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Abs t r ac t .  Two characterization results for the skew-normal distribution based on 
quadratic statistics have been obtained. The results specialize to known character- 
izations of the standard normal distribution and generalize to the characterizations 
of members of a larger family of distributions. Results on the decomposition of the 
family of distributions of random variables whose square is distributed as X~ are 
obtained. 
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1. Introduction 

A random variable Z has a skew-normal distr ibution with parameter  A, denoted 
by Z ~-- SN(A),  if its density is given by f ( z ,  A) = 20(Az)r where �9 and r are the 
s tandard  normal cumulative distr ibution function and the s tandard  normal probabili ty 
density function, respectively, and z and A are real numbers (Azzalini (1985)). 

Some basic properties of the SN(A) distr ibution given in Azzalini (1985) are: 
1. SN(O) = N(0,  1); 
2. If Z ~ SN(A)  then  - Z  ~ S N ( - A ) ;  
3. As )~ -~ +c~, S N ( A )  tends to the half-normM distribution, i.e., the dis tr ibut ion 

of •  I when X ~ g ( 0 ,  1); and 
4. I f Z N S N ( A )  t h e n Z  2 ~ X  2. 
Properties 1, 2, and 3 follow directly from the definition while Proper ty  4 follows 

immediately from 

LEMMA 1.1. (Roberts and Geisser (1966)) W 2 ~ X 2 if and only i f  the p.d.f, of W 
has the form f ( w )  = h(w) e x p ( - w 2 / 2 )  where h(w) + h ( - w )  = v/2/Tr. 

In terms of characteristic functions, L e m m a  1.1 can be restated as 

LEMMA 1.2. (Roberts (1971)) W 2 ~ X~ if  and only i f  the characteristic function 
k~w of W satisfies ~ w ( t )  + ~ w ( - t )  = 2 e x p ( - t 2 / 2 ) .  
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That  the skew-normal density is a proper density follows directly from the following 
lemma: 

LEMMA 1.3. (Azzalini (1985)) Let f be a density function symmetric about 0, 
and G an absolutely continuous distribution such that G ~ is symmetric about O. Then 
2G()~y)f(y), where - c ~  < y < oc, is a density function for any real )~. 

A probabilistic representation of a skew-normal random variable is given in 

LEMMA 1.4. (Henze (1986)) I f  U and V are identically and independently dis- 
u[+ tributed N(O, 1) random variables then ~ 1  ~ Y  ~ SN()~). 

The characteristic function of the SN(A) distribution is given by 

LEMMA 1.5. (Pewsey (2000b)) I f  Z ~ SN(A) then its characteristic function is 
k~z(t) = exp (--t2/2)(l+iT(St)) whereforx >_ 0, 7(x) = fo  V/-2-~ exp (u2/2) du, T(--X) = 
--T(X) and 5--  lvq--4-~ " 

The skew=normal distribution, due to its mathematical tractability and inclusion 
of the standard normal distribution, has attracted a lot of attention in the literature. 
Azzalini (1985, 1986), Chiogna (1998) and Henze (1986) discussed basic mathematical 
and probabilistic properties of the SN(A) family. The works of Azzalini and Dalla Valle 
(1996), Azzalini and Capitanio (2003), Arnold et al. (1993), Arnold and Beaver (2002), 
Gupta et al. (2002a) and Branco and Dey (2001) focused on the theoretical developments 
of various extensions and multivariate generalizations of the model. Loperfido (2001), 
Genton et al. (2001) and Gupta and Huang (2002) focused on probabilistic properties 
of quadratic skew-normal variates. The statistical inference aspect for this distribution 
is partially addressed in Azzalini and Capitanio (1999), Pewsey (2000a), Salvan (1986) 
and Liseo (1990). Gupta and Chen (2001) tabulated the c.d.f, of the S N ( )  0 distribu- 
tion and illustrated the use of their table in goodness-of-fit testing for this distribution. 
Applications in reliability studies was discussed in Gupta and Brown (2001). Very few, 
however, tackled the problem of characterizing this seemingly important distribution. It 
is to fill this void in the literature that this paper came about. 

