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Abstract. Two characterization results for the skew-normal distribution based on
quadratic statistics have been obtained. The results specialize to known character-
izations of the standard normal distribution and generalize to the characterizations
of members of a larger family of distributions. Results on the decomposition of the
family of distributions of random variables whose square is distributed as x? are
obtained.
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1. Introduction

A random variable Z has a skew-normal distribution with parameter )\, denoted
by Z ~ SN()), if its density is given by f(z,A) = 2®()\z)¢(z), where & and ¢ are the
standard normal cumulative distribution function and the standard normal probability
density function, respectively, and z and X are real numbers (Azzalini (1985)).

Some basic properties of the SN()) distribution given in Azzalini (1985) are:

1. SN(0) = N(0,1);

2. If Z~ SN(A) then —Z ~ SN(-\);

3. As A — £o00, SN()) tends to the half-normal distribution, i.e., the distribution
of £/X| when X ~ N(0,1); and

4. If Z ~ SN()) then Z2 ~ 3.

Properties 1, 2, and 3 follow directly from the definition while Property 4 follows
immediately from

LeMMA 1.1. (Roberts and Geisser (1966)) W2 ~ x? if and only if the p.d.f. of W
has the form f(w) = h(w) exp(—w?/2) where h(w) + h(—w) = \/2/7.

In terms of characteristic functions, Lemma 1.1 can be restated as

LEMMA 1.2. (Roberts (1971)) W2 ~ x? if and only if the characteristic function
Uw of W satisfies Uy (t) + U (—t) = 2exp(—t2/2).
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That the skew-normal density is a proper density follows directly from the following
lemma:

LEMMA 1.3. (Azzalini (1985)) Let f be a density function symmetric about 0,
and G an absolutely continuous distribution such that G' is symmetric about 0. Then
2G(\y) f(y), where —0o < y < o0, is a density function for any real X.

A probabilistic representation of a skew-normal random variable is given in

LEMMA 1.4. (Henze (1986)) If U and V are identically and independently dis-
. . A
tributed N(0,1) random variables then Azl + \/—7V ~ SN(A).

The characteristic function of the SN()) distribution is given by

LEmMMA 1.5. (Pewsey (20000)) If Z ~ SN()) then its characteristic function is
Wz (t) = exp (—t2/2)(1+ir(6t)) where forz > 0, 7(z) = [y /2/mexp (u?/2)du, 7(—z) =
—7(z) and § = ﬁ

The skew-normal distribution, due to its mathematical tractability and inclusion
of the standard normal distribution, has attracted a lot of attention in the literature.
Azzalini (1985, 1986), Chiogna (1998) and Henze (1986) discussed basic mathematical
and probabilistic properties of the SN(A) family. The works of Azzalini and Dalla Valle
(1996), Azzalini and Capitanio (2003), Arnold et al. (1993), Arnold and Beaver (2002),
Gupta et al. (2002a) and Branco and Dey (2001) focused on the theoretical developments
of various extensions and multivariate generalizations of the model. Loperfido (2001),
Genton et al. (2001) and Gupta and Huang (2002) focused on probabilistic properties
of quadratic skew-normal variates. The statistical inference aspect for this distribution
is partially addressed in Azzalini and Capitanio (1999), Pewsey (2000a), Salvan (1986)
and Liseo (1990). Gupta and Chen (2001) tabulated the c.d.f. of the SN(X) distribu-
tion and illustrated the use of their table in goodness-of-fit testing for this distribution.
Applications in reliability studies was discussed in Gupta and Brown (2001). Very few,
however, tackled the problem of characterizing this seemingly important distribution. It
is to fill this void in the literature that this paper came about.

In this paper, we give two characterization results for the SN(A) distribution. We
first give the results in more general form and then state the results in the context of
the skew-normal and standard normal distributions as corollaries.

