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WHEN DOES THE UNION OF RANDOM SPHERICAL CAPS BECOME 
CONNECTED? 
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A b s t r a c t .  Drop N random caps all of the same angular radius 0 = C v/-- ~ log N on 
a unit sphere. Let U denote the part of the surface covered by these caps. We prove 
that if c > v~, then the probability that U is connected tends to 1 as N -* c~, while 
if c < 1, then the probability that  U is connected tends to 0 as N ---* cx~. 

Key words and phrases: Coverage problem, random caps, asymptotic probability. 

1. Introduction 

Consider N r andom spherical caps C1, C2 , . . . ,  CN of the same angular  radius 0 
placed on the surface of a unit  sphere in 3-space. We suppose tha t  the centers of these 
caps are independent ly  and uniformly dis t r ibuted over the surface of the sphere. Then,  
what  is the probabi l i ty  tha t  the union of the caps is connected? Penrose (1997, 1999b) 
considered a similar problem in a unit  cube, and in a region of the d-dimensional Eu- 
clidean space, d _> 2, r a the r  than  on the surface of the sphere. For a related epidemic 
problem, see Penrose (1997). 

Let U denote  the par t  of the sphere covered by the N random caps, tha t  is, U = 
C1 U C2 u . . .  U CN. Let P(O, N)  denote  the probabi l i ty  tha t  U is connected.  We prove 
the following inequality. 

1 s i n  2 o)N-2. THEOaEM 1.1. P(O,N) > 1 - N ( c o s 2 0 )  N-1 - N ( N -  1 ) ( s i n 2 0 ) ( 1 -  

For example,  P ( ~ ,  15) > 0.65, P ( ~ ,  60) > 0.61, P ( ~ ,  200) > 0.76. 
This inequali ty is applied to prove the following asympto t ic  result. 

THEOREM 1.2. Let 0 = c ~ - ~ l o g N .  I f  c <  1 then P(O, N) ~ 0, while if  c >  

then P(O, N) ~ 1 as N --~ co. 

The  former par t  of Theo rem 1.2 is proved by showing tha t  if c < 1 then  there  is 
an isolated cap almost surely. This  follows also from a more general result  of Penrose 
(1999a), where he gave a s t rong law for the threshold at which there  are no isolated caps 
on a compact  C 2 Riemannian  d-manifold. 

In the range 1 < c < v/2, we do not know the asympto t ic  probability. It  is known 
(Maehara (1990)) t ha t  in the circle case, the threshold for no isolated arcs and the 
threshold for connectedness are different. More precisely, when we drop N random arcs 
of the length 27rc/log N on the circumference of the unit  circle, then  c = 1 is the threshold 
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for no isolated arcs, while c = 2 is the threshold for connectedness. On the other hand, 
it is known that  the thresholds for connectedness and for no isolated caps are the same 
in a region of d-dimensional space R d (Penrose (1999b)), and in the d-dimensional torus, 
d _> 2 (Penrose (1997)). 

Threshold for complete coverage (that is, the union of random caps covers the surface 
completely) is known (Maehara (1988)) in the case of d-dimensional sphere, d >_ 1. For 
related other problems, see Solomon (1978) Chapter 4, and for coverage processes in 
Euclidean space, see Hall (1988). 

2. Proof of Theorem 1.1 

For each i = 1, 2 , . . . ,  N, let vi denote the center of Ci and let D~ denote the cap of 
angular radius 20 concentric with Ci. The area of Di is 

27~(1 - cos 20) = 4~- sin 2 0. 

A spherical cap is divided into two half-caps by a great circle passing through the center 
of the cap. A cap Di is called half-empty if the interior of a half-cap of Di contains no 
vy, jJ=i .  

LEMMA 2.1. I f U  = CI LJC2L)'" "UCN is disconnected, then some D~ is half-empty. 

PROOF. Suppose that  U is disconnected, and let W1, W2 be two connected com- 
ponents of U. Then there is a simple closed curve F on the unit sphere such that  (i) F 
separates W1 from W2, and (ii) no cap Cj intersects the curve F. Let p be a point on 
F and let p* be its antipodal point. If necessary, considering W2 instead W1, we may 
suppose that p* lies either in the same side of F as W2 or on F. Then we can connect p 
and p* by a curve on the sphere avoiding W1. 

