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Abs t r ac t .  Hasegawa and Petz introduced the notion of paired monotone metrics. 
They also gave a characterisation theorem showing that Wigner-Yanase-Dyson met- 
rics are the only members of the paired family. In this paper we show that  the 
characterisation theorem holds true under hypotheses that are more general than 
those used in the above quoted references. 
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1. Introduction 

Monotone metrics are the quan tum counterpart  of Fisher information and are clas- 
sifted by Petz (1996, 2002). The Wigner-Yanase-Dyson information content (see Lieb 
(1973), Wigner  and Yanase (1963)) 

Ip (p, A) = - Tl([p p, A] [ill -p, A]) 

can be seen as a one-parameter  family of monotone metrics, see Hasegawa and Petz 
(1997). There, Hasegawa and Petz gave a proof tha t  the WYD-metrics  are the only 
monotone metrics possessing a certain pairing property (in Hasegawa (2003) Hasegawa 
discusses how this reflects on the associated relative entropy along the lines of Lesniewski 
and Ruskai (1999)). This is substantial ly related to the pairing of the non-commutat ive 
versions of Amari  embeddings 

pP 
p - , - -  p~log(p). 

P 

The purpose of the present paper is to present a partially different proof of the character- 
isation theorem. In Hasegawa and Petz (1997) and Hasegawa (2003) a certain boundary  
behaviour is used as an hypothesis. 

Here we show tha t  the characterisation theorem holds true under more general 
conditions, tha t  is wi thout  the above hypothesis (see the Remark 5.1). While we use 
means tha t  are relatively less elementary (the theory of regularly varying functions) it 
seems tha t  the present proof also fills some gaps appearing in the arguments  of Hasegawa 
and Petz (1997) and Hasegawa (2003). It should be emphasized tha t  the pairing discussed 
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here is related to the duality of non-commutative a-connections as discussed in many 
papers (see Nagaoka (1995), Hasegawa (1995), Gibilisco and Isola (1999), Amari and 
Nagaoka (2000), Grasselli and Streater (2001), Jen~ova (2001), Grasselli (2002)). 

Another goal of this paper is to relate the above pairing to the duality of uniformly 
convex Banach spaces according to the lines of our previous works Gibilisco and Pistone 
(1998), Gibilisco and Isola (1999, 2001a, b): this appears, up to now, as one of the main 
tools for the infinite dimensional approach to Information Geometry. 

The structure of the paper is as follows. In Section 2 we present the notion of 
pull-back of duality pairing and discuss the case of commutative Amari embeddings. In 
Section 3 we review the theory of monotone metrics and their pairing. In Section 4 
one finds the basic results on regularly varying functions that  are needed in the sequel. 
Section 5 contains the proof of the characterisation theorem. 

2. Pull-back of duality pairings 

Let V, W be vector spaces over ]R (or C). One says that  there is a duality pairing if 
there exists a separating bilinear form 

( - , . )  : v • W ~ R .  

Let Ad,Af be differentiable manifolds. A differentiable function F : J~ --~ Af is an 
immersion if its differential Dp~ : TpA,4 -~ T~(p)Af is injective, for any p C .M. 

DEFINITION 2.1. Suppose we have a pair of immersions (~, X), where ~o : Ad ---* Af 
and X : 3,4 ~ J~f, such that  a duality pairing exists between T~(p)Af and Tx(p)J~ for any 
p C A4. Then we may pull-back this pairing on Ad defining 

(u,v)~ 'x := (Dp(p(u),Dpx(u)) u,v E Tp.h4. 

The most elementary example is given by the case where Af = Jkf is a riemannian 
manifold, ~ = X and the duality pairing is just given by the riemannian scalar product 
on T~(p)A/[. This is called the pull-back metric induced by the map ~. 

A first non-trivial example is the following. Let X be a uniformly convex Banach 
space such that  the dual X is uniformly convex. We denote by (-, .) the standard duality 
pairing between X and )(. Let J : X -~ X be the duality mapping, that  is J is the 

1 V[2 differential of the map v --~ ~ [[ [ (see Berger (1977), p. 373). This implies that  J(v) is 
the unique element of the dual such that 

(v, J(v)} -- [[v[[ 2 = [[J(v)[I 2. 

DEFINITION 2.2. Let AJ be a manifold. If we have a map ~ : Ad ---* X we can 
consider a dualised pull-back that is a bilinear form defined on the tangent space of 2t4 
by 

(A,B}p ~ := (A,B)p ~'J~176 = (Dp~(A),Dp(J o ~o)(B)}. 