In Section 2, we give a generalization of a characterization of the normal distribution
based on quadratic statistics given in Roberts and Geisser (1966). In their paper, they
showed that, if X; and Xy are independently and identically distributed (i.i.d.) random
variables, then X?, X2, and $(X; + X2)? are all x? distributed if and only if X; and X,
are standard normal random variables. Since the standard normal distribution belongs
to the skew-normal class, a natural question to ask is whether a similar characterization
holds true for the skew-normal distribution. The answer is given by Corollary 2.2 which
generalizes the result of Roberts and Geisser.

Another characterization based on the quadratic statistics X2 and (X + a)? for some
constant a # 0 will be given.

In Section 3, the decomposition of a larger family of distributions which we will
refer to as the SN3 family, will be discussed.
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2. Characterization results

The characterization results in this section are closely tied up with the so called
Hamburger moment problem and uniqueness problem which basically ask the questions
“Given a sequence of real numbers, does there exist a distribution whose sequence of
moments coincide with the given sequence and if so, is the distribution unique?”. A
solution to the uniqueness problem is given in the following corollary:

COROLLARY 2.1. (Shohat and Tamarkin (1943) p. 20) If the Hamburger moment
problem has a solution F(t) = fjoo f(t)dt where f(t) >0 and [ f(t)9e’1tldt < oo for
some q > 1 and s > 0, then the solution is unique.

An immediate consequence of the previous corollary is the following result:

LEMMA 2.1. The skew-normal distribution is uniquely determined by its sequence
of moments.

ProOOF. We only need to note that the conditions of the previous corollary are
satisfied by the standard normal distribution (i.e. take f(t) = standard normal p.d.f.)
with ¢ = 1 and s = 1. Now, since one tail of the SN(A) distribution, when A # 0,
is shorter than that of the standard normal distribution and the other tail has the
same rate of convergence to 0 as the standard normal distribution, it follows that the
conditions of Corollary 2.1 are also satisfied by the skew-normal distribution. That is,
taking ¢ = 1, s = 1, f(t) = standard normal p.d.f. and ¢(t) = SN(A) p.d.f., we have
2 g@)eltddt <2 [% f(t)eltldt < oo.

We are now ready to give our main result.

THEOREM 2.1. Let X and Y be i.i.d. Fy, a given distribution that is uniquely
determined by its sequence of moments {y? : i = 1,2,3,...} which all exist. Denote by
G the distribution of X? and Y2 and by Ho the distribution of 3(X+Y)2. Let X1, X be
i.i.d. F, an unspecified distribution with sequence of moments {p; 11 =1,2,3,...} which
all exist. Then X{ ~ Go, X3 ~ Go, and 3(X1 + X3)* ~ Hp if and only if F(z) = Fy(x)
or F(z) = Fo(x) =1 — Fo(—z).

Proor. The sufficiency follows directly from the definition of Fy, Gy and Hg and
by noting that if X; ~ F = Fy then —X; ~ Fj.

To prove the necessity, first note that since all moments of Fy exist and since X and
Y are independent, it follows that all moments of Gy and Hy exist. Now let X;, X3 be
iid. F, X, Y beii.d. Fy and define the following for 1 = 1,2,3,...

i is the i-th moment of F'.

p? is the i-th moment of Fy.

73; is the i-th moment of Hy.

Since 1(X; + X2)? ~ Hy, we have

(2.1) E B(X1 + X2)2} = E [%(x + Y)2] g
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As in Nguyen et al. (2000), we will proceed by induction to show that pziyq1 = e,ug,-ﬂ
where € is either +1 or —1, i.e., we will show that the odd moments of F are the odd
moments of either Fy or Fy. The even moments of F' coincide with the even moments
of Fy (which are also the even moments of Fp), i.e.,

(2.2) poi = p3; Vi,

since X7 ~ G by the hypothesis and Y2 ~ Gg if Y ~ Fp.

Next, note that either all the odd moments of Fy are zero or 3 positive odd integer
7 > 1 such that ug # 0 and pf = 0 for positive odd integer h < 7, ie., ug is the first
non-zero odd moment of Fy. We will consider the latter case first.

