dG(Xi))~'(dG(Xi)) 1-~' = H ~ i  f~'(Yi l Xi,O) 
i=1  i=1  i=1  

n n 
subject t o  E i = I  P i  = 1 and E i = I  Pi~)( Xi, O) = O, where Pi = dG(Xi). 

If 0 is in the convex of r  ~(X~, 0), by Lagrange multiplier, we have 

where An satisfies 

(3.1) 

n(1 + A~r 0))'  

r 0) 
i=1 1 + A ~ f ( X i ,  0) 

--0.  

Clearly, 

(3.2) 
n 

logLo(O) = - log(1 + AnTr 0)) + E S i  log f(Y~ I Xi,O) - n logn .  
i=1  i=1  

Let O~,AU be the MLE satisfying 

OlogLo(O) _ O. 
O0 

3.1 Estimation for # under regression imzputation 
Let Yi,AU be Yi with On replaced by On,AU. We impute the missing Y/by ~'i,AU and 

define the estimator of # to be 

1 Z ( ~ y ~  + ( 1 -  ~ ) ~ , A u )  
~n,3 = n 

i=1  



408 QI-HUA WANG 

THEOREM 3.1. Under Assumptions (C.Y), (C.f) and (C4b), we have 

v~(~,~ - it) ~ N(o, ~),  

where 0 -2 = S2T(Sl -I- S6)-1S2 -~- 2 s T ( s 1  -[- S6) - lS3  -I- S4 -F S5 with Si defined in Theorem 

2.1 for i  = 1,2,3,4,5 and 

s6 = E ( O~(X' ~ ) �9 ( oo o)). 

a 2 can be estimated consistently by ~ = STn(Sln n L S6n)-lS2n -F 2sTn(Sln -t- 
$6~)-1S3,~ + S4n + $5~, where Sin are Si~ defined in Section 2 with 0~ replaced by 0n,ACr 

T -1 for i = 1, 2, 3, 4, 5 and S6n = rn~rn2 r~  with 

and 

1 ~ ar 0) o='o,, A~, 
Fnl  : n i=l O0 

n 

rn2 = -n E r ~n, ~.)r (X~, ~ , . . ) .  
i=l 

3.2 Weighting estimation for it under regression imputation 
It is easy to see that Pn,3 has less asymptotic variance than ~ , 1  and hence is 

asymptotically more efficient. This shows that the use of this form E~(X,  0) = 0 of 
auxiliary information also improvesinference. However, this improved estimator uses 
the auxiliary information only by On,AU, and hence it does not use the information 
sufficiently. The following weighted estimator provides further improved inference. 

Let 
1 ~ =  

n(1 + AT~b(Xi, "On,aU))' 

where An satisfies 
r ~n,Au) 

~ I + ~ T ~ ~ , A U  ) = 0 .  i=1 

We can define a weighted semiparametric empirical likelihood based imputation estima- 
tor as follows 

n 

~n,4 : E P i ( e i Y i  -F (1 - ei)~,AU). 
i = 1  

This estimator uses the auxiliary information not only by "On,AU but also by the weights. 
Hence, it provides further improved inference. This can be seen by the following Theorem 
3.2. 

THEOREM 3.2. Under the assumptions of Theorem 3.1, we have 

v/n(~fin,4 - #) ~ N(O, a2), 
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where 
0. 5 : a 2 _  Bml B;1B1, 

~ is as defined in Theorem 3.1 and 

B1 = E[(E[Y I X] - #)fJ(X, 0)], B2 = E[ ( f , (X ,  0 ) ) ( r  0))].. 

409 

It is clear tha t  ~n,4 has smaller asymptot ic  variance than  ~n,3 and hence ~n,1- And 

the asymptot ic  variance can be es t imated  consistently by A2~n4 = O-n3̂ 2 _ BnATFn 2-1Bn^ with 
~32~ and Fn2 defined before and 

f~ i=1 

4. Simulation 

From the results derived in Sections 2 and 3, Pn,2, ~ n , 3  and hence fin,4 have smaller 
asymptot ic  variances than  fin,1. In this section, we compare  these est imators  with the 
Horv i tz -Thompson  es t imator  ~HT in terms of their  biases and s t andard  errors (SE) via 
small sample simulat ion study. 

The  simulation used the two models which were used in Imbens and Lancas ter  
(1994): 

Model  1: 

f(Y I x, O) = (v/-~)  -1 e x p { - ( y  - 01 - 02x)2/2}, (01,02) = (1.0, 0.5). 

Model 2: 

f(Y ] x, O) ---- exp(-O1 - 02x) e x p { - y  exp ( -01  - 02x)}, y > O, (01,02) = (1.0, 1.0). 