Remark 2.1. For X a Hilbert space, J is the identity, and this is again the definition 
of pull-back metric induced by the map ~. 
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Example 2.1. Let (X, ~-, p) be a measure space. If f is a measurable function and 
1 1 q C (1, +oc)  then Ilfllq : =  ( f  Iflq) 1/q. Moreover ~ is defined by ~ + ~ = 1. Se t  

L q = L q ( X , . ~ , # )  = { f  is measurable I Ilfllq < o~}. 

Define N q as L q with the norm 

IlfllN~ : -  IIfllq 
q 

Obviously Nq (the dual of N q) can be identified wi th  N O. Indeed if f E N q and g E N o 
define 

f 
Tg(f)  := / g. 

q q  J 

One has 

IITgl I = s u p  I T g ( f ) l  _ 
I l f l lN~  

f f g  
q ~t 1 f f g  Ilgllo 

s u p  I l f l l~  - 0 s u p  I l f l l~  
- -  - I l g l I N ,  

from this easily follows tha t  9 --+ Tg is an isometric isomorphism between Nq and N 0. 
Now suppose tha t  p > 0 is measurable and f p -- 1, namely p is a str ict ly positive 
density. Then v = qpl/q is an element of the unit  sphere of N q and it is easy to see tha t  
J(v)  = @UO. The family of maps p --~ qpUq are jus t  the Amari  embeddings. 

Let X = { 1 , . . . ,  n} and let # be the counting measure. In this case N q is just  N n 

wi th  the norm H.IIq L e t : P n = { V E N  n ] v i > 0 , ~ v i = l } .  q 

PROPOSITION 2.1. Consider the Amari  embedding ~ : p E 7~n --* qpl/q E N q for  
an arbitrary q E (1, +c~).  Then the bilinear foT~n 

(A, B}~ := (A, B}~ 'g~ = (Dp~(A) ,  Dp(J  o ~a)(B)) A, B E TpP~ 

is just  the Fisher information. 

PROOF. 

j f (Dp~(A),  Dp(J  o ~ ) (B) )  = ( p l / q - l A ) ( p U 4 - 1 B )  = P [] 

The above result can be s tated in much greater generality using the machinery of 
Pistone and Sempi (1995), Gibilisco and Isola (1999). 

3. Paired monotone metrics 

In the commutat ive case a Markov morphism is a stochastic map T : R n --~ N k. 
In the noncommutat ive  case a Markov morphism is a completely positive and trace 
preserving operator T : Mn ~ Mk,  where Mn denotes the space of n by n complex 
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matrices. We shall denote  by 7P~ the manifold of s tr ict ly positive elements of Mn and 
b y / 9 1  C /gn  the submanifold of densi ty matrices.  

In the commuta t ive  case a monotone  metr ic  is a family of r iemannian metrics g = 
{g'~} on {Pn}, n E N such tha t  

gT~(o)(TX, TX)  < g~(X,X)  

holds for every stochastic map  T : ]~n __~  •rn and all p E P~ and X C ToPn. 
In perfect  analogy, a monotone  metr ic  in the noncommuta t ive  case is a family of 

/91 r iemannian  metrics g = {g ~} on { ,~}, n C N such tha t  

_ n x  g (o)(TX, TX) < go ( , X) 

holds for every stochastic map  T : Mn ~ M,~ and all p E /91 and X E To/91 (see 
Chentsov and Morotzova (1990)). 

Let  us recall tha t  a funct ion f : (0, oc) -~ R is called opera tor  monotone  if for any 
n E N, any A, B E Mn such tha t  0 _< A _< B, the inequalities 0 < f (A)  <_ f (B)  hold. 
An opera tor  monotone  funct ion is said symmetr ic  if f (x)  := x f ( x  -1) and normalised 
if f ( 1 )  = 1. Wi th  such opera tor  monotone  functions f one associates the  so-called 
Chentsov-Morotzova functions 

1 
ci(x ,y  ) := y f (xy_ l  ) for x,y > O. 

PROPOSITION 3.1. For a CM-function the following is true 
(i) c(tx, ty) = lc(x,y)  Vx,y , t  > 0 

(ii) c(x) := limy_-.x c(x, y) -- 1 
- -  X "  

Define Lp(A) := pA, and Rp(A) := Ap. Since Lp and R o commute  we may  define 
c(Lp, Rp). Now we can s ta te  the fundamenta l  theorems about  monotone  metrics.  In 
what  follows uniqueness and classification are s ta ted up to scalars. 