First, we will show by induction that

(2.3) pn=0 for h=1,35,...,j-2.

Taking k¥ = 1 in (2.1) and using (2.2), we get u; = euj. Thus p; = 0 since we are
assuming that u = 0. Hence, the induction statement (2.3) is true when h = 1.

Now suppose pu = 0 for k =1,3,5,...,2i—3 for some ¢ in {2,3,4, ..., J%l} Again,
from (2.1) the equation

& 2 (
(24) > (k>ﬂkﬂzl—k => (k)moc#gz—k
k=0 k=0
holds V integer I, because the left hand side is the {-th moment of (X; + X2)? which is
equal to the I-th moment of (X + Y)2, the right hand side of (2.4). Take l = 2i — 1.
Then (2.4) becomes

4i—-2
44 — 2 45 — 2

2.5 3 > o

(2.5) (22.~ 1)#21—1 + 2 ( k )llkl/m 2k

4 -2 240 -2
= (21‘ _ 1)(#gi—1)2 + Z ( k )Ngﬂgi—2—k
k=0
where the indices on both summations cannot take the value 27 — 1.

From (2.2), all terms with even moments in the left-hand side cancel with the
corresponding terms in the right-hand side. By the induction hypothesis, ur = 0 for
k=1,3,5,...,2i — 3. Since we are also assuming that 3 = 0 for all odd integer h < 7
then it follows that (2.5) would give ug;—1 = 0. Hence, our induction is complete which
proves that up = 0 = pu for all odd h < g.

Next we will show by induction that i = eu? for all odd &k > 7. From (2.4), take
Il =7 to get

A 23 A ~ 27 ~

2j 2] 2j 2j
( - )ﬂ? + Z (k)ﬂkﬂgj._k = ( - )(Mg)Q + Z ( - u%ugj_k

J k=0 J k=0 \J

where the indices of the two summations cannot take the value 3.
Since pp = ph) = OV odd h < j and pg; = pd,;Vi, the above equation reduces to

u? = (,u?)2 or equivalently p; = e,u,? where ¢ is either +1 or —1.
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Now suppose iy = euy for k =7,5+1,...,2n— 3 for some n in {L‘;—:i, %, L;Z,}
Take | = %il in (2.4) to get

2n—1+) m—1 +3 2n—1+7 om—1 +3
E ( k )Nkﬂgn_1+3_k = Z ( k >/‘k/‘2n 1+j-k
k=0 k=0

or equivalently

~ ~ i—1 ~
n—1+7 Mm—1+] Ti/an—1+4]
[( 3 ) + ( om—1 )} H5k2n—1 + Z k Pkbton 145k

J k=0
2n—1+7
n—147
+ Z ( )Nkﬂ2n—1+j—k
k=j3+1

1

j—

2n"1+J 0.0

? Mon— 1+ ( )y’kll‘2n_1+5’_k
k=0

n—1+] N on—1+]
j’ 2n -1

In—1+j
n—l+J 0.0
+ Z ( )“k“2n—1+5—k

k=j+1

where the indices on all summations cannot take the value 2n — 1.

Because pig; = ugiVi, all terms with even moments vanish. Also, since up = p,g =0V
odd h < j’, the first summations in the two sides vanish. R

The second summations on the two sides also vanish since for k =3+2,...,2n— 3
Fkban_145-k = =2 udpy, _ 14jk = l‘k:“zn 14; Dy the induction hypothesis that Bk = eud
fork=73,7+2,...,2n—3 and since €2 = 1. Also, for k=2n+1,2n+3,...,2n -2+,
Pom—14j-k = 0 = fig,_, 5, since pp =0 = uQ for odd h < j. Thus, for k = 2n +

1,20 43,20 = 24 J, ko156 = 0= HRHY, =
Hence, after all the cancellations, we are left with Pibhon—1 = u?,ugn_l. But since
p; = eu? # 0, we get fap_1 = % #9,,_1- Thus the induction is complete which shows that

Ui = e,ug for all odd k > j.