In this paper, we give two characterization results for the SN(A) distribution. We 
first give the results in more general form and then state the results in the context of 
the skew-normal and standard normal distributions as corollaries. 

In Section 2, we give a generalization of a characterization of the normal distribution 
based on quadratic statistics given in Roberts and Geisser (1966). In their paper, they 
showed that, if X1 and X2 are independently and identically distributed (i.i.d.) random 
variables, then X~, X22, and I ( X  1 d- X2) 2 are all X12 distributed if and only if X 1 and X2 
are standard normal random variables. Since the standard normal distribution belongs 
to the skew-normal class, a natural question to ask is whether a similar characterization 
holds true for the skew-normal distribution. The answer is given by Corollary 2.2 which 
generalizes the result of Roberts and Geisser. 

Another characterization based on the quadratic statistics X 2 and (X + a) 2 for some 
constant a r 0 will be given. 

In Section 3, the decomposition of a larger family of distributions which we will 
refer to as the S N 3  family, will be discussed. 
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2. Characterization results 

The characterization results in this section are closely tied up with the so called 
Hamburger moment problem and uniqueness problem which basically ask the questions 
"Given a sequence of real numbers, does there exist a distribution whose sequence of 
moments coincide with the given sequence and if so, is the distribution unique?". A 
solution to the uniqueness problem is given in the following corollary: 

COROLLARY 2.1. (Shohat and Tamarkin (1943) p. 20) I f  the Hamburger moment 
problem has a solution F(t) -- ft_c r f ( t )dt  where f ( t )  >_ 0 and f~_~ f(t)qesltldt < co for 
some q >_ 1 and s > 0, then the solution is unique. 

An immediate consequence of the previous corollary is the following result: 

LEMMA 2.1. The skew-normal distribution is uniquely determined by its sequence 
of moments. 

PROOF. We only need to note that the conditions of the previous corollary are 
satisfied by the standard normal distribution (i.e. take f ( t )  -- standard normal p.d.f.) 
with q = 1 and s = 1. Now, since one tail of the SN()~) distribution, when )~ r 0, 
is shorter than that of the standard normal distribution and the other tail has the 
same rate of convergence to 0 as the standard normal distribution, it follows that the 
conditions of Corollary 2.1 are also satisfied by the skew-normal distribution. That  is, 
taking q -- 1, s = 1, f ( t )  = standard normal p.d.f, and g(t) = SN(A) p.d.f., we have 
f ~  g(t)eltldt <_ 2 f_~ f(t)eltldt < cx~. 

We are now ready to give our main result. 

THEOREM 2.1. Let X and Y be i.i.d. F0, a given distribution that is uniquely 
deter~mined by its sequence of moments {#0 : i = 1,2, 3 , . . . }  which all exist. Denote by 
Go the distribution of X 2 and y2  and by Ho the distribution of � 89  2. Let X1, X2 be 
i.i.d. F, an unspecified distribution with sequence of moments {#i : i = 1, 2, 3 , . . .}  which 

1(X1 + X2) 2 ~ Ho if and only i rE(x)  = Fo(x) all exist. Then X~ ~ Go, X 2 ~ Go, and 
or F(x)  = Fo(x) = 1 - Fo(-X).  

PROOF. The sufficiency follows directly from the definition of Fo, Go and Ho and 
by noting that if X1 ,~ F =/~o then - X 1  ~ F0. 

To prove the necessity, first note that since all moments of Fo exist and since X and 
Y are independent, it follows that all moments of Go and H0 exist. Now let X1, X2 be 
i.i.d. F ,  X,  Y be i.i.d. Fo and define the following for i = 1, 2, 3 , . . .  