THEOREM 3.1. (Chentsov (1982)) There exists a unique monotone metric on 7)n 
given by the Fisher information. 

THEOREM 3.2. (Petz (1996)) There exists a bijective correspondence between 
monotone metrics on M~ and normalised symmetric operator monotone functions. This 
correspondence is given by the formula 

gf(A, B) := Tr(A. cf(Lp, Rp)(B)). 

The  tangent  space to  191 at p is given by Tp/9~ - {A E Mn : A = A*, Tr(A)  = 0}, 
(T /9 1  ~o where (Tp/9~) c := {A E Tp/91 : and can be decomposed as Tp/9~ = (Tp/91) c |  p ,~, , 

[A, p] = 0}, and (Tp/9~) ~ is the or thogonal  complement  of ,rTo/91~,~c, with respect  to  the 
Hi lber t -Schmidt  scalar p roduc t  (A, B)HS := Tr(A*B). A typical  element of (ToDn) ~ has 
the  form A = i[p, U], where U is self-adjoint. Each statist ically monotone  metr ic  has a 
unique expression (up to a constant)  given by T r ( p - l A 2 ) ,  for A e (To~91) c. 
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PROPOSITION 3.2. (See Bhatia (1997)) Let A E TpD 1 be decomposed as A = A c + 
i[p, U] where A c E (TpD~) c and i[p, U] �9 (TpD~) ~ Suppose ~ �9 Cl(0, +co).  Then 

(Dp~)(A)  = ~ ' (p)A ~ + i[~(p), U]. 

Let ~,X E ci(0,  +co). Using the functional calculus one may consider (~o,X) as a 
pair of functions from T)~ to Ms, for which a duality pairing is provided by the Hilbert- 
Schmidt scalar product (.,-}HS. Therefore, according to the previous section, we can 
define the paired metric induced by (~, X) as 

(A, B}~ 'x : Tr (Dp~(A)  . DpX(B))  , A, B E Tp:D~. 

PROPOSITION 3.3. (Hasegawa and Petz (1997), Hasegawa (2003)) Let f be oper- 
ator monotone, c --- c I the associated CM-function. For a pair ~ , X  E C1(0,+oo), the 
equality 

(A, B}~ 'x = Tr(A. c(Lp, Rp)(B)) .  

implies 

(3.1) c(x ,y)  = ~(x)  - ~(y) X(x) - X(Y) 
x - y  x - y  

PROOF. It is enough to consider elements of (TpDn) ~ Suppose A = i[p, U] and 
B = i[p, V] where U , V  are self-adjoint. Using Proposition 3.2 one has Dp~o(A) = 
i[~(p), U] and similarly for B. Therefore 

(A, B } ;  'x = (Dp~(A) ,  Dpx(B)}  

= (i[y)(p), U], i[x(p), V]} = (i~(Lp, Rp)[p, U], i 2 ( i p ,  Rp)[p, V]}, 

~,(x)-r and similarly for )~. On the other hand it is true that  where qh(x, y) := x-y , 

Tr(A . c ( ip ,  np) (B)  ) = Tr(i[p, Ulc(Lp, np)(i[p, v])). 

From the above equations and the arbitrariness of A, B one has the conclusion. [] 

DEFINITION 3.1. In the hypotheses of Proposition 3.3, we say that (.,.)~'x is a 
paired monotone metric. Moreover we set 

q3 := x) Iv ,  x e c 1 (0, +oo) and x induce a paired monotone metric}. 

In what follows we give examples of elements of 9 .  

DEFINITION 3.2. 

(X - 1 )  2 

r  ~jp~Xj := p(1 - p) (xp - -1)(xi-----p - 1) 

x - 1  
fo(x)  = f i ( x ) . -  log(x)" 

p E ]R\  {0,1} 
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Obviously fp = f l - p  and 

fo = l im o fp = p--.llim fp = f l .  

Moreover we have that  f-1 is the function of the RLD-metric, f0 = f l  is the function 
of the BKM-metric and f l /2  is the function of the WY-metric. 

DEFINITION 3.3. 

( ~  -xl--P~ 
(~p(X), Xp(X)) = ' 1 - p ]  P �9 ]R \ {0, 1} 

(~o(X),)(~o(X)) = (~1 (X), X1 (x)) ---- (x, log x). 