We have shown that pp =0 = p for odd h < 7 and py = epd for odd k > 7 which
is equivalent to saying that pg = eu? for all odd k. Since p; = p? for all even i and Fp
is uniquely determined by its sequence of moments, it follows that F' = Fy or F = Fy.

The only remaining case we need to consider is the case when all odd moments of Fy
are zero. But the same induction argument we used in proving that pp = 0 = u for odd
h < j holds by changing only the induction hypothesis uy = 0 for k = 1,3,5,...,2i—3 for
someiin {2,3,4,..., 7—;—1} to the new induction hypothesis yuy =0for k =1,3,5,...,2i—
3 for some i in {2,3,4,...}.

Thus, p = 0 for all odd k, and again since py; = u3; for all 4, it again follows that
F = Fy. (Note that in this case Fy = Fy since Fy is symmetric about the origin.)

The induction proof of Theorem 2.1 is quite involved but it gives two immediate
corollaries.
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COROLLARY 2.2. Let X3, Xo be i.i.d. F, an unspecified distribution which admits
moments of all order. Then Xi ~ x3, X2 ~ x%, and (X1 + X2)? ~ Ho()) if and only
if F = SN(X) or F = SN(—)) where Ho()\) is the distribution of (X +Y)? when X
andY are i.5.d. SN(A).

ProoOF. Take Fy = SN()\), SO G() = X%, Hy = H()(/\) and Fo = SN(—/\) Apply
Theorem 2.1 and note that the SN () distribution is uniquely determined by its moments
by Lemma 2.1.

Corollary 2.2 characterizes the skew-normal distribution based on the distribution
of the quadratic statistics X2, X2 and %(X 1+ X3)2. As mentioned in the introduction,
a similar result is obtained by Roberts and Geisser which characterizes the standard
normal distribution. We give their result as another corollary.

COROLLARY 2.3. (Roberts and Geisser (1966)) Let X; and X, be i.i.d. random
variables from a distribution which admits moments of all order. Then X?, X3 and
%(Xl + X5)? are all x? if and only if X; and X, are both N(0,1) r.v.

PrOOF. The result is obtained from Corollary 2.2 by taking A = 0. Alternatively,
take Fy = N(0,1), so that Go = x2, Ho = x? and apply Theorem 2.1.

In Theorem 2.1, we gave a characterization result based on the distribution of the
quadratic statistics X7, XZ and 1(X; + X5)?. In the next theorem, we give a character-
ization based on the distribution of X2 and (X + a)? for some constant a # 0.

THEOREM 2.2. Let Fy be a given distribution uniquely determined by its sequence
of moments which all exist. Let Y ~ Fy. Let Gy be the distribution of Y2 and Hy be the
distribution of (Y + a)? for any constant a # 0. Let X ~ F, an unspecified distribution
which admits moments of all order. Then X? ~ Gq and (X + a)2 ~ Hy if and only if
F =F,.

Proor. The sufficiency follows directly from the definition of Fy, Go and Hy. The
necessity follows along the same line of argument in the proof of Theorem 2.1, i.e., by
induction, we can show that the moments of I coincide with the corresponding moments
of F{ 0-

Like in Theorem 2.1, we immediately get the the following corollaries:

COROLLARY 2.4. Let Ho()) be the distribution of (Y + a)? where Y ~ SN()) and
a # 0 is a given constant. Let X be o random variable with o distribution that admits
moments of all order. Then X2 ~ x3%, (X + a)2 ~ Ho()) if and only if X ~ SN(X) for
some A.

ProoF. Take Fy = SN()), Go = x? and Hg = Ho()). Then apply Theorem 2.2.

COROLLARY 2.5. Let a # 0 be a given constant and let X be a random variable
with a distribution that admits moments of all order. Then X ~ x, (X + @)® ~ X} 42
if and only if X ~ N(0,1).