Pi is the i-th moment of F.  
p0 is the i-th moment of Fo. 
Ui is the i-th moment of Ho. 
Since �89 + X2) 2 t.~/4o, we have 

[1, [1 (2.1) E Xl + X2) 2 -- ~k = E (X + y)2  Vk. 
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As in Nguyen et al. (2000), we will proceed by induction to show tha t / t2 i+l  : e/t0i+l 
where e is either +1 or - 1 ,  i.e., we will show tha t  the odd moments  of F are the odd 
moments  of either Fo or Fo. The even moments  of F coincide wi th  the even moments 
of Fo (which are also the even moments  of F0), i.e., 

(2.2) /t2i =/t~ k/i, 

since X12 ~ Go by the hypothesis and y 2  ,,~ Go if Y ,-~ F0. 
Next, note tha t  either all the odd moments  of F0 are zero or 3 positive odd integer 

0 ^ 0 is the first 3 > 1 such tha t  It) # 0 a n d / t o  = 0 for positive odd integer h < j ,  i.e., #3 

non-zero odd moment  of Fo. We will consider the lat ter  case first. 
First,  we will show by induction tha t  

^ 

(2.3) / t h = 0  for h = l , 3 , 5 , . . . , j - 2 .  

Taking k = 1 in (2.1) and using (2.2), we get /ta = e/t ~ Thus /tl = 0 since we are 
assuming t h a t / t o  = 0. Hence, the induct ion s ta tement  (2.3) is true when h = 1. 

N o w s u p p o s e / t k = 0 f o r k = 1 , 3 , 5 , . . . , 2 i - 3 f o r s o m e i i n { 2 , 3 , 4 , . . . , ~ - 1 2  }" Again, 
from (2.1) the equation 

2l ( 2 / )  21 /.2/,~ o ~ 
(2.4) Z k /tk#2t-k = E ~,kJ/tk/t21-k 

k=0 k=0 

holds V integer l, because the left hand side is t h e / - t h  moment  of ( X  1 -~- X 2 )  2 which is 
equal to the /-th moment  of (X + y)2 ,  the right hand side of (2.4). Take l = 2i - 1. 
Then (2.4) becomes 

(2.5) 
4i--2 

2 i  1 /t2i--1 Jr E k /tk/t4i-2-k 
k=O 

k=O k )/tk/t4i--2-k 

where the indices on bo th  summat ions  cannot  take the value 2i - 1. 
From (2.2), all terms with  even moments  in the left-hand side cancel with the 

corresponding terms in the r ight-hand side. By the induction hypothesis, #k = 0 for 
k = 1, 3, 5 , . . . ,  2i - 3. Since we are also assuming t h a t / t o  = 0 for all odd integer h < 3, 
then  it follows tha t  (2.5) would give/t2i-1 -- 0. Hence, our induction is complete which 
proves tha t  /th = 0 = / t o  for all odd h < ). 

Next we will show by induction tha t  /tk = e/t ~ for all odd k > ) .  From (2.4), take 

l = ) to get 

where the indices of the two summations  cannot  take the value ). 
Since Ph ---- / tO = Ok/ odd h < j and /t2i = #~ the above equation reduces to 

2 __ (/to)2 or equivalent ly/ t )  = eft ~ where ~ is either +1 or - 1 .  /t) 
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N o w s u p p o s e p k = e # o  f o r k = ) , ~ . + l ,  , 2 n _ 3 f o r s o m e n i n { } + 3  3+5 ~+7 .}. " ' "  2 ' 2 ' 2 ~ '"  

Take 1 = 2 n - l + j  in (2.4) to get 
2 

2n--1-1-) 2n - -1+ )  
E ( 2 n -  1 + ) )  ( 2 n -  k ) tg ]AklZ2n--lq-) - k :  E Jr-) /AO/Z2n- l + J  - k  

k=O k=O 

or equivalently 

[ (  ) ( 2 n - l + j ) ]  "~o ( 2 n -  1 + ) )  2n - 1 + )  + Pgp2n-1 + # k # 2 ~ - l + ) - k  
3 2n - -  k 