THEOREM 3.3. Hasegawa and Petz (1997), Hasegawa (2003) (~p, Xp) induce a 
paired monotone metric if  and only i f  p E [-1, 2]. 

PROOF. The proof consists in showing that the function fp is operator monotone 
iffp e [-1,2]. 

After this one has immediately that 

cp(x ,  y)  - 
1 _ ~p(X) - ~p(y) Xp(X) - Xv(Y) 

x - y  x - y  

and this ends the proof. [] 

1 We use again the symbol Nq to denote Mn with Now let p C (0,1) and set q = ~. 
the norm 

IIAIINq = q - l  (Tr(IAIq) ) 1/q. 

All the commutative construction of Example 2.1 goes through. The following propo- 
sition is the non-commutative analogue of Proposition 2.1 (see also Hasegawa and Petz 
(1997), Jen~ova (2001), Gibilisco and Isola (2001b), Grasselli (2002)). 

PROPOSITION 3.4. Let ~ : p E 731 ~ qpl/q E Nq be the Amari  embedding. 
dualised pull-back 

(A, B ) ;  := (A, B}; 'J%~ = (Dpqo(A), D p ( J  o qo)(B)) 

coincides with the Wigner-Yanase-Dyson information. 

The 

PROOF. It is a straightforward application of Proposition 3.3. [] 
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Regularly varying functions 

For the content of this section see Bingham et al. (1987). 

DEFINITION 4.1. 

375 

Let g be a measurable positive function defined on some neigh- 
bourhood [X, +oo) of infinity and satisfying 

lim g(tx) _ 1 V t  > O; 
e(x) 

then g is said slowly varying. 

Remark  4.1. Defining g(x) = g (X )  on (0, X) one often considers g defined on 

Some examples of slowly varying functions are g(x) -- log(x), log(log(x)), 
exp(log(x)/log(log(x))).  

PROPOSITION 4.1. I f  g is slowly varying and p > 0 then 

lira xPg(x) = +c~ lim g(x) _ O. 
x- -*+oo x---*+oo X p 

DEFINITION 4.2. A measurable function h > 0 satisfying 

lim h( tx )  _ tp Vt > 0 
h(x) 

is called regularly varying of index p; we write h E Rp. Therefore Ro is the class of 
slowly varying functions. We set R := WpcRRp. 

Remark  4.2. Obviously homogeneous functions are very particular cases of regu- 
larly varying functions. 

Assume h > 0 is a measurable funct ion,  and there exists a PROPOSITION 4.2. 
funct ion j such that 

h( tx )  
(4.1) lira - j ( t )  c (0, + ~ )  

h(z) 

for  all t in a set of positive measure. Then 
(i) the equation (4.1) holds for  all t > O; 

(ii) there exists p C ~ such that j ( t )  = t p, Vt > O; 
(iii) h(x)  = xPf(x)  where g is slowly varying. 

Sometimes, as in the present paper, one is interested in the behaviour at the origin. 

DEFINITION 4.3. If h is a measurable positive function and 

lim h( tx)  _ tp Vt > 0 
=-+o+ h(x) 
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then one says that  h is regularly varying at the origin, in symbols h E Rp(O+). 

Let h(x) := h(~). Then h e Rp(O +) iff h e R_p.  

COROLLARY 4.1. h C RI(0 +) :- limx--+0+ h(x)  = O. 

PROOF. h E Rl(0 +) ~ h C R-1.  Therefore there exists g slowly varying s.t. 
h(x)  = x - l g ( x ) .  This implies 

lim h ( x ) =  lim h ( ~ ) - - l i m  h ( y ) =  lim e ( Y ) - 0  
x---* 0 + y---* + oc y - - ~ + ~  y---* + a~ y 

where the last equality depends on Proposition 4.1. [] 

5. The main result 

DEFINITION 5.1. Two elements of 9 ,  (~, X), (~, :Y) are equivalent if there exist 
constants A1, A2, B1, B2 such that  A1A2 -- 1 

= A1 ~ + B1 

;~ = A2X + Be. 

Obviously equivalent elements of ~3 define the same CM-function.  In what  follows 
we consider elements of q / u p  to this equivalence relation with the traditional abuse of 
language. 

L E M M A  5 . 1 .  Suppose that (~, X) induce a paired monotone metric. Then 

~ ' ( x )  p 

~(x)  x ;- (~, x) = ( ~ ,  x~). 

PROOF. 