Proor. Take Fy = N(0,1), Go = x? and Hy = X%,a% Then apply Theorem 2.2.
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3. Decomposition of the SN3 family

In Section 2, we presented characterization results for the skew-normal distribution
based on quadratic statistics. In particular, the quadratic statistic §(X; + X2)* was
used in Corollary 2.2 for characterizing the skew-normal distribution. It is not difficult
to see that when the quadratic statistic %(X 1+ X3)? is replaced by the quadratic statistic
(AX] + BX3)? for some non-zero constants A and B satisfying A2 + B2 = 1, then the
result of Corollary 2.2 will still hold.

Lemma 1.4 shows that a SN(\) distributed random variable can be obtained by a
linear combination of two independent random variables whose squares are distributed
as x3. It is interesting to know whether this is true for any random variable whose square
is x? distributed. For lack of good notation, we will denote the distribution of such a
variable by SN3. The notation is to reflect the fact that the SN(A) family is a subset of
the skew-symmetric family we will denote by SN2(\) whose members have p.d.f. of the
form 2F(Az)¢(z), where F is the c.d.f. of an absolutely continuous distribution whose
p.d.f. is symmetric about the origin. The SN2()\), briefly discussed in Gupta et al.
(2002b) is in turn a subset of the SN3 family. The study of these larger families might
shed some light on the SN()) family. To this end, we have the following result:

THEOREM 3.1. Let X andY be two independent random variables whose moments
all exist and let A and B be non-zero constants such that A2 + B2 =1. Let X2, Y? and
(AX + BY)? all be distributed as x3. Then

(i) at least one of X andY is standard normal; and
(ii) «f X and Y are identically distributed, then both X and Y are N(0,1).

ProoF. Let W = AX + BY. Denote by ¥z the characteristic function of an
arbitrary random variable Z. Since X2, Y? and W? are all distributed as x?, then from
Lemma 1.2, we have

(3.1) Ux(t)+ ¥x(—t) = Uy(t) + Uy (—t) = Uy (t) + Ty (—t) = 2exp(—t?/2).

Also we have, Uy (t) = ¥x(At)Uy (Bt) and Uy (—t) = U x(—At) ¥y (—Bt). Adding
the last two equations and from (3.1) we get

(3.2) Ux (At)Uy (Bt) + Ux(—At)Ty (—Bt) = 2exp(—t2/2).
From (3.1), we also get

(3.3) (U x (At) + Ux(—At))(Ty(Bt) + Uy (—Bt)) = 4exp(—t/2).
Simplifying (3.3) and subtracting (3.2) gives

(3.4) Ux (At) Uy (—Bt) + Ux(—At) Ty (Bt) = 2exp(—t2/2).
Equating (3.2) and (3.4) now gives

(3.5) [Wx (At) — ¥x (- At)][¥y(Bt) — ¥y (- Bt)] = 0.

Let Mx and My be the real part of Ux and Uy, respectively, and let Nx and
Ny be the imaginary part of ¥x and Wy, respectively. Then, Mx and My are even
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functions of t, Nx and Ny are odd functions of ¢, Nx and Ny are continuous, and
Nx(O) = Ny(O) =0. AISO,

Uy (At) =My (At) + iNx (At) and Uy (Bt) = My (Bt) + iNy (Bt),
U (At) — Uy (—At) = 2iNx (At)

and
Uy (Bt) — ‘I/y(—Bt) = QiNy(Bt).
So, (3.5) is equivalent to Nx (At)Ny (Bt) = 0 which in turn is equivalent to
(3.6) Nx(t)Ny(Bt/A) = 0.

We note that this last equation is valid for all ¢.
Now, since all the odd moments pogt1, & = 1,2, ... of X exist, there exists an open
interval around 0 with length 6; > 0 such that the Taylor series representation

© N)((2k+1) (0)t2k+1

Nx(t)=> =G

k=0

is valid for all ¢ in this interval. We then have either of the following two cases:

Case 1. If all odd moments of X are zero then X must have a distribution sym-
metric at the origin.