2n-- l '}")(2rt-- :"}-))]~tk~t2n_l+)_ k + E  
k = ) + l  

[( ) )1 2 n - 1 + )  + ( 2 n - l + )  o o 2 n -  + )  o o 
---- ) \ 2 n -  1 #)#2n-1 + #k#2n-l+)-k 

+ ~ k 
k = j + l  

where the indices on all summat ions  cannot  take the value 2n - 1. 
Because #2i = P~ all terms with even moments  vanish. Also, since Ph = #o = 0V 

^ 

odd h < j ,  the first summat ions  in the two sides vanish. 
The  second summations  on the two sides also vanish since for k = ) + 2 , . . . ,  2n - 3, 

2 o ~ 0 ^ by the induction hypothesis  tha t  #k = e# ~ [tkP2n_l+~_ k • C. #k].t2n_l+j_k • pk].t2n_l+j 
for k = j , j + 2 , . . . , 2 n - 3  and since e 2 -- 1. Also, for k = 2 n + l , 2 n + 3 , . . . , 2 n - 2 + ) ,  
P 2 n - - l + ) - - k  = 0 = p 0  ^ since /t h ---- 0 = # 0  for odd h < ).  Thus,  for k = 2n + 2 n - l + j - k  

^ 0 0 1, 2n + 3 , . . . ,  2n - 2 + j ,  # k # 2 n - l+ 9 -k  = 0 = #ktt2n_l+9_k. 
Hence, after all the cancellations, we are left with  #9#2n_1 o o = #)#2n-1 .  But  since 

o l O  #) = ~# r 0, we get P2n-1 -- -~t2n-1. Thus  the induction is complete  which shows that  

#k = e#~ for all odd k _> ). 
We have shown that  #h = 0 = #o for odd h < ) and #k = c# ~ for odd k > ) which 

is equivalent to saying tha t  Pk = epo for all odd k. Since #~ = #o for all even i and Fo 
is uniquely determined by its sequence of moments ,  it follows that  F = Fo or F = ~'o- 

The only remaining case we need to consider is the case when all odd moments  of F0 
are zero. But  the same induction argument  we used in proving tha t  ]t h -- 0 -- ~t 0 for odd 
h < ) holds by changing only the induction hypothesis  #k = 0 for k = 1,3, 5 , . . . ,  2 i - 3  for 

some i in {2, 3, 4, 9-1 } to the new induction hypothesis  Pk = 0 for k = 1, 3, 5, 2 i -  
" ' ' '  2 " ' ' ~  

3 for some i in {2, 3 , 4 , . . . } .  
Thus, Pk = 0 for all odd k, and again since #2i = #~ for all i, it again follows tha t  

F = F0. (Note that  in this case/~o = Fo since F0 is symmetr ic  abou t  the origin.) 

The  induction proof  of Theorem 2.1 is quite involved but  it gives two immediate  
corollaries. 
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COROLLARY 2.2. Let X1, X2 be i.i.d. F, an unspecified distribution which admits 
moments of all order. Then X2 ~ X~, X2 ~ X21, and I(X1 ~- X2) 2 ~,~ Ho(A) if and only 
if F = SN(A)  or F = S N ( - A )  where Ho(A) is the distribution of �89 + y)2  when X 
and Y are i.i.d. SN(A). 

PROOF. Take Fo = SN(A), so Go = X12, H0 = Ho(A) and Fo = SN(-)~) .  Apply 
Theorem 2.1 and note that  the SN(A) distribution is uniquely determined by its moments 
by Lemma 2.1. 

Corollary 2.2 characterizes the skew-normal distribution based on the distribution 
of the quadratic statistics X 2, X 2 and �89 (X1 + X2) 2. As mentioned in the introduction, 
a similar result is obtained by Roberts and Geisser which characterizes the standard 
normal distribution. We give their result as another corollary. 