~ ( x )  P ~ l o g  ~(x ) plog x ( x )  p . . . .  > ~ (x )  = ~(Xo) -~o = AxP" 
~ ( x )  x ~ ( x o )  xo 

_ _  X p We may choose ~(x) - ~-. 
Now let c(.,-) be the associated CM-function.  Going to the limit y -~ x in equation 

(3.1) and using Proposition 3.1 one has 

1 
(5.1) ~' ( x )x '  (x) = c(x) = - 

x 

If p = 1 then 

If p ~ 1 then 

1 
~ ( x )  = x ~ x ' ( x )  = - ~ x ( x )  = log(x). 

x 

~ ( x )  = xp  ~ x ' ( x )  - 
1 X 1 - p  

x ( x )  - 
xP 1 - p 
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and this ends the proof. [] 

We are ready to prove the fundamental result of the theory. 

THEOREM 5.1. (Hasegawa and Petz (1997), Hasegawa (2003)) Let ~ , X  �9 
Cl(0,+c~).  Then (~,X)  induce a paired monotone metric i f  and only if one of the 
following two possibilities holds 

(~(x) ,  X(X)) = ' 1 - p /  P �9 [-1,2] \ {0, 1} 

(~(x),  x(x))  = (x, l og (x ) )  

PROOF. The "if' part is just Theorem 3.3. To prove the "only if' part we need 
some auxiliary functions. 

Let us define 

k(~,  y) :=  ( ~ ( x )  - ~ ( y ) ) ( x ( x )  - x ( y ) )  = (x  - y )2c (x ,  u).  

One has 
k( tx ,  ty) = t2(x - y)2c(tx, ty) = t (x  - y)2c(x ,y)  = tk(x ,  y) 

that is k is 1-homogeneous. Moreover set h(x) := ~(x )x ( x ) .  
Equation (5.1) implies that ~, X are strictly monotone (either both increasing or both 

decreasing) and therefore injective. Moreover monotonicity implies that the following 
limits exist 

~(0 +) := lim ~(x) X(0 +) := lim X(X). 
x----,0 + x - . 0  + 

Since we consider ~, X up to additive constants and because we can change the sign of 
~, X, we may reduce to ~, X increasing, and have to consider three cases 

a) ~ ( 0 + )  = x ( 0 + )  = - ~ ,  
b) ~(0 +) = 0, X(0 +) = - c ~ ,  
c) ~(0+)  = x(0+)  = o. 

Case a) Suppose 7~(0 +) = X(0 +) = -c~ .  Now let 0 < y < x; going to the limit 
y ~ 0 + we have that 

t - k(tx,  ty) _ lira ~(tx)  - ~(ty)  x( tx)  - x( ty)  
k ( x , y )  ~-~o+ ~ ( x )  - ~ ( y )  X(x)  - X(V) 

= l im ~(ty) x( ty)  l im h(ty)  
~-~o+ ~(y) x(y)  ~-~o+ h ( y )  

This means that  h E RI(0 +) and therefore by Corollary 4.1 

+ c ~ =  lim ~ ( x ) x ( x  ) =  lim h ( x ) = O  
x - + 0  + x ---+0 + 

that is absurd. 
Case b) Suppose ~(0 +) = 0 and X(0 +) = - co .  Again let 0 < y < x; going to the 

limit y ~ 0 + we have that 

t =  lim p ( t x ) - ~ ( t y )  
~ o +  ~(~) - ~(y) 

~(tx) - ~ ( t y )  = ~ ( t x )  lira x ( t y )  
x ( x )  - x ( ~ )  ~ ( ~ )  ~-~o+ x ( y ) "  
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This implies tha t  the limit 

lim x( ty )  
y~o+ X(y) 

exists Vt. Therefore there exists a function j such tha t  

j ( t )  = lim x ( t y )  _ t~ (x )  
~-.o+ ~(y) ~ ( t x )  

From Proposit ion 4.2 one has tha t  - X  E RZ(0 +) for some ~ E I~ namely j ( t )  = t [3, 
Vt > 0. So we have ~( tx )  = tx-~cfl(x), tha t  is p is p-homogeneous, with p :-- 1 - ~, and 
therefore by Euler x ~ ' ( x )  = p~(x )  (p ~ 0 because ~'  r 0); then  

~'(x) p 
~(x)  x 

and therefore because of Lemma 5.1, 

(~, x) = (~p, xp). 