Based on the above two models, X was s imulated from normal  N (1, 1), respectively. 
Based on each of the two models, we considered the following three  response probabi l i ty  
fimctions P(x) = P(5 = 1 I X  = x) under  the M A R  assumption.  

Case 1 : g ( 5  = 1 I X = x) = 0.8 + 0.2ix - 11 if Ix - 11 <_ 1, and = 0.95 elsewhere. 
Case 2 : P ( 5  = 1 ] X = x) = 0.9 - 0.2ix - 11 if Ix - 11 < 4, and = 0.10 elsewhere. 
Case 3 : P ( 5  = 1 ] X = x) = 0.6 for all x. 
For the above three cases, the mean  response rates are EPI(X)  ~ 0.90, EP2(X) ..~ 

0.74 and EP3(X) = 0.60, where P l (x ) ,  P2(x) and P3(x) are the response probabi l i ty  
functions for Cases 1, 2 and 3, respectively. For each model,  in the above three cases, 
we generated,  respectively, 5000 Monte  Carlo r andom samples of size n = 30, 60 and 
120. From the 5000 simulated values of fin,i for i = 1, 2, 3, 4, the bias and SE of these 
est imators  were calculated. We assume tha t  the mean  #x of X is known and A(X) = 
X - #5 when we use auxil iary informat ion on X of the form EA(X)  = 0. When  the 
auxiliary information of the form Er 0) = 0 were used, we took  funct ion r as 

01+02X { ( 
1/)1 = 01 _1_ 02#x 1, r = exp(01) exp(02X) - exp #x02 + , 



410 QI-HUA WANG 

Table 1. Biases and s tandard errors (SE) of ~n,i for i = 1, 2, 3, 4 under Model 1 with different 
missing functions P(x) and different sample sizes n. 

Bias SE 

n Est imators  Pl(X) P2(x) P3(x) Pl(X) P2(x) P3(x) 

~n,1 0.0134 0.0150 -0.0171 0.2163 0.2513 0.2847 

~n,2 -0 .0149 -0.0157 -0.0194 0.2027 0.2308 0.2522 

30 ~n,3 0.0152 -0.0154 0.0182 0.2033 0.2272 0.2558 

~n,4 -0 .0146 0.0149 0.0187 0.1947 0.2189 0.2374 

~HT 0.0187 0.0192 0.0191 0.2353 0.2675 0.3251 

~n, i  0.0115 0.0129 0.0156 0.1634 0.1825 0.2084 

~n,2 --0.0133 0.0121 --0.0162 0.1592 0.1747 0.1891 

60 ~n,3 --0.0127 --0.0134 0.0158 0.1537 0.1752 0.1868 

~n,4 0.0131 0.0137 0.0169 0.1325 0.1548 0.1752 

~HT 0.0121 0.0132 0.0179 0.1735 0.1997 0.2312 

~n,1 -0.0065 0.0094 --0.0087 0.1141 0.1306 0.1504 

~n,2 0.0076 0.0082 0.0093 0.0982 0.1195 0.1352 

120 ~n,3 --0.0070 0.0089 0.0095 0.1037 0.1203 0.1363 

~n,4 0.0081 --0.0095 --0.0102 0.0758 0.0946 0.1129 

~HT --0.0055 --0.0076 0.0093 0.1198 0.1456 0.1712 

Table 2. Biases and standard errors (SE) of ~n,i for i = 1, 2, 3,4 under Model 2 with different 
missing functions P(x) and different sample sizes n. 

Bias SE 

n Est imators  Pl(x) P2(x) P3(x) PI(x) P2(x) P3(x) 

~n,1 --0.0442 --0.0458 -0.0481 0.5429 0.5697 0.5947 

~n,2 0.0439 -0.0462 -0.0477 0.5233 0.5369 0.5538 

30 ~n,3 --0.0458 0.0454 0.0484 0.5217 0.5359 0.5531 

~n,4 0.0451 --0.0445 0.0491 0.4896 0.5093 0.5369 

~HT 0.0455 0.0468 0.0501 0.5735 0.6100 0.6537 

~n,1 --0.0302 0.0316 --0.0339 0.3783 0.3933 0.4112 

~n,2 --0.0317 --0.0324 --0.0355 0.3591 0.3761 0.3907 

60 ~n,3 --0.0310 0.0329 --0.0342 0.3576 0.3758 0.3874 

~n,4 0.0325 --0.0332 0.0358 0.3249 0.3540 0.3795 

~HT --0.0324 --0.0309 0.0342 0.3928 0.4241 0.4578 

~n,1 --0.0157 --0.0179 --0.0177 0.2676 0.2976 0.3201 

~n,2 0.0164 --0.0172 0.0185 0.2465 0.2864 0.2993 

120 ~n,3 --0.0152 0.0182 --0.0187 0.2496 0.2896 0.2935 
A 

~n,4 0.0168 0.0188 0.0192 0.2367 0.2667 0.2707 

~HT 0.0159 --0.0174 0.0182 0.2711 0.3198 0.3475 
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for the above two models, respectively, and assume that the mean #x of X is known. To 
calculate fiHT, the propensity score estimator A~(x) was taken to be the nonparametric 
kernel estimator given by 