COROLLARY 2.3. (Roberts and Geisser (1966)) Let X 1 and X2 be i.i.d, random 
variables from a distribution which admits moments of all order. Then X 2, X 2 and 
�89 + X2) 2 are all X 2 1 if and only if X1 and X2 are both N(O, 1) r.v. 

PROOF. The result is obtained from Corollary 2.2 by taking )~ = 0. Alternatively, 
take F0 -- N(0, 1), so that  Go = X12, Ho = X~ and apply Theorem 2.1. 

In Theorem 2.1, we gave a characterization result based on the distribution of the 
quadratic statistics X12, X~ and I(X1 + X2) 2. In the next theorem, we give a character- 
ization based on the distribution of X 2 and (X + a) 2 for some constant a r 0. 

THEOREM 2.2. Let Fo be a given distribution uniquely determined by its sequence 
of moments which all exist. Let Y ~ Fo. Let Go be the distribution of y2  and Ho be the 
distribution of (Y  + a) 2 for any constant a ~ O. Let X ~ F, an unspecified distribution 
which admits moments of all order. Then X 2 ~ Go and (X  + a) 2 ~,, Ho if and only if 
F = Fo. 

PROOF. The sufficiency follows directly from the definition of F0, Go and Ho. The 
necessity follows along the same line of argument in the proof of Theorem 2.1, i.e., by 
induction, we can show that the moments of F coincide with the corresponding moments 
of F0. 

Like in Theorem 2.1, we immediately get the the following corollaries: 

COROLLARY 2.4. L e t  Ho(A) be the distribution of (Y  + a) 2 where Y ~ SN(A) and 
a ~ 0 is a given constant. Let X be a random variable with a distribution that admits 
moments of all order. Then X 2 ~ X 2, (X  + a) 2 ~ Ho(A) fraud only if  X ..~ SN(A) for 
some A. 

PROOF. Take F0 = SN(A), Go = X12 and H0 = Ho(A). Then apply Theorem 2.2. 

COROLLARY 2.5. Let a ~ 0 be a given constant and let X be a random variable 
"~ X 2 2 with a distribution that admits moments of all order. Then X 2 ~ X21, (X  + a) 2 1,a 

if  and only if  X ~ N(O, 1). 

2 Then apply Theorem 2.2. PROOF. Take F0 = N(O, 1), Go = X12 and Ho -- Xl,a 2. 
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3. Decomposition of the SN3  family 

In Section 2, we presented characterization results for the skew-normal distribution 
based on quadratic statistics. In particular, the quadratic statistic �89 + X2) 2 was 
used in Corollary 2.2 for characterizing the skew-normal distribution. It is not difficult 
to see that  when the quadratic statistic 1 2 (X1 +X2)  is replaced by the quadratic statistic 
(AX1 + BX2) 2 for some non-zero constants A and B satisfying A 2 + B 2 -- 1, then the 
result of Corollary 2.2 will still hold. 

Lemma 1.4 shows that a SN(A) distributed random variable can be obtained by a 
linear combination of two independent random variables whose squares are distributed 
as X~- It is interesting to know whether this is true for any random variable whose square 
is X 2 distributed. For lack of good notation, we will denote the distribution of such a 1 
variable by SN3.  The notation is to reflect the fact that the SN(A) family is a subset of 
the skew-symmetric family we will denote by SN2(A) whose members have p.d.f, of the 
form 2F(Az)r where F is the c.d.f, of an absolutely continuous distribution whose 
p.d.f, is symmetric about the origin. The SN2()~), briefly discussed in Gupta  et al. 
(2002b) is in turn a subset of the SN3  family. The study of these larger families might 
shed some light on the SN()~) family. To this end, we have the following result: 

THEOREM 3.1. Let X and Y be two independent random variables whose moments 
all exist and let A and B be non-zero constants such that A 2 + B 2 = 1. Let X 2, y2  and 
( A X  + B Y )  2 all be distributed as X21 . Then 

(i) at least one of X and Y is standard normal; and 
(ii) i f  X and Y are identically distributed, then both X and Y are N(O, 1). 