Since X(0 +) = - o e  we have p > 1. Because of Theorem 3.3 one has p E [1, 2]. 
Case c) The argument  for this case is tha t  of Hasegawa and Petz (1997), Hasegawa 

(2003) and we report it here for the sake of completeness. 
One can deduce 

~(tx) - ~(ty)  x(t~) - x(ty)  i ~(x) - ~(y) 
t ( ~ - y )  t ( x - y )  t ~ - y  

Going to the limit y ~ 0 + one has 

~( tx )  x ( t x )  l ~ ( x )  X(X) 

tx  tx  t x x 

so tha t  
~ ( t x ) x ( t x )  = t ~ ( x ) x ( x ) .  

x(x) -x(y) 
x - y  

This means tha t  h(x)  -- ~ ( x ) x ( x )  is i-homogeneous and h(0 +) = 0 so tha t ,  because of 
Euler, one has xh ' ( x )  -- h(x) .  This implies tha t  3b E ]~ s.t. h(x)  = bx, Vx > 0. Then 

1 
~(x)X(X) = bx ~ ' ( x ) x ' ( x )  = - .  

x 

As ~, X are increasing, b > 0. Deriving the first equat ion one gets 

~ ' (x )x (x )  + ~(~)x ' (~)  = b. 

Since ~, p '  7 ~ 0, Vx > 0 one may write 

bx 

x(x)- ~(x) 

Subst i tut ing one gets 

1 z'(~) - 
x~'(x) " 

~?'(X)bx+ ~(x) i -b, 
~(~) ~'(~) 
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so that if y(x)  . -  ~'(x) ~(x) ~ 0 the equation becomes 

1 
bxy(x)  + - -  - b 

and finally 
bx2y(x) 2 - bxy(x)  + 1 = O. 

From this it follows that 
i) if 0 < b < 4 there is no solution; 

ii) if b _> 4 then 1( 
y ( x )  = ~ x  1 

Therefore, setting 

we have 

o r  

From Lemma 5.1 one has 

p .-- V• 4 
i+ - ~  

~ ' ( x )  = p_ 
~ ( x )  -Y(x) x 

r  - y ( x )  - 1 - p 
r  x 

X p X 1 -p  

~(~) p x(x) 1 - p  

or viceversa. Therefore (~, X) = (~Pp, Xp), with 0 < p < 1, and this ends the proof. [] 

COROLLARY 5.1. I f  ~P, X induce a paired monotone metric then 
lim=~o+ ~ ( x ) x ( x  ) = O. 

Remark 5.1. In Hasegawa and Petz (1997), Hasegawa (2003) Theorem 5.1 is 
proved under the hypothesis that limx-~0+ p ( x ) x ( x )  = 0. The present proof shows that  
this hypothesis can be dropped. An application of this is given in Gibilisco and Isola 
(2003). 

5. Concluding remarks 

In Hasegawa (2003) Hasegawa wanted to find a family of (non-paired) operator 
monotone functions that "fill the gap" between the functions 

fBures(X ) __ 1 -~ X (1 -I- V ~ )  2 
2 /1 /2  (X) --  4 

corresponding to the SLD-metric and the WY-metric. The problem can be solved by 
proving the following 
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PROPOSITION 6.1. 

are operator monotone.  

The funct ions 

f~Vower(x):-- ( l + 2 i / v ) v  l < v < 2  

To prove Proposi t ion 6.1 Hasegawa used an argument  due to Petz.  We jus t  want to 
remark  tha t  the above result can be proved by applying to fBures(X) = l+x - y -  the following 

PROPOSITION 6.2. Let f be operator monotone,  and v C [1,oc).  Then x E 
(0, ec) -+ f ( x t / ~ )  ~ is operator monotone.  

PROOF. See the proof  of Corol lary 4.3 (i) in Ando (1979). [] 

For p C (0, 1) namely q C (1, +oc )  Proposi t ion  3.4 shows tha t  it is possible to 
relate the dual i ty  discussed here to the geometry  of spheres in L q spaces along the 
lines of Gibiliseo and Pis tone (1998), Gibilisco and Isola (1999, 2001a, b). The  same 
does not apply to the cases p E [ -1 ,  0] or p = 1. In Gibilisco and Pis tone  (1998) the 
Amar i  embedding was generalised to the  sphere of an Orlicz space under  very  general 
hypothesis.  We conjecture that ,  for p = 0, 1 ( that  is for the B K M  metric)  one can use 
non-commuta t ive  analogues of the Zygmund spaces L exp, L xl~ to produce  a similar 
cons t ruct ion  (see also Grasselli and St rea ter  (2000) and references therein).  
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