s  = 

n ( - - ? i )  
F,i:l 5iK x -h 

- X ~  

9 if [u I < 1, 0 otherwise, and hn = n -1/3. where K(u) = - ~ u  2 + -~ 
We reported the estimated biases and SE for fin#, i = 1, 2, 3, 4 and ~HT in Tables 1 

and 2. 
From Tables 1 and 2, we observe that Pn,2, Pn,3 and Pn,4 have smaller SE than ~ , 1  

and ~HT, and fin,1 behaves better than ~HT in terms of the bias and SE. It is also noted 
that Pn,4 performs better than fin,3 in terms of SE. Clearly, SE and bias decrease when 
missing rate decreases (response probability increases) or when the sample size increases. 

Appendix: Assumptions and proofs of theorems 

The following assumptions are needed to prove our theorems. 
(C.Y) E Y  2 < oo. 
(C.A) E A ( X ) A T ( X )  is a positive definite matrix and EIIA(X)II 2 < c~. 
(C.r i) E~,(X,O)OT(X,O) is a positive matrix and EIIO(X, 0)I[ 2 < c~. 

ii) The second absolute moment of every component of or is finite. O0 
(C.f) f (x ,  0) satisfies the regular conditions given in Theorem 2.3 of Lehmann 

((1983), Chapter 6) on the asymptotic normality of the maximum likelihood estima- 
tor in fully parametric model. 

PROOF OF THEOREM 2.1. By Taylor's expansion and some standard arguments, 
it can be used 

(A.1) i=1 00 + ~ 

where $1 is defined in Theorem 2.1. 
By two terms Taylor's expansion and (A.1), we get 

(A.2) 
n 1 n 

pn, l -#----  -~1 E ( h i y i  -hiE[Yi  [ X i ] ) +  -n E ( E [ Y i  ] X i ] -  #) 
{ = 1  { ~ 1  

1~ / 
+ - ~ - ~ ( 1  - 5i) Y(f(Y I X~, "On) - f (Y I X~, O))dy 

I t  i = 1  

n n 

-- -nl Z(6 y  - 6 E[Y  I + �88 f - .) 
i=l  i~-I 

+ Y~'A1 - e~) y o - ~ f ( y  x~, o)ey [(~~ - o)1 + oAn -~/~) 
i=1 
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n 1 n 

= 1 ~--~(6~y~- &E[Y~ [ X d ) §  ~ ( E [ Y ~  I X d -  ~) 
n n i=l i=1 
-]- $2S11 1 ~ s i O l o g f ( Y i  [Xi,O) O0 q- ~ 

i = 1  

Hence, by central limit theorem and some simple calculations, we can get the result of 
Theorem 2.1 by noting 

and 

(i.3) 

Cov(6Y - 5E[Y I X], E[Y ] X] - #) = O, 
( O l o g f ( Y l X ,  O)) 

Coy E[Y I X] - , ,  (~ -~ = 0 

C~ ( f Y  - 6E[Y [ X]' 6 O l~ f (gi l x i '  • ) = ST2 S l l  

under MAR assumption. 

PROOF OF THEOREM 2.2. By Lemma 2 of Owen (1990), the origin is inside the 
convex hull of A(X1), . . . ,  A(Xn). Hence, the solution of (2.3) exists. Applying Taylor's 

1 n expansion to (2.3), together with the fact that ~ Y]i=l A(Xi) = Op(n-1/2), it follows 
that 

(~-- f i  ) - - l ( l f i  ) (A.4) ~n = A(Xi)Ar(x i )  A(Xi) + Op(n-W2). 
i=1 i=1 

Hence, by Taylor's expansion and (A.4), we get 

(A.5) 
n [in ] 

1 Z ( f i y / +  (1 - (~,)Y/,n) § Z(6 iY i  +(1-6i)Yi ,n)AT(Xi)  

• (I~=IA(X~)AT(X~))-I (I~=IA(Xi)) §176 

By law of large numbers, Taylor's expansion and the fact On - 0 -- Op(n-I/2), we 
get 