PROOF. Let W = A X  + B Y .  Denote by ~ z  the characteristic function of an 
arbitrary random variable Z. Since X 2, y2  and W 2 are all distributed as X 2, then from 
Lemma 1.2, we have 

(3.1) kOx(t) + kOx(- t  ) = ff2y(t) + kOy(-t) = ff2w(t) + q2w(- t )  = 2exp( - t2 /2 ) .  

Also we have, t~w (t) = kOx (At)qJy (Bt) and 62w ( - t )  = qlx ( - A t )  ~ y  ( - B t ) .  Adding 
the last two equations and from (3.1) we get 

(3.2) kOx (At)kOy (Bt) + kOx ( -At)kov  ( - B t )  = 2 exp( - t2 /2) .  

From (3.1), we also get 

(3.3) ( ~ x ( A t )  + kOx( -A t ) ) (~y (B t )  + kOy(-Bt))  = 4exp( - t2 /2 ) .  

Simplifying (3.3) and subtracting (3.2) gives 

(3.4) qZx ( A t ) ~ y  ( - B t )  + q2x ( - A t ) ~ y  (Bt) = 2 exp( - t2 /2) .  

Equating (3.2) and (3.4) now gives 

(3.5) [ko x (At) - q2x (-At)]  [~y (Bt) - kOy ( - B t ) ]  = 0. 

Let M x  and M y  be the real part of ~ x  and kOu, respectively, and let N x  and 
N y  be the imaginary part of kOx and q2v, respectively. Then, M x  and M y  are even 
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functions of t, N x  and N y  are odd functions of t, N x  and ivy are continuous,  and 
N x  (0) -- N y  (0) = 0. Also, 

~ x  (At) = M x  (At) + i N x  (At) 

q2x(At) - q2x(-At)  = 2 iNx(At)  

and 

and ~ y  (Bt) = M y  (Bt) + iNy  (Bt ) ,  

rgy (Bt) - kOy ( - B t )  = 2iNy(Bt) .  

So, (3.5) is equivalent to N x ( A t ) N y ( B t )  = 0 which in tu rn  is equivalent to  

(3.6) N x  (t)Ny (Bt /A)  = O. 

We note  tha t  this last equat ion is valid for all t. 
Now, since all the odd moments  #2k+1, k = 1, 2 , . . .  of X exist, there  exists an open 

interval  a round 0 with length 51 > 0 such tha t  the Taylor  series representa t ion  

oo M(2k+l ) (o ) t2k+ 1 

Nx(O = Z 
k=o (2k + 1)! 

is valid for all t in this interval. We then  have ei ther of the following two cases: 

Case 1. If all odd moments  of X are zero then  X must  have a dis t r ibut ion sym- 
metr ic  at the origin. 

Case 2. If at least one odd moment  of X is nonzero,  let ]22m+1 be the first non- 
hy(2m+l) zero odd moment  of X .  It follows tha t  the derivative , , x  (0) • 0. This  would 

then  imply tha t  there  exists an open interval a round 0 with length 52 > 0 such tha t  

N(~m+l)(t) ~ 0 for all t C ( -52 ,52) .  Since N x  is an odd function,  it must  be str ict ly 
monotone  in this interval implying from (3.6) tha t  N y ( B t / A )  = 0 for all t E ( -52 ,  6 ) .  It  
follows tha t  Ny(t )  = 0 in an open interval a round 0. Th e  last s t a t emen t  implies tha t  all 
odd moments  of Y are 0 and tha t  Y must  have a dis t r ibut ion symmetr ic  at  the origin. 