From now on, let us regard p as the North Pole and p* as the South Pole. Since 
every cap contained in W1 never meets the Poles, the longitude of the center of the cap 
is uniquely determined, which is called simply the longitude of the cap. If the difference 
of the longitudes of two caps Ci, Cj in W1 is equal to ~, then the shortest arc connecting 
their centers passes through p or p*. Hence, Ci N Cj = 0. That  is, if two caps in W1 
intersect, then the difference of their longitudes is less than 7c, and we can tell which lies 
east (or west) of the other, unless they have the same longitude. 

Now, starting from a cap in W1, we try to go east and east by moving from a cap to 
another one that  intersects the cap and lying east. Then, sooner or later, either (1) we 
meet again a cap we already visited, or (2) we reach an eastern-most cap and cannot go 
further. If (1) happens, then the union of the caps we visited forms a belt that  separates 
p from p*. This contradicts that  p and p* can be connected by a curve on the sphere 
with avoiding W1. Hence (2) happens. Then the cap of angular radius 20 concentric 
with the eastern-most cap is half empty. 

LEMMA 2.2. Let B be a unit disk in the xy-plane centered at the origin, and let 
Pl ,P2, . . .  ,Pk be k (> 0) random points distributed independently and uniformly in B.  
Then the probability that there is a half plane ax + by <_ 0 containing these k points is 
equal to 2k/2 k. 

PROOF. Since the probability that  some pi coincides with the origin is zero, and 
the probability that  some two points Pi,Pj coincide is also zero, we may suppose that  o 
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(the origin), Pa ,P2, . . . ,  Pk are all different. For each i, let q~ = p~/llp~ I I- Then q l , . . . ,  qk 
are distributed independently and uniformly on the boundary circle OB. There is a half 
plane ax + by <_ 0 containing Pl , .  �9 �9 Pk if and only if ql, �9 �9 �9 qk are contained in some 
semicircle of OB. So, we compute the probability that k points distributed independently 
and uniformly On the circle OB are contained in some semicircle of OB. This probability 
is equal to the probability that the largest spacing among these points is greater than or 
equal to 7r. Since the largest spacing has a unique counter-clockwise endpoint, this is the 
k times the probability that the circular interval of length 7r beginning from ql contains 
all the other k - 1 points, and since each of these points has probability 1/2 of lying in 
that interval, this gives the result. 

By the same reasoning we have the following. 

COROLLARY 2.1. Under the condition that certain k (> 0) vertices lie on Di and 
the remaining N - 1 - k vertices lie outside Di, the probability that Di is half-empty is 
equal to 2k/2 k. 

PROOF OF THEOREM 1.1. First, we compute the probability that Di is half-empty. 
The probability that certain k vertices lie on Di and the remaining N - 1 - k vertices lie 
outside Di is (sin 20)k(1 - sin 2 O) N - l - k  = (sin 20)k(cos 2 O) N - l - k .  Hence, by the above 
corollary, 

Pr(Di is half-empty) 
N--1 

= ( C O S 2 0 ) N - I + E (  N-1)k (sin 20)k(cos 2 o ) N - a - k ~  
k=l 

N-1 ( ~ ) k  
= (COS20)N-I +2 E (N ff l)k (cos20) N-l-k. 

k=0 

n O-~-(X + y)'~ = nx(x  + y)n-X, we have Since Ek=0 ( )kxkY n - k  --- x ox 

Pr(Di is half-empty) = (cos 2 O) N-1 + sin 20(N - 1) sin 20 + cos 20 

= (cos 20) N - l + ( N - 1 )  sin 20 1 - ~ s i n  20 . 

Therefore, the probability that  some Di is half-empty is at most 

N(cos 20) N - I + N ( N - 1 ) S i n  20 1 - ~ s i n  20 

Since 'U is connected' implies that there is no half-empty cap Di, we have 

( P ( O , N ) _ > I - N ( c o s  20) N - 1 - N ( N - 1 )  sin 20 1 - ~ s m  0 
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3. Proof of Theorem 1.2 

LEMMA 3.1. Let f ---- f ( N ) ,  g = g(N)  be two nonnegative function and suppose 
f --* 0 as N --~ c~. Then (1 - f )g  < e - f g  holds for  sufficiently large N .  Furthermore, 
i f  f2 . g ~ 0, then (1 - f )g  ~ e -y'9, that is, 

(i - f)9 = e-f..(1 + o(1)). 

PROOF. For 0 < t < 1, log(1 - t) is wr i t ten  as 

log(1 - t) = - t  - 
t 2 

2(1  -  t)2' 
O < A < I .  

