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Abstract. We consider a {0, 1}-valued m-th order stationary Markov chain. We
study the occurrences of runs where two 1’s are separated by at most/ezactly/at least
k 0’s under the overlapping enumeration scheme where & > 0 and occurrences of scans
(at least k1 successes in a window of length at most k, 1 < ki < k) under both non-
overlapping and overlapping enumeration schemes. We derive the generating function
of first two types of runs. Under the conditions, (1) strong tendency towards success
and (2) strong tendency towards reversing the state, we establish the convergence of
waiting times of the r-th occurrence of runs and scans to Poisson type distributions.
We establish the central limit theorem and law of the iterated logarithm for the
number of runs and scans up to time n.
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1. Introduction

Let X1, X, ... be a sequence of {0, 1}-valued random variables. One may think of
X, as the outcome of an experiment at the n-th time point and occurrence of 1/0 as
the success (S)/failure (F) of the experiment. Throughout this paper we will assume
that the sequence of outcomes constitutes a stationary m-th order Markov chain. For
any non-negative integer k, we define a run of type at most k/type exactly k/type at
least k as the occurrence of two successes separated by at most k/ exactly k/ at least
k failures respectively. Koutras (1996) investigated the waiting time distribution of the
r-th (r > 1) occurrence of run of type at most k under i.i.d. as well as Markov chain set
up and obtained the generating function and Poisson type convergence of the waiting
time variable. Koutras (1996) employed a non-overlapping scheme for counting runs, in
the sense that a success can only be part of one possible run. However, in this paper,
we employ an overlapping counting scheme for all the three types of runs, in the sense
that a success may contribute towards counting of two possible runs—one which ends
with the occurrence of the success and the next one which is started by it. We associate
random variables TT(M), T,SE) and T'Y with the waiting time for the r-th occurrence of
run of type at most k, type exactly k£ and type at least k respectively. Further, M,(EM),
M,SE) and M,(LL) represent the number of occurrences, up to time n, of runs of type at
most k, type exactly k£ and type at least k respectively.
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A natural generalization of the concept of runs of successes of length k as well as
runs of type at most k is achieved through the study of scans. For non-negative integers
1 < k; <k, ascan refers to the occurrence of at least k; successes in a window of length
at most k. Clearly, when k = k;, the scan is equivalent to the run of successes of length
k. For the non-overlapping counting of scans, we can proceed in two ways: in the first
scheme we count from scratch every time a scan has been observed, while in the second
scheme we start counting afresh only after the window of length &, in which the scan
has been observed, is completed. In the overlapping scheme for counting scans, we count
the number of windows (not necessarily disjoint) of length k, each of which contains a
scan. It is evident that if runs of type at most k are counted using a non-overlapping
scheme of counting runs, then they can alternatively be viewed as the occurrence of
scans (in a window of length k + 2 with k; = 2) under the first non-overlapping scheme
of counting of scans. We define T(k” ) and S(’ )k(n) as the waiting time for the r-th
occurrence of scan and the number of occurrences of scan up to time n respectively
under the j-th scheme of counting scans (j = I, IT and III). Here, I and II refer to
the first and second schemes of non-overlapping counting of scans, while I1I represents
the overlapping counting of scans. In this article, we investigate the exact distribution
of the waiting time variables TT(M) and T'5. Also, we establish several Poisson type
convergence results for the waiting time variables T,gM) T(E) T(L) and TT(’Z‘ ) for i=1,
II and I1I. Further, we derive the asymptotic results for the enumeraiting variables
MM, M) MM and 8P, () for j = I, IT and IIT.

To make the definitions more transparent, we quote the same example from Koutras
(1996). Consider a string of length 20 of symbols —1 and 0, with k =1

10010110011101001111.

We can see from the above example that for runs of type at most k, I(M) T(M) =7,

7™M =11, 7™ = 12, T = 14, T™ = 18, 7™M = 19 and TI™ = 20. 1t is
important to note that the success at trlal 6 is the end point of the ﬁrst run while it is
the beginning for the second run. Similarly, the successes at trials 11, 12, 18 and 19 also

contribute to two runs. For runs of type exactly k, we have TI(E) =6, T(E) 14 while for
runs of type at least k, we have T(L) =4, T(L) 6, T(L) =10, Tf’) = 14 and T5(L) =17.
Also we have that My, (M) = 8, My, ) — 2 and My, (L) = 5. For scans, we consider the
window of length 3 Wlth ki = 2. Then we have, T(2 I) = 6, (2 D~ 11, T(2 D~ 14,
T(2 n _ 18, T(2 1) _ 20, T1(?3,II) ~ 6, T(z m _ ~ 12, (2,11) and T(2 III) — 6,
T(2 In ~ T(2 1 _ =3, (2,III) =11, T(2 nr _ 12, T(2 111) = 13, (2 111) =14,

T(2 mn 18, T(2 - 18, Tl(g ;”) = 20. It is obvious that the waiting tlme variable

Tr(23 1) can be viewed as the waiting time for the r-th occurrence of the run of type at
most 1 when the runs are obtained using the non-overlapping counting scheme; however

for the overlapping counting of scans, T(2 1) does not match with the corresponding

waiting time variable TT(M) .

The importance of scan statistics and scan waiting time distributions arise from
its applications in diverse scientific fields such as reliability, queueing models, molecular
biology, statistical quality control, signal detection, computer networking etc. For a
detailed discussions on applications of scan statistics and related scan waiting time, we
refer the reader to Glaz and Balakrishnan (1999) and Balakrishnan and Koutras (2002).
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Feller (1968) initiated the systematic study of the generating functions of distributions
of runs of successes of the non-overlapping kind using the renewal theory. In the last 15
years, there has been a major thrust towards finding the exact distribution of different
run related statistics. These distributions have been derived under various assumptions
on the sequence of underlying random variables such as i.i.d. or independent but not
identically distributed or first order Markov dependent as well as higher order Markov
dependency. Several authors have contributed to the development of the theory of runs
(see Aki (1985, 1992), Philippou (1986), Hirano (1986), Ling (1988), Philippou and
Makri (1986), Hirano and Aki (1993), Aki and Hirano (1995), Fu and Koutras (1994),
Koutras (1996), Uchida and Aki (1995), Uchida (1998) and references therein). The
method of conditional p.g.f. (introduced by Ebneshahrashoob and Sobel (1990)) and the
method of Markov embedding techniques (introduced by Fu and Koutras (1994)) have
been effectively used to study such distributions. The waiting time distributions for the
occurrence of runs of specific type has also been studied extensively by several authors
(see Aki et al. (1996), Balasubramanian et al. (1993) and references therein). Koutras
(1996) studied the waiting time distributions for non-overlapping runs of type at most
k under the independent as well as Markov dependent set up. Uchida (1998) has also
investigated the waiting time problems for patterns under m-th order Markov set up.
Several authors have studied the scan waiting time distribution and the scan statistics
(see, for example, Koutras and Alexandrou (1995), Koutras (1996), Chadjiconstantinidis
et al. (2000), Chadjiconstantinidis and Koutras (2001) and references therein). Chen and
Glaz (1999) proposed a Poisson approximation and gave an asymptotic expression for
tail probabilities of the scan waiting time distribution. Boutsikas and Koutras (2001)
has given an approximation scheme for .S ,(chkI ) (n). We refer to Balakrishnan and Koutras
(2002} for a detailed and thorough account of the development and recent results on
scan statistics and scan waiting time distributions. For the theory and applications of
the continuous scan statistics, we refer the reader to Glaz et al. (2001). In this article,
we study the scan statistics and the scan waiting time distribution under a m-th order
Markov chain set up.

In the next section, we introduce the necessary mathematical definitions and nota-
tions. In Section 3, we derive the generating functions of the waiting time distributions
of T™) and TT(E). For both the waiting time variables, we develop a system of lin-
ear equations using the method of conditional p.g.f.s. In Section 4, various asymptotic
results on the convergence of waiting time distributions have been derived under two
broad set-ups. In the first set-up, we assume that the system has a strong tendency
towards success while in the second set-up we assume that the system has a strong ten-
dency towards reversing its states, i.e., from failure it would like to switch to success
and vice versa. Under the first set-up, we show that T,gM) converges to a Poisson type
distribution (Theorem 4.1) and the waiting time variables for scans Tr(,’;c"l), Tr(le 1D and

TT(ZI’IH) exhibit similar Poisson type convergence (Theorem 4.2). Under the second set-

up, we show that the waiting time variables T,gM), TT(E) and TT(L) converge to sum of
independent Poisson type random variables (Theorems 4.3, 4.4 and 4.5). In this case,
similar results have been established for TT(”Z“I”) corresponding to the cases: (a) k even
and 2k; < k (Theorem 4.6) and (b) k£ odd and 2k; — 1 < k (Theorem 4.7). In the final
section, we derive the central limit theorems for 7(LM), M,(;E), M,(,L) and S’,(fl )k(n) for

j =1, II and IIl. Further, law of the iterated logarithm has been obtained for ,(,M),
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MT(LE), M,(LL) and S,(Cflkl )(n) To obtain the above results, we define a sequence of new
random variables, in terms of the original random variables, so that the sequence of new
random variables is a stationary Markov chain, assuming values in a finite set. We derive
a meta central limit theorem and law of the iterated logarithm, involving functions of
the newly defined random variables (Theorem 5.1). This theorem yields the results for
M,(lM), M,(lE), MY and S,(ch,f)(n) as special cases (see Theorems 5.2, 5.3, 5.4 and 5.5).
For the two non—overlappingv scheme of counting scans, we define a sequence of stopping
times so that conditioned on these stopping times, the number of occurrences of scans
become independent. Hence S(J ) (n) can be approximated by a random sum of i.i.d.
random variables, for both j = I and II. This result has been used to establish the
asymptotic normality of S(J ) w(n), 3 =1 and II (see Lemma 5.1 and Theorem 5.6).

2. Definitions & notations

Let X 41, X _m+42,---,X0,X1,X2,..., be a sequence of stationary m-th order
{0, 1}-valued Markov chain. It is assumed that the states of X_,,4+1, X _m42,...,Xo are
known, i.e., we are given the initial condition {Xo = z¢, X-1 = 21,..., X_my1 = Tm-1}-
For any i > 1, define N; = {0,1,...,2¢ —1}. The initial condition can be represented by
T = Zm 12 Jxz;. Then, £ € Ny, = {0,1,... — 1}. Clearly, for any z € N, we will
have a unique initial COIldlthIl which is given by the binary representation of z (written
in the reverse order). We define, for any n > 0,

(2~1) Pz = P(Xn+1 =1 I Xn =10, Xpn1 = z1,-- -aXn—m+1 - xm—l)-

Consequently, ¢; = P(Xp4+1 = 0| Xn = 20, Xn-1 = Z1,-- -, Xn-m+1 = Tm-1) =1 — pg.
We denote the probability measure governing the system with initial condition £ € Ny,
by F.. Further, we define two functions, fo, f1 : N, — N, as

fo(z) =2x(mod 2™) and  fi(z) = (2z + 1)(mod 2™).

Note that fo(z)/fi1(z) stands for the initial condition derived from z if we obtain a
failure/success in the next trial.

The probability generating functions of TT(M), ,SE) and 7" are denoted by

(M) (z, s), qS(E) (z,s) and ¢£L)(:c, 8) respectively. In other words, we have (bij )(a:,s) =
En:o Po(TY =n)s" for j = M, E, or L. Further, let us define, 8™ (z, z), ®E&)(z, 2)
and ®)(z, z) as the generating functions of {¢£M)(x,s) i > 1}, {¢£E) (z,8) : r > 1}
and {(f)SL)(:E,S) : 7 > 1} respectively, i.e., ®U)(z,2) = 3% ¢$j)(:1:,s)zr for j =M, E,
or L.

The two non-overlapping counting schemes of scan can be interpreted as follows:
the first scheme counts the number of disjoint scans while the second scheme counts the
number of disjoint windows of length k each of which contains a scan. To facilitate our
study, while considering the second non-overlapping scheme for counting scans, we set
the end point of the window of length k, containing the scan, as the end point of the
scan itself. More precisely, we define the counting random variables for scans as follows:

(I)
Ryjw(n) =105, +E JT0 o X 0 PR ()21}

n-—1
rUD

Ir
RUNm) =1sn o oxeey [] Q- REDG)
j=n—k+1
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R(HI)(n) =lsr o X2k}

with the convention that R(I) p(n)=0forn < ki, R (”)( ) = (”I)(

It should be noted that R(I) x(n) = 1 if and only if n is the end point of a scan when

n) =0forn < k.

counted under the first non-overlapping scheme. Similarly, it is evident that R(”) i(n) and

R(”I) (n) counts the scans under the second non-overlapping scheme and the overlapping
scheme respectively. Thus, we may define the scan waiting time variables, for r > 1, as

where j is I, IT or III. Finally, the scan statistics (the number of scans up to time

n) S,(C’1 )’k(n), under the j-th scheme of counting, is defined by S} ) Ven) =31 R(J ) 'k (3)
where j is either I, IT or I11.

3. Generating functions

In this section, we obtain the generating functions of the probability distribution of
the waiting time variables TT(M) and TT(E) . We define a new event in the following way:
suppose that we are given an initial condition x which is odd; this represents the event
that Xo = 1. However, when we start looking for a run (of any type), we ignore the
value of Xy. We define the new event which will consider this case and take into account
the value of Xy. Formally speaking, given x odd, we say that an associated run of type
at most k occurs at time n if we observe n — 1 failures followed by a success forn < k+1
and for n > k + 1, if we see more than k failures at the beginning and then observe a
run of type at most k at time n. It implies that when we take Xg into account, we get
a run of type at most k which ends at time n. For runs of type exactly k, we define an
associated run in the similar way: given an initial condition that z is odd, we say that
an associated run of type exactly k occurs at time n if a run of type exactly k occurs at
time n when we start looking from time 0.

Define N;,_; ={y : y =2z + 1,2 € N,,_1} as the set of all odd numbers in N,,.

For z € N/,_,, let S,(nM) and S,(nE) be the waiting times of the r-th occurrence of the
associated run of type at most k and type exactly k respectively. Define, for r > 1,
the probability generating function of the waiting times SﬁM) and S’,(pE) by zbSM) (z,s)
and 1/)(E)(:L' s) respectively. Further, define (™) (z, z) and ¥(P)(z, 2) as the generating

function of the sequences {d)r )(x s):r>1} and {1/15 Nz, s) : 7 > 1} respectively.
Define the sequence of events,

={Xj=0f0r1§j§iandXi+1=1}
fori=20,1,...,k and
Ak+1={Xj=0f0r1§j§k‘+1}.

Clearly, the events {A4; : ¢ =0,1,...,k+ 1} form a partition of the sample space.
Now, conditioning on the outcome observed at the first time point, the following
equation is easy to derive: for any r > 1 and n > 1,

(31) BT =) = oPpyy (TP = 1~ 1) + po Py ) (S =~ 1),
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This equation can now be used to derive the following relation between their respective
probability generating functions:

(3.2) oM (z,5) = g6 (fo(), ) + posv ™ (f1(2), ).

This, in turn, gives us a linear relation between ®M)(z, z) and T (z, 2).
(3.3) (2, 2) = ¢258M (fo(), 2) + pos¥ M (fi(2), 2).

We define for z,y € Np,,

1 if y==z
M .
d(@y) =3 ~qs  if y=folz)
0 otherwise

and for t € N, andy € N,,_4,

(M)(Jl,y)I {_pxs if y:fl(x)

all 2 -
0 otherwise.

Let
M M M M
Agl ) = (a§1 )(-'L'a y))x,yeNm and A(12 ) = (agz )(wv Y))eeNm, yeN!, _,

be the associated matrices. Hence, we can express the set of above equations as
(3.4) A0 L AN — ¢

where @) = (6M)(z, 2))sen,, and TP = (TM)(g, 2))pen: .
A similar argument holds also for runs of type exactly k. As earlier, conditioning
on the result of the first trial, we obtain exactly the same relation between P(TT(E) =n)

and P(S,EE) = n) which, in turn, yields the equations:
(3.5) ADe® L ADwE) — ¢
where A(llf) = A(A’I) and Ag) = A(IZI).

3.1 Runs of type at most k

Now, we can easily derive the following relation between PI(TT(M) = n) and
PE(S'SM) =n). For r = 1, we have

P(S(M)—n)— Pr(An-1) for n=1,2,...,k+1
S Po(Ap1) Ppons (T =n—k—1)  for n>k+1.

For r > 2, we can find the following relation by conditioning on the partition
{4;:1=0,1,...,k+1}. When m > k + 1, we have:

k+1
=0
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k+1

= Y P8 = n | A)Py(4)

=0
= prl(fo(x SM) =n—i-1)Py(4A)
+P(Ak+1) e )(T( )=n—k—1)

where f3(x) = @ and fi(x) = folfi(x).
When m < k + 1, we have,

Pz(sﬁM) =n)

k1
=Y P(S™M =n| A;)P.(A;)
i=0
m—2 M
=3 P aan(SM) =n— i — 1) Po(4)
i=0

k
+ 3 P =n—i— D)P(Ai) + Po(Ak1) Po(TM = n— k — 1).

i -1

From the definition of functions fy and fi, it is clear that they satisfy the following
relations:

(3.6) =0 and fi(fi " (@) =1 for j>0,z€ Np.

Using these relations, both the cases, namely m > k+1 and m < k+1, can be combined
to yield,

Kk
Pz: A, i+1
; (4i)s for r=1

+ Po(Ar1)s* 160 (51 (2), 5)
ZP (A)s LM (£ (fa()), 5)

+ Po(Ak1)s 1M (fE (), 5)

M (z,5) =

for r>1.

These will give us another set of equations
k . .
(3.7) VM (z,2) = ) Po(4)s 28 (f1(f5(2)), 2)
i=0
+ Po(Aps1)s* 1 @M (541 (2), 2)

k
+ Z P.(4;)st 2.
=0
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The probabilities P,(A;) can easily be computed. Indeed,

i-1
Prie [l ag for 0<i<hk
(3.8) P(A) =4 ,
145 for i=k+1.
=0
We define for z,y € N, _,,
1 if y==x
agy (2,9) = —Po(A)stlz  if y=fi(fi(z)) for some i=0,1,....k
0 otherwise

and for x € N],_, and y € Np,,

0y - [ PAFTiE y = 7 0)
; 7 0 otherwise.

Let

AL = (0" @ W))seny,_wen,  and AR = (@5 @ Y)ayen,_,
and b™) = 3% P, (4,)s""12. Hence, we can write the set of equations in (3.7) as
(3.9) AP L AP G M) — (D)
where @) and (M) are as defined earlier. Therefore, we have

THEOREM 3.1. The generating function of {<I>$M)(x, s) : v > 1} is given by

M M)\—1 4(M M)y—1 4(M M), —
(3.10) M) = (Agz )(A(zz )) 1A(21 )~ Agl )) 1A(12 )(A(zz )) L),

3.2 Runs of type ezactly k
We derive a relation between Pz(TT(E) = n) and Px(SﬁE) = n) by using a similar
technique. For r = 1, we have

Pz(An) for n= k
) k-1 :
Po(817 =n) =4 Y Po(A) Py 3oy (S =n—i—1
=(5 paerd (4:) fl(f"(x))( 1 n-i-l otherwise.

+ Po(Ag41) Pprir, (O =n—k-1)

For r > 2, using the relations in (3.6), we can combine the two cases, namely, k+1 > m
and k + 1 < m, to obtain the following equations:

k41
Pp(S{®) =n) = ZPZ(S;»E) =n| A;)P;(4i)
=0
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k—
prl(fo(r)) (S =n—i-1)Py(4:)
1=0

Po(Ak) Py, (s ten (S =n—k-1)

+ Py(Ag1)P k+x(z)(T( )=n—-k-1).
Therefore, we have
k-1
N it (E) i
;PE(A»s ¢E (f1(£5(2)), 9) for 7

+ Px(Ak)SkH + Px(Ak+1)8k+1¢£E)(fgﬂ(x), s)

k—1

Y Pe(A)s P (fi(f5(2)), 9)

=0 (E) for r>1.
+ Po(Ag)s* 19,25 (f1(f5(2)), )

+ Py (Ak+1)8k+l¢(E)( £+1(z), 5)

PE) (2, 8) =

\

As before, this gives us the following set of equations,

V) (z, ) ZP (A)s B (f1(fa(2)), 2) + Po(Ar)s* 12
1=0
+ Py (Ag)s*TL20B) (£1(FE(2)), 2) + Po(Agy1)s¥H @B (fE+1(), 2).

The probabilities P,(A;) are specified in equation (3.8). Define, for z,y € N,,_,
1 if y==z
—P,(A;)s'! if y=fi(fé(z)) for some i =0,1,...,k—1

—Po(Ap)s*1z iy = fi(f(z))
0 otherwise

a22 )(x y) =

and for z € N),_; and y € Ny,

a21)($ y) = _PI(AkH)SkH if y= fécﬂ(m)
0 otherwise.

Let
ASY = (a5 (2,9))sens,_ yenn and  ASY = (a5 (2,9))eyen:.

and b®) = p, (Ag)s**1z. Hence, we can write the set of above equations as

(3.11) A E) L AT GE) = p®

where ®(F) and W(F) gre as defined earlier. Therefore, as before, we have
THEOREM 3.2. The generating function of {<I>$E) (x,8) : 7 > 1} is given by

(3.12) &E) _ (A(E)(A(E)) lA(E) (E)) lA(E)( gli))—lb(E)_
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4. Limit distributions

In this section, we obtain several limit laws of the distribution of the waiting times.
We will take a direct evaluation route for the results. For this, we require the following
lemmas about weak convergence of discrete random variables. We could not find the
exact result that we require, in any of the standard references (Feller (1968), Billingsley
(1986), Chung (1974)) and hence we incorporate it for the completeness of the paper.

LEMMA 4.1. Let {& :r > 1} be a sequence of random variables taking values on
Z ={0,%1,42,...} such that

liminf P(§, =t) >p; forall teZ
r—00
where Y oo Py =1, then & = £ where P(E =t) = p; for all t € Z.

PrOOF. First we claim that the sequence of random variables {¢, : r > 1} is tight.
Indeed, for any € > 0, we first choose K so large that Zf{z _k Pt > 1—¢€/2. Now, for

every t,|t] < K, we choose N; so large that whenever r > N, P(£. = t) > py — €/ (8K).
Now, setting N = max{N; : |t| < K}, we have for t > N,

K K
P& <K)= > P& =t> > p—(2K+1)e/(8K)>1—e.
t=—K t=—K
Now, by Corollary of Theorem 25.10 of Billingsley (1986), it is enough to show

that if for any sub-sequence {&., : i > 1} such that &., = &', then ¢ 4 &. We have,
P =1t) =lim;_oo P(&, = t) 2 liminf,_, o, P& =t) = P(€ = t). If for some ty € Z,
P(¢ =tp) > P(£ = tp), then we have

oo

1= Y PE =t)=PE¢ =to)+ Y PE =t)>PE=t)+» PE=t)=1

t=—o00 t#£tg t#£tg
This is a contradiction, proving that &’ 2 £ O
We also need the following lemma, for proving several of our results.

LEMMA 4.2. Let {& : 7 > 1} be a sequence of random variables taking values on
Z such that D
liminf P(¢, = t,A) > ppP. forall tjez
where Y o0 p§1) =1=%7__ p§2) and {AY) :J € Z} are disjoint events for each .
Then
£ = £V +£0

where P(EW = t) = p{" and P(E® =) = p® for all t € Z and O & €@ are
independent.
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PROOF. Clearly, for any t € Z, P(6(V) +£3) =¢) = Z;’;_Oop;l)pﬁ)j. Thus, it is
enough, by Lemma 4.1, to show that

o0
o _ ), 2
hgglolgfp(ér =t) > Z Pj Pr_j-
Jj=—00

To prove this, we consider any € > 0 and choose J so large that Zj:_ Jpgl)pf_)j >

Z;i_oo pﬁl)p?_)j — €. Now, we have,

o0
liminf P(¢, =1) > lminf 37 P& =1, Af")
j=—00

v

J
im _ A0
liminf 37 P& =t,45")
j=—d
J
> liminf P(¢, =t,A)
J:_J r—00

L@
1
DI s e
j=—J

> B8 e

j=—o0

v

v

v

Since ¢ > 0 is arbitrary, we get the desired result. [

We say that a random variable Zj follows a Poisson distribution of multiplicity &
with parameter A (k € Z and A > 0) if
exp(—A)\!

t!

In the sequel, we will denote this by Z; ~ Poi(k,A). Note that, when k = 1 it is the
usual Poisson distribution.

P(Zy = kt) = for t=0,1,....

4.1 Strong tendency towards success

We first consider the case of overlapping runs of type at most k. The assumption
that we make on the probabilities is that system has a strong tendency towards success.
We formalize this by stating that for u € Ny,,, p, (as a function of r) converges to 1 in
such a way that

(4.1) r(l —py) — p where g, >0 is a positive constant.

We require the probability of the following event to establish our results. Fix w > m
where m is the order of the Markov chain. For ¢t > 0 and | > w(t + 1) + ¢, define

Bt(w) (1) = {all strings of length [ consisting of 0’s and 1’s with exactly ¢ 0’s
such that the number of 1’s, before the first occurrence of 0 or
between i-th and (¢ + 1)-th occurrence of 0 for i = 1,2,...,t -1
or after the last (t-th) occurrence of 0, is at least w}.



328 ANISH SARKAR ET AL.

In other words, if ro is the number of 1’s before the first occurrence of 0 and r; is the
number of 1’s between i-th and (¢ + 1)-th occurrences of 0 for ¢ =1,2,...,t —1 and 7;
is the number of 1’s after ¢-th occurrence of 0, then r; > w for all ¢ = 0,1,...,¢ and

S o7 =1 —t. We obtain the probability of the event ng) (1) in the next lemma.

LEMMA 4.3. For any initial condition © € Ny,

(4.2) P(B{(1)) = (l o 1)> Pz "ﬁ Pyl (a) (pam 1) 7t (D)

t .
j=1
¢
m—1
x (1 —pam_1)" | P2m—2 H Pyi(am—2)
j=1

PrROOF. It is easy to note that, under the initial condition z € Np,, the probability
of any string in Bt("’)(l) is given by

m—1
(4.3) Px Hl Pfi (g (P2m—1)" 7" (1 — pam_1)
J:
m—1
X pam_2 H pf{(gm_Q)(pQ"‘—-l)rl—m(l —~ pam-1)
j=1
m—1
cprme2 ] Ppgom gy (P2m—1) 7T (1 = pami)
j=1
m—1
X pam—-2 H Pflf(Qm-g)(P2m~1)T‘_m
j=1
m—1
= | P H Pfi(z) (Pam—1)! DL — pymy)*
j=1
t
m—1
X | pom—2 H pff(gm_z)
j=1

since Zz':o r; =1 —tand fo and f; are as defined earlier. Clearly, the probability (4.3)
for any string in Bt(w)(l) is independent of the choice of r;’s. Thus, the probability of

ng)(l) is obtained by multiplying (4.3) with number of all such possible strings.
Now, using combinatorial arguments we calculate the number of such possible
strings. Indeed, it is equivalent to distributing [ — ¢ similar objects to (¢ + 1) groups

so that each group has at least w objects. This is given by (l_"’(tt“)). This completes
the proof of lemma. (]

THEOREM 4.1. Under any initial condition, if the condition (4.1) holds, then as
r — 00,

(@) T —(r+1)= 2, when k>1
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by T™M —(r+1)=Z, when k=0
where Z; ~ Poi(i, pam 1) fori=1,2.

PRrROOF OF THEOREM 4.1. We use Lemma 4.1 for this proof. To show part (a), we
fix any t € {0,1,2,...} and obtain a lower bound for the probability Px(TT(M) ~(r+1) =

t). In order to do so, we choose w = max(m, 1) and consider the event Btw) (r+1+1¢)
for r > w(t + 1). Clearly,

BM(r+1+t) C{TH — (r +1) = ¢}

since for each string in Bt(w)(r + 1+ t), there are exactly r overlapping runs of type at
most k (k > 1). Thus we have,
Po(TI™ — (r+1) = t)
> Pa(B{")(r + 1+1))

r+l-wlt+1)+t\ " e
= ( )pz 1 2y (Pom gyt -4 M
Jj=1

t
t
m—1
X (1= pam_1)t | pom—2 H Pgi(am_2)
g=1
rt t T
= S+ 0(1)(1 = pam 1) (1)
t
m—1 m—1
X I Pz H Pi(xy (p2m—1)(1_(t+l)m) Pam—2 H Pgiam_2)
j=1 Jj=1
- m m t
_, &xp(=pam 1) (pam 1)

t!

since (1 — p,) — py as 7 — oo for u € N,,. This, by Lemma 4.1, completes the proof
of part (a).

For part (b), we consider the probability P, (T\™ — (r+ 1) = 2t) and obtain a lower
bound in a similar manner. Again, for w = max(m,1) and r > w(¢ + 1), note that

BM(r+1+2t) C{TM — (r+1) = 2t}

since for any string in Bt(w) (r + 1+ 2t), we have exactly r overlapping runs of type at
most k (k = 0). Therefore, we have

P (T™M) — (r +1) = 2t)
> P,(B™M(r + 1+ 2t))

-1
i ( t ) Pe H Pti(x) (sz_l)'"+1+t (t+1)m
Jj=1
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t

m~1
x (1 —P2m—1)t Dam—2 H Pgiam )
j=1
rt ;
= y(l +0(1))(1 = pam—1)*(p2m-1)"
‘ t
m—1 m-1
X\ P H Pgi(a) (p2m—1)_(t+l)(m“1) bam—2 H Psiam—2)
J=1 j=1
exp(—pam—1)(p2m 1)
— tl y

as r — 00 by using the condition of the theorem. (1

Remark. Since the limiting distribution is independent of the initial condition,
we can put any initial distribution on the initial conditions. Suppose that 8 is the
probability distribution on {0,1}™. As we have already discussed, 6 can be identified
as a probability measure on N,, by the mapping (zg, Z1,...,Zm-1) — T = Z;.";ol 2z,
where each z; € {0,1}. Let M (6) be the waiting time for the r-th occurrence of the
run of type at most k where the initial condition is governed by the distribution §. From
the theorem 4.1, we can easily conclude that

(@) TM@) —(r+1)=2, when k>1
(b) TM (@) —(r+1)=Z, when k=0

by first conditioning on x € N, and then summing over all possible values of z € N,.
The random variables, Z; and Z,, are as in the Theorem 4.1.

Now, we derive the convergence results for scan waiting time variables Tr(,',‘c"’ ) for
j=1,IIandIII. Itisclear that when k = k;, the scan is equivalent to a run of successes
of length k. In such a case, the waiting time variables T T(i"l) and Tr(ff;’”) are same and
they represent the waiting time for the r-th occurrence of the non-overlapping run of
successes of length k, while TT(”;CI’”I) represents the waiting time of the r-th occurrence
of the overlapping run of successes of length k. Sarkar and Anuradha (2002) obtained
the Poisson convergence of the waiting time distribution for the r-th occurrence for a
more generalized run for the m-th order Markov chain under the same condition (4.1).
This generalized run includes both overlapping runs as well as non-overlapping runs of
successes of length k. We quote those results here without giving proofs.

THEOREM 4.2. Under any initial condition, if (4.1) holds, then as r — oo,

k
(a) T,S’Z“I) —rk = Z Z; when ki=k>1
i=1

(b) TED —rky = Z5  when ky <k

k
(¢) T,S’Zl’”) —rk = ZZi when ki1 =k>1

i=1
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(d) TT“(”Z"H) —-rk=0 when ki <k
() T8 —(ryk—1)= 2, when ki=k>1
6 THD —(r4k—1)=0 when ki<k

where for i > 1, Z; ~ Poi(i, pam 1) and are independent and ZF ~ Poi(1, kippgm_1).

PROOF. We prove the cases (b) and (d) only. For proof of part (b), fix t > 0 and
set w = max(k; + 1, m). We note that, {Tr(yil’l) —rk1 =t} 2 Bt(w)(rkl +t) for all r such
that rk; > (t + 1)w. Now, using Lemma 4.3, we have

— kipom —
lim ianx(TT(’?’I) rky =t) > lim 1an (B (rky + t)) = exp(—kypiam — 1)_._—( 1“2t 1)
r—00 , 1

This, by Lemma 4.1, is sufficient for our purpose.

: For part (d), ﬁx € > 0 and choose J > 1 such that Z o exp(—kAam _1)(kAgm_1)7/
j!1>1—e¢. Set w = max(k + 1,m) and note that, for r so farge that rk > (J + 1w+ J,

we have

J
U BM k) < (T ™D = 7k}
t=0

Thus, we have,

J
lim inf P (T8 = rk) > liminf Y Po(B{* (rk))

T 00
t=0

J

= Zexp(~k)\2m_1)(k)\2'"—1)t/t!
t=0

> 1—e

Since € > 0 is arbitrary, this proves the result. The proof of part (f) is similar and we
omit it. O

Remark. Asremarked earlier, since the limiting distribution does not depend upon
the z € N,,, same results continue to hold, when we replace the initial condition by a
distribution on 6 on N,,.

4.2 Strong tendency towards reversing state

More interesting results are obtained when the system has a strong tendency of
reversing its state, i.e., if it is in state 1 it would tend to switch to state 0 and vice versa.
Formally speaking, we set,

(4.4)

TPy — Uy if u is odd (ie., Xo = 1)
. as r — o0
r(l—py) — py ifuis even (i.e., Xo =0)

where p,, > 0 for all uw € N,,,. For next few theorems we require a lower bound for the
probability of the following event which we obtain in the next lemma. Suppose that



332 ANISH SARKAR ET AL.

Jo,J1 = 0 are given and [ is sufficiently large and w > m. Define the event

Bl(w) (Jo,71) = {all strings of length I consisting of 1’s and Q’s, starting with 1 and
having exactly jo/j1 occurrences of 00/11 respectively and no runs
of 1’s of length 3 or more and no runs of 0's of length 3 or more are
present and between any two occurrences of (00 or 11) there are at
least w symbols (including both types of 1’s and 0’s)}.

The event Bl(w) (jo,71) comprises of all strings of length [, consisting of alternating 1’s
and O’s, starting with 1; however sometimes 1 may follow a 1 and 0 may follow a 0.
There are exactly jo occurrences of 00’s and j; occurrences of 11’s. Further we insist
that between any two such occurrences (00 or 11) there are at least w symbols (including
both types of 1’s and 0’s).

Define now

_J2(2m—-1)/3 if miseven
(4.5) a(m) - { (2m _ 2)/3 if mis odd
and
(4.6) B(m) = (2a(m) + 1)(mod 2™) = {

(2™ -1)/3 if mis even
(2m*+! —1)/3 if mis odd.

Let

@7 &G o, ) = (L= Go+71))/2] — Go + 1)[m/2] — jr[(m + 1)/2)
and
48)  &™ (L go,51) = [(L+ 1= (o +51))/2) — Go + D{(m + 1)/2] — j1[m/2]

where [s] is the largest integer less than or equal to s. Let y € N,, be any initial
condition. Define

( s—1

]__[0(1 - ph§°)(y))pf0(h§°)(y)) if m=2siseven

]:

49 wlym={'"

Hfl ~ PO Pron® ) (1~ Pay) I m =28+ 1is odd
\ j=

and
( s—1

H}phgl)(y)(l - pfl(hg_l)(y))) if m = 2siseven

]:

(410) mly,m)=q . |

thﬁl)(y)(l —pfl(hgl)(y)))phgn(y) if m=2s+1isodd

\ j=0

where 1y (y) = h§" () = y and £V (y) = f1(fo(A?, (v))) and AP (y) = f1(fo(AD, ()
for all j > 1. Now we have,

LEMMA 4.4. For any initial condition x € N,,, which is even, we have

411)  Po(B™ (o, 1))
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> png'")(l;jo,jl)(l -~ ps (m))ng’"’(l;jo,jl)

a(m)
oy (1= Pty Yo (@, m)m (alm) + 1,m)30(B(m) — 1,m)%
({(z 2w~ (jo + j1) (2w + 1>>/2]>

Jo
([(1 +1-2w-— (j0.+ J1) (2w + 1))/2])_

N

Proor. To find the probability of a string in Bl(w)(jo, J1), we note that, since
w > m, each occurrence of 11 is followed by at least m symbols of alternating 0’s and
1’s, starting with 0 (0101...) and each occurrences of 00 is followed by at least m

>m
symbols of alternating 1’s and 0’s, starting with 1 (1010...). Therefore, except the 1’s
>m
which occur, at trials not greater than m from the start of the string, or within m trials
from an occurrence of either 00 or 11 or the 1’s which is preceded by another 1 (the
second 1 in 11), all 1’s will be preceded by m symbols of alternating 0’s and 1’s ending
with a 0 (,..1010). Note that we only have to look m-trials backwards to calculate the

m
probability of any occurrence (0 or 1) since the model is m-dependent. Similarly, except
the 0’s which occur, at trials less than or equal to m from the start of the string, or
within m trials from an occurrence of either 00 or 11 or the 0 which is preceded by
another O (the second 0 in 00), all 0’s will be preceded by ...0101. We illustrate this

m
by an example with m =5 and jo =1 and j; = 2:
m m m m
—— —— e —N—
101010100101010101101010101101010101
* O % O % O %0 % 0Ox%x * 0% O %O *x O % O % O

Here, 1’s and the 0’s which are marked by a » and a o respectively, are the symbols
which we leave out in the counting. Remaining 1’s and 0’s are preceded by 01010 and
10101 respectively.

Now, the probability of a 1 which is preceded by . ..1010 is given by p(m) and the

m
probability of a 0 which is preceded by _..0101 is given by 1 — pg(m,) where a(m) and

m
B(m) are defined in (4.5) and (4.6). We can find the number of 1’s, denoted by &1 (m),
which are preceded by . ..1010. When m is odd, m = 2s+1, at the start of the string and

m
after each occurrence of 00, there are (s+1) = [(m+1)/2] many 1’s and s = [m/2] many
0’s which occur at trials no larger than m from the start of the string or the occurrence
of 00 respectively. Similarly, for each occurrence of 11, we have s = [m/2] many 1’s
and (s + 1) = [(m + 1)/2] many 0’s which occur at trials no larger than m from the
occurrence of 11. Therefore, the number of 1’s which are preceded by . .. 1010, is given by

(I+1=(o+51))/2]-F1s—(Go+1)(s+1) = [(I+1—(jo+11)) /21— (Jo+1)[(m+1) /2] j1|m/2].
Arguing similarly, we have, if m is even, m = 2s, then the number of successes preceded
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by (.. 1010 is given by, [(1 +1 — (jo +51))/2] — s(jo +j1 + 1) = [ +1 - (jo +51))/2] —
[m/2)(jo +j1 +1) = [+ 1= (Jo +41))/2] — (Jo + 1)[(m +1)/2] = j1[m/2]. Similarly, the
number of 0’s which are preceded by ...0101 is denoted by /-c(()m) (1; 4o, 71) and is given in

(4.7).
For 1’s which are preceded by _..0101, the probability is given by pg(,) and 0’s

which are preceded by ..1010, the probability is given by 1 — py(m)-

m
Finally, for any string of length m, starting with 1 and consisting of alternating 1’s
and 0’s, preceded by any initial condition y = E;."z_ol 29y; € Ny, the probability can be
computed in the following way. Suppose that m = 2s, then, the probability

'Yl(y,m) = P(Xl = 17X2 = 0)"'aX28—1 = 17
Xos=0|Xo=v0,X-1=y1,-- -, Xomt1 = Ym—-1)
= Ph )X P ))Ph® ) (L~ P ad ) -+ Pr, ) (L = P h® )
s—1
= thﬁ-”(y)(l - Pfl(hg-“(y)))
3=0

where h(()l)(y) =yand hgl)(y) = fo(fl(hgl_)l(y))) forj=1,2,...,s—1. Whenm = 2s+1,
the probability can be computed similarly and is given by

’Yl(y7m) = P(Xl = 11X2 = 07"-;X2s = 0;
Xost1=1|Xo=50, X1 =91,-- -, X-m+1 = Ym—1)

s—1
- HO P ) (1~ Py (10 ()P oy
J:

Similar computations can be carried out for strings of length m starting with a 0 and
consisting of alternating 0’s and 1’s. Indeed, the probability is denoted by 7o (y, m) and
is given in (4.9).

Combining all the results, the probability of any string in Bl(w)(

Jjo,Jj1) is given by
w{™) Lijo,j MCOYRI . .
pal(m)( Jo Jl)(l — Pﬁ(m)) 0 (l,Jo,Jl)pg(m)(l _ pa(m))Jo
x 11 (z, m)y (a(m) + l,m)jlfyo(ﬁ(m) —1,m)%.

(4.12)

We observe that the probability of the string is actually independent of the positions of
occurrences of 00 and 11. Therefore, the probability of Pz(Bl(w)( Jjo, 71)) can be obtained
by multiplying the above probability with the number of possible permutations. However,
it is rather difficult to calculate the exact number of permutations, hence we obtain a
lower bound which is sufficient for our purpose.

Now, to obtain a lower bound of the number of permutations, we proceed as fol-
lows: we assume that at the start or after each occurrence of 00, there are w pairs
of 10, i.e., 1010...1010 and each occurrence of 11 is followed by w pairs of 01, i.e.,

2w
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0101...0101. We can employ combinatorial methods to compute the lower bound as
N——

2w
follows: suppose that we have two classes, A and B. The class A, consists of two types of
elements 1 and 110101 ...0101, with exactly 7; elements of type 110101 ...0101 while
N — N e

2w 2w
the class B contains two types of elements 0 and 001010...1010, with j; elements of
N —

2w
type 001010...1010. First, we fill up the first 2w places with 1010...1010 which can
S——r S——

2w 2w
only be done in one way. Now, we are left with | — 2w — jo(2w+2) — j1 Qw+2) + jo+71 =
I — 2w — (jo + j1)(2w + 1) many places, the odd places of which should be filled up with
elements from class A and the even places by elements from class B. This can be done
in
gy (020 o a2 (10420 o+ )+ )2

Jo n

ways. This certainly gives a lower bound for the number of permutations. Therefore,
combining (4.12) and (4.13), we get the result. [

Now, using Lemma 4.4, we will analyze the waiting time distributions for various
types of runs.

THEOREM 4.3. If the initial condition is that z is even (i.e., Xo = 0) and the
condition (4.4) holds, we have

@) T —(2r+1)= 29+ 20 when k=1
() TM —(2r +1) = 29 + 28 when k>2

where Zfo) ~ Poi(1, pra(m)), Zéo) ~ Poi(3, pta(m)) and Z(_ll) ~ Poi(~1, ug(m)) and Z(_ll) is
independent of both Z{O) and Zéo).

ProoF. For part (a), fix any t € Z and consider the set Ly = {(jo,Jj1) : Jo,J1 >
0, 3jo — j1 = t}. Fix any (jo,j1) € Lt and define the event Agg;r:;l) = {the string of
length (2r + 1) + t has exactly jo occurrences of 00 and exactly j; occurrences of 11}.

Ag{:;t; 1) a5 the empty

set. Note that for any fixed t and (3, jo) € L, the set Ag;;tf D will be non-empty for

Whenever it is not possible to find runs of the above kind, we set

all sufficiently large 7.

Set w = max(4,m) and note that each string in Bgfll +¢(Jo,j1) also belongs to

Agorjf;r 1 and further for each string in Bé’r‘il +¢(Jo,J1), we have ™M — (2r+1) +t for

all sufficiently large r. Thus, we get,

o w .
{T,SM) _ (27~ + 1) = t’AEjo:;f;—l)} 2 Bér.z.l_q.t(]()».h)

for all r sufficiently large. Hence, from Lemma 4.4, we have,

2r+t+1
P(T) = (2r +1) = t, ALY
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> Po(BS) 1o, 1))

k{™ (2r4t+1370,5 () iy .
>p ( Jo Jl)(l “pﬁ(m)) o (2r+t+1,go,31)p]ﬁ1(m)(1 —Pa(m))m

= Fa(m)
x 71 (z, m)y1(a(m) + 1,m) 5 (8(m) — 1, m)%
S ([(27‘ +t+1-2w— (2w+1)(jo +j1))/2]))

Jo
o ([(2r +t4+2-2w-— (jo +71) (2w + 1))/2])
Ji
L. 7-J1+'0
= B (1= 3" (1= Patm) By (14 0(1) ¥ S (14 0(1)

. eXD(—La(m)) (Ba(m))? exD(—Ls(m)) (1a(m))"!
Jo! Ji!

and this proves the result.

For part (b), we follow a similar procedure. For any t € Z, let L; be the set
{(1,70) : Jo.d1 = 0,50 — 71 = t}. Set w = max(4,m). Since k > 2, for each string
in Bé;"}rl +¢(Jo, J1), the r-th occurrence of the run of type at most k(> 2) is completed
exactly on (2r + 1) + ¢t. Thus, we have, for all sufficiently large r,

{T0 — (2r +1) =, AGTESY 2 BE 44 Gow )

where Ag;;t;r Y is as defined above. So, using Lemma 4.4, we get

o4l
P’”(ngM) - (27' + 1) = t7AEj(:§1) ))
> Po(B§YL140(do, 1))
> Prymy (1 = Paim)) (1 = Pa(m) Y By (1 + 0(1)) X

. exp(—ta(m)) (Ba(m) ) €xp(—a(m)) (Lam) )’
Jo! Ji!

rj0+j1
Jolir! (1+o(1))

as r — 00. This completes the proof of the theorem. O

Remark. If the initial condition x is odd, i.e., Xo = 1, then the string will start
with a O at the first trial and then the rest of the argument can be easily carried over to
prove that,

(a) TM — (2r +2) > Z:go) + Z£11) when k=1
() T — (2r +2) = ZI(O) + Z(_ll) when k> 2

where Zfo) , Zéo) and Z(_ll) are defined in Theorem 4.3. Suppose that 8 is any probability
distribution on V,,, the set of all initial conditions. By first conditioning on z € Np,,x
even and then summing over all z even, we can establish that with probability #(even) =
> weven (), TT(M)(O) —(2r+1) converges to (Z?(,O) + Z(_ll)) if k=1 and to (Z{¥ +Z(_11)) if
k > 2. Similarly, with probability 6(odd), M) (8)—(2r+41) converges to 1+ (Zéo) +Z(_11) )
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ifk=1and tol+ (Zl(o) + Z(_ll) ) if kK > 2. These can be combined together as follows:
let X be Bernoulli random variable with P(X = 1) = #(odd) and be independent of

random variables Z(O) Z © and Z(_ll). Then,

(a) TM (@) - (2r+1)= X + Zéo) + Z(_ll) when k=1
) TM@) - 2r+1)=> X+ 29+ 2% when k>2.

Next, we study the case of runs of type exactly k.

THEOREM 4.4. If the initial condition is that x is even (i.e., Xo = 0) and the
condition (4.4) holds, we have

TE) — 2r+1) = 20 + 2 when k=1
where Z{l) ~ Poi(1, pig(m)) and Zéo) ~ Poi(3, pto(m)) and Zl(l) and Zéo) are independent.

PRrROOF. The proof of this is similar. For t € {0,1,...}, set Ly = {(J1,70) : Jo,J1 >

0,3j0 + /1 = t} and consider the probability PE(TT(E) - (2r+1)=t, Ag;;t;‘ 1)) where

8;;6; Y is as defined earlier. Again, for each string in Bgﬂ_l +¢{Jo, 41}, we have T8 —
(2r + 1) + t where w = max(4,m). Hence, we have, for all sufficiently large r,

2r 1
{T,SE) — (27" + 1) =t, AE].O:;:;_ )} 2 B27‘+1+t(-70"71)

So, using Lemma, 4.4, we have

PLTE) — (or +1) =1, A2 )
> Po(BS 140 (jo 1))
.7
2 Py (1 = Paem)) (1 = Pam) Py (1 + 0(1)) X —=— T (1 +o(1))

_ exp(= ua(m))(ua<m))’° exp(—pig(m)) (p(m) )"
Jo! Ji!

as r — 00. This completes the proof of the theorem. OJ
Remark. If the initial condition z is odd, as before, we can establish
TE —(2r+2) = 2 + 28" when k=1

where Zéo) and Zfl) are as specified in Theorem 4.4. Hence, given any probability
distribution 6 on N,,,

TE@) - 2r+1)=> X+ 2"+ 2" when k=1

where X is an independent Bernoulli random variable with P(X = 1) = #(odd).
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Now, we consider the case of runs of type at least k. The proof of the next theorem
is similar to the proof of the Theorem 4.3 and we omit it.

THEOREM 4.5. If the initial condition is that x is even (i.e., Xo = 0) and the
condition (4.4) holds, we have

a) TV —(2r+1) = 294+ 29 when k=0
r 1 1
) TE —@2r+1) = 29+ 20 when k=1

where Z{” ~ Poi(L, j1a(m)), 21 ~ Poi(1, pg(m)) and 2 ~ Poi(—1, pp(m)) and Z{ is
independent of both Z(_ll) and Z§1).

Remark. If 8 is any distribution on the initial conditions, we have

) TV@) - @2r+1)=>X+22+2"Y when k=0
b) TH®G) - (2r+1) =X+ 29+ 2z when k=1

where Z§O), Z(_ll) and Z§1) are as in Theorem 4.5 and X is an independent Bernoulli
random variable with P(X = 1) = 6(odd).

Finally we investigate the limiting distributions of scan waiting times under this set
up. Unfortunately the methods employed here are not sophisticated enough to obtain

the limiting distributions of TSZ"I) and TT(’I;CI’H). However, these are good enough for

the waiting time distribution of T(k"’ n,

(kl,III)

Two different scenarios emerge for the scan waiting time T, , namely: (a) k is

even and (b) k is odd. We study them separately.

THEOREM 4.6. Under any initial condition, if k is even and the condition (4.4)
holds, we have

(@) TH™D —(r+k-1)= 20 when k=2k
) T8ID _(r+k—1)=0 when k> 2k

where Z,g?) ~ POi(kl»ﬂa(m)/2)-

PROOF. For part (a), fix e > 0. Choose J large so that Z o exp(—Eeml ) (Belm )i/
j!>1—e. Fix any t > 0. For w = max(4, m, 2k) and for all sufﬁ(nently Iarge r, we have

J
ki, ITT ki, ITT k—1+k
(Tl _ (r 4 = 1) = kyt} D .UO{TT(,;J (k1) = kg, AR
]:

J
U B(?k 1kt (B 9)-

Jj=0

9]
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Therefore, we obtain,

PATED — (r k= 1) = kat}

J
> P(BYk g ket 5)

7=0
2 r/2 ‘g (r/2)t+9
Z zgpa(m)(l - pﬁ(m)) (1- pa(m)) p]ﬁ(m)(l +0(1)) x _t'T(l + 0(1))
- i: exp(—fia(m)/2) (Ba(m)/2)" exp(=La(m) /2) (1pim) /2)
3=0 t! j!
> (1—¢) exp(—pa(m)/2)(ta(m) /2)t.

t!

Since € > 0 is arbitrary, this proves that liminf,_, P{TT(’};;I’HI) —(r+k—=1)=kt}>
exp(—ta(m)/2) (Ha(m)/2)t /t!. This proves part (a).
For part (b), we choose € > 0 and J so large that Zj‘:o exp(—pa(m)/2)(Baim)/2) /

j!>1—¢€and Ej:o exp(—pam)/2) (Bam)/2) /51 = 1 — e. Now, for all sufficiently large
r and w as defined above,

J
ki III o, 7
{Tikl ) _ (r+k-1)=0}2 U B,E:"_L_l(JO,Jl)-
jo,j1=1

Therefore, using Lemma 4.4, we have that liminf, . P{ng’[”) —(r+k-1)=0}>
(1 — €)%, Since € > 0 is arbitrary, this completes the proof. 0

Remark. When k < 2k;, it is easy to conclude that the scan waiting times converge
to infinity. As earlier, we can start with a initial distribution # on N,,. Since the limiting
distribution is independent of the initial condition, we have,

(@) THTDO) ~ (r+k—-1)= 2>  when k=2k
(b) TH D0 —(r+k—1)=0 when k> 2k
where Z,g?) is same as in Theorem 4.6.
Next we explore the case when k is odd.

THEOREM 4.7. If the initial condition is that x is even (i.e., Xo = 0), k is odd
and the condition (4.4) holds, we have

() TS —k—2(r-1)= 2+ 2%)  when k=2k -1

) T9ID _k—(r=1)=0 when k> 2k —1

where Z,go) ~ Poi(k, fiq(m)) and Z(_l,z ~ Poi(—k, pgim)) and Z,EO) and Z(_l,g are indepen-
dent.
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ProOOF. We only prove part (a). For any t € Z, we define L; = {(jo, 1) : Jo,J1 =
0,jo—j1 = t}. For any (jo, j1) € L, consider the event Ag:fl()r ~DFE) o all sufficiently
large r, this is a well-defined event and also note,

k1,111 k+2(r—1)+kt . .
{Tr(,kl k- 20r-1) = kt’AEjoJ,rjl() : )} 2 Br(:i)2(r—1)+kt(30aﬂl)

where w = max(4, m, 2k). Therefore, using Lemma 4.4, we conclude that