Suppose wi thout  loss of generali ty tha t  Case 2 holds. T h e n  Y has a symmetr ic  
dis t r ibut ion wi th  respect  to the origin so tha t  koy(t) = kOy(- t ) .  It  therefore  follows 
from Le m ma  1.2 tha t  Y must  have a s tandard  normal  distr ibution.  

Remark 1. Par t  (ii) of the previous theorem reduces to the necessity par t  of Corol- 
lary 2.3 in the case where A = B -- 1 / v ~ .  The  sufficiency par t  of Corol lary 2.3 in this 
case is well known. It  is s t raight  forward to see tha t  the sufficiency par t  of Corollary 
2.3 holds t rue in the more general case where the only restr ict ion on A and B is the 
equat ion A 2 + B 2 = 1. 

Remark 2. The  second par t  of Theorem 3.1 is exact ly  what  Rober t s  wanted to 
show in Rober ts  (1971). He suggested there  tha t  this result  may  not  be t rue  bu t  t ha t  
he was not  able to give a counter-example.  

Remark 3. One consequence of Theorem 3.1 is the result  tha t  not  all r andom 
variables with dis t r ibut ion belonging to the SN3  family can be decomposed as a linear 
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combination of two independent random variables whose squares are distributed as X12. 
To see this, we only need to consider the random variable Y = IX t where X 2 ,,~ X 2. 
Clearly y2 ~, X~ so the distribution of Y belongs to the S N 3  family. If Y can be 
represented as a linear combination of two independent random variables whose squares 
are distributed as X 2, then by Theorem 3.1, one of these random variables must be 
standard normal. This forces the support of Y to be the whole real line which cannot 
be since the support of Y must be a subset of the positive real line. 

To study the decomposition of the SN2(A) family, it might be helpful to look first 
at the decomposition of the SN(A) distribution. We therefore give the following result: 

THEOREM 3.2. Let A and B be two non-zero constants such that A 2 + B 2 = 
1 and let X ~ N(0,1) and Y be independent. I f A X + B Y  ~., SN(A) then Y ,~ 
S N ( s i g n ( A / B ) [ A [ / v / B  2 + A2(B 2 - 1)) provided [A/vfi-+ A2[ < [B[. 

PROOF. Let W = A X  + B Y .  Denote by ~ z  the characteristic function of an 
arbitrary random variable Z. Then, 

(3.7) ~ w  (t) = "~x ( A t ) ~ v  (Bt) .  

From Lemma 1.5, kOw(t) = exp (- t2/2)(1 + i t ( S t ) )  where for x >_ O, T(X) = 
f o  X/2x/~exp (u2/2) du, "r(--x) = --T(X) and 5 -- x Also, ~ x ( A t )  = exp ( - A 2 t 2 / 2 ) .  - -  ~ .  

Hence, from (3.7) we have 

exp (- t2/2)(1 + iT(St)) 
tPy (B t )  = exp ( - A 2 t 2 / 2 )  

= exp ( - B 2 t 2 / 2 ) ( 1  + i'r(St)). 

Thus, replacing t by t / B ,  we get q2y(t) = exp (- t2/2)(1 + i T ( 6 t / B ) )  which is the 
characteristic function of a S g ( s i g n ( A / B ) l A l / x / B  2 + A 2 (B 2 - 1)) random variable pro- 
vided ]A/x/1 + A2[ _< [B[. 

Remark  4. If we take B = A/v/1 + A 2 in Theorem 3.2, we get the result that  Y 
has a half-normal distribution which is suggested by Lemma 1.4. 

We end this paper with the following conjecture: 

CONJECTURE 3.1. Let A and B be two non-zero constants such that  A 2 + B 2 = 1 
and let X ~ N(0, 1) and Y be independent. Let F(),) E SN2(A). If A X  + B Y  ,-~ F(A) 
then under possibly some inequality constraints on B and A, Y ,-, F(A)  where A is a 
function of A and B. 
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