(A.6) 
n 

_1 Z { ( ~ i y  / + ( 1 -  ~i)Yi,n}AT(Xi) 
n i=1 

1 E[Y  I Xd)AT(Xd 
n i=l 

n n 

§ P-- Z AT (Xi)9- 1 ~-~(E[Y~IXi]- . ) A  T (Xi) 
n n 

i = l  i = l  

1. (j j ) 
+ - Z ( 1  - 5i) Yf(Y [ Xi ,  On) - yf(y [ Xi, O)dy g r ( x i )  

/~ i=1 
--+ E[e(Y - E[Y I X])AT(X)] + E[(E[Y [ X] - 0)AT(X)]. 
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By MAR assumption, we have E[6(Y - E[Y I XI)AT(X)] = 0. This together with 
(A.5) and (A.6) proves 

where A1 and A2 are defined in Theorem 2.2. Let Kn be the second term at the right 
hand side of the equality in (A.7). Let Tnl, Tn2 and Tn3 be the first, second and third 
terms at the right hand side of the last equality in (A.2). By MAR assumption, we have 
Cov(v/-~Kn , v~Tni) = 0 for i = 1, 3 and Cov(v~Kn,  v~Tn2)  = A~AKIA1. Hence, by 
(A.2), (A.7), Theorem 2.1 and central limit theorem, Theorem 2.2 is then proved. 

PROOF OF THEOREM 3.1. 
be used to prove 

( 1 ~  Ologf(YilXi,O)) 
(1.8) ('On,AU -- O) = (S1 q- $6) -1 In + - 6i 00 

n i=1 

where 

In = n i=1 

Similar to (A.2), we have 

Taylor's expansion and some standard arguments can 

1 AT 0r 0)) 
i + AT~(Xi, O) 

+Oe(1), 

n 1 n 

1 E(6iyi -SiE[Yi I Xi]) + - E ( E [ Y /  [ X i ] -  , )  (A.9) fi~,3 - # = n n 
i=1 i=1 

+ o 
- y-o-~f(y [ X i ,  O)dy (On,AU -- O) 

i=1 
n 1 n 

= 1 ~-~(6~Y~-&E[Y~ I X~])+-  ~-~(E[Y~ [ X~l - , )  
n n i=1 i=1 

n O0 " 
1 n Applying Taylor's expansion to (3.1), together with the fact -~i=lr = 

Op(n-1/2), it follows 

(A.10) An = ~)(Xi,  0)~)T (Xi,  0) E r  O) -t- Op(n-1/2).  
i=l i=l 

By Owen (1988), we have maxl<i<_n [1r [ = o(n 1/2) and An = Op(n-1/2). This 
implies m a x l < i <  n I ~ T r  0)l ----- or(l) .  Hence, Waylor's expansion together with (A.10) 
can be applied to prove 

(A.11) In = -rn,  rn2r -1 r  0) 
i=1 

1 ~ {  0.1y,_ 1 ff, f ffj.T p _ l  0'~/J (Xi,  0) } Jr- -- o T ( x i ,  I n2 ~:n~:nin2 -'~ + Op(n-1/2), 
n i=1 
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w h e r e  F n l  -- 

1 n 

--n Ej=I ff)(Xj, 0). 
Note that 

- -  _ _  -- n X 
nl E i= ln  Or ,0) , Fn2 nl E j = I  ~/)( J' O)l/)(Xj, O) and On = 

and 

~)n z Op(n--1/2), P n l =  Op(1) ,  Fn  2 z Op(1) 

an "-- 1 ~ Or r (Xi, O ) = Op(1). 
" -  n O0 

i=1 

We have 

(A.12) ( ) I,~ = - E  Or E_I(o(X,O)OT(X,O)) E r  
0 0  i = 1  

-1  T -1  + tr(Fn2 % ~ n  Fn2 fin) + Op(n-1/2) 

:-E{O~(X'O)IE-I{~)(X'O)ff)T(X'O)} {!~(Xi'O) n i=1 
+ or(n-i~2). 

Hence, central limit theorem can be used to prove Theorem 3.1 by (A.9), (A.12) and 
some calculations. 

PROOF OF THEOREM 3.2. Similar to (A.7), we have 

1 E ( ~ i y / - ~ -  (1 - ~i)Yi,AU) -- BTIB21 ~)(Xi, O) + Op(n-1/2). 
f i n , 4  - ~  = g i = 1  i = l  

By Theorem 3.1, similar arguments to that used in the proof of Theorem 2.2 can be used 
to prove Theorem 3.2. 
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