Hence, for sufficiently large N (such as f < 1), 

g .  log(1 - f )  = - f . g  
f2  . g 

2(i - A f )  2 < - f  .g.  

Therefore  (1 - f )9  < e - f . c  If f 2 .  g ___, 0, then,  since 

f2 .g  * 0 ( N  ~ oc), 
2(1 - A f )2  

we have (1 - f )9  = e-f-9(1 + o(1)). 

PROOF OF THEOREM 1.2. First ,  suppose c > x/~. To prove P(O, N )  --* 1 as 
1 sin 2 o)g-2  ___, O. N ---* cxD, it is enough to show tha t  N(cos  2 O) y - 1  + N ( N  - 1) sin 2 0(1 - 

= c v / ~ l o g N  ~ 0, we have sin20 = 02(1 + o(1)) = (1 + o(1))~- Since 0 l o g N .  Since 

(02)2N = o(1), by applying Lemma  3.1, we have 

1 / N-2 
g ( 1 - s i n  29) g - l + N ( y - 1 )  sin 29 1 - ~ s i n  29 

,~ Ne-Y02  q_ N292e-g(1/2)o 2 ,.~ Ne-C 2 log N + N ( c  2 log N ) e  -(c2/2) log g 

1 c 2 log N 
Nc2_-------- T + Nc~/2_---------~, 

which tends to 0 since c 2 > 2. 
Now, suppose tha t  c < 1. We have to show tha t  P(9, N )  --* O. Denote  by vi the 

center of Ci. T h e n  V l , . . . ,  v g  are independent ly  and uniformly dis t r ibuted on the sphere. 
Let  Di denote  the cap of angular  radius 20 with center  vi as in Section 2. Th en  the area 
of D~ is equal to 47r sin 2 0. Since C~ N Cj ~ 0 <=> vj E Di, 

Pr(Ci  a Cj # 0) = sin 2 0 ,,~ 9 2. 

Similarly, 
P r (Di  n Dj  ~ 0) = sin 2 20 ~ 402. 

Let  us call a cap Ci is isolated if Ci N Cj = 0 for all j # i. Then,  if some cap Ci is 
isolated, U is not  connected.  Let  X denote  the number  of isolated caps in C 1 , . . .  ,CN.  
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For each i, 1 <_ i < N,  let Xi denote  the r andom variable such tha t  Xi = 1 if Ci is 
isolated cap, and Xi = 0 otherwise. Then  X = X1 + X2 + . . .  + XN. Since 04N = o(1), 
and since Ci is isolated if and only if Di contains no vj, j ~ i, the  expected value of Xi 
is 

E(Xi )  = P r (X i  : 1) ~ (1 - 02) N - 1  

,'~ e - N 0 2  ~ c--c 2 log N = N - C  2. 

Thus the expected value of X = X1 + .. �9 + X N  is 

E ( X )  ,',-, N E ( X 1 )  ~-, N 1-c2 . 

Next,  we consider the expected value E ( X i X j ) ,  i 7~ j .  

E ( X i X j )  < Pr (Di  A Dj = 0)(1 - 202) x - 2  + P r (D i  N Dj 7 s ~)(1 - -  02)  N - 2 .  

Since Pr (Di  N Dj r 0) ~-- 402, we have 

E ( X i X j )  < (1 - 402)(1 - 202) N-2 + 402(1 - 02) N-2 

(1 - 402)e -2N~ + 402e -N~ 

(1 - 402)N -2~2 + (4c 2 log N ) N  -(1+~2) 

= N-2~2(1 _ 402 + (4c 2 l o g N ) N  c2-a) ~ N -2~2. 

Hence 

= Z E(x x,) = Z + Z E(x,X,) 
i,j i iTt j 

= NE(X1)  + g ( Y  - 1)E(X1X2) 

< N . N-C2 + N2 . N -  2C2 = N2(1-c2) ( 1Nf-_d + 1 )  

N 2 ( 1 - c 2 )  ~ E ( X )  2. 

Since E ( X  2) > E ( X )  2 holds generally, we have E ( X  2) ,,, E ( X )  2. Now, applying 
Chebyshev's  inequality, 

E(X 2) - E ( X 7  
P r ( X  : O) _< P r ( [ X  - E ( X ) l  _ E(X)) < --. O. 

E(X)2 

Hence P r ( X  _> 1) -+ 1 as N --+ oo. Since X _> 1 implies tha t  U is disconnected,  we have 
P(O, N) ---+ 0 as N ~ co. 
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