Case 2. If at least one odd moment of X is nonzero, let psm,4+1 be the first non-
zero odd moment of X. It follows that the derivative N )(? mH)(O) # 0. This would
then imply that there exists an open interval around 0 with length 63 > 0 such that
N)(?mﬂ)(t) # 0 for all ¢t € (—8;,682). Since Nx is an odd function, it must be strictly
monotone in this interval implying from (3.6) that Ny (Bt/A) = 0 for all t € (—62,62). It
follows that Ny (t) = 0 in an open interval around 0. The last statement implies that all
odd moments of ¥ are 0 and that ¥ must have a distribution symmetric at the origin.

Suppose without loss of generality that Case 2 holds. Then Y has a symmetric
distribution with respect to the origin so that ¥y (t) = ¥y (—t). It therefore follows
from Lemma 1.2 that Y must have a standard normal distribution.

Remark 1. Part (ii) of the previous theorem reduces to the necessity part of Corol-
lary 2.3 in the case where A = B = 1/4/2. The sufficiency part of Corollary 2.3 in this
case is well known. It is straight forward to see that the sufficiency part of Corollary
2.3 holds true in the more general case where the only restriction on A and B is the
equation A% 4+ B2 = 1.

Remark 2. The second part of Theorem 3.1 is exactly what Roberts wanted to
show in Roberts (1971). He suggested there that this result may not be true but that
he was not able to give a counter-example.

Remark 3. One consequence of Theorem 3.1 is the result that not all random
variables with distribution belonging to the SN3 family can be decomposed as a linear
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combination of two independent random variables whose squares are distributed as x3.
To see this, we only need to consider the random variable Y = |X| where X2 ~ x?2.
Clearly Y? ~ x? so the distribution of Y belongs to the SN3 family. If Y can be
represented as a linear combination of two independent random variables whose squares
are distributed as x?, then by Theorem 3.1, one of these random variables must be
standard normal. This forces the support of Y to be the whole real line which cannot
be since the support of Y must be a subset of the positive real line.

To study the decomposition of the SN2()) family, it might be helpful to look first
at the decomposition of the SN(A) distribution. We therefore give the following result:

THEOREM 3.2. Let A and B be two non-zero constants such that AZ + B? =
1 and let X ~ N(0,1) and Y be independent. If AX + BY ~ SN()\) then ¥ ~
SN(sign(A/B)|Al/\/B? + A2(B2 — 1)) provided |A\/v/1+ X\2| < |B].

Proor. Let W = AX + BY. Denote by ¥z the characteristic function of an
arbitrary random variable Z. Then,

(3.7) ‘Ilw(t) = \Ifx(At)‘IJy(Bt).

From Lemma 1.5, Ty (t) = exp(—t2/2)(1 + ir(6t)) where for z > 0, 7(z) =
Iy V2/mexp (u?/2)du, T(—z) = —7(z) and § = \/1’4\_7 Also, Ux (At) = exp (—A%t?/2).
Hence, from (3.7) we have

exp (—t2/2)(1 +iT(6t))
exp (—A%t2/2)
exp (—B?%t%/2)(1 + i(6t)).

Yy (Bt) =

Thus, replacing ¢t by t/B, we get Uy (t) = exp (—t2/2)(1 + iT(6t/B)) which is the
characteristic function of a SN (sign(A/B)|\|/\/B? + A2(B? — 1)) random variable pro-
vided |A/vT+ X?| < |B.

Remark 4. If we take B = A/v/1 + A? in Theorem 3.2, we get the result that Y
has a half-normal distribution which is suggested by Lemma, 1.4.

We end this paper with the following conjecture:

CoNJECTURE 3.1. Let A and B be two non-zero constants such that A2 + B2 =1
and let X ~ N(0,1) and Y be independent. Let F(A) € SN2()\). If AX + BY ~ F()\)
then under possibly some inequality constraints on B and A, Y ~ F(A) where A is a
function of A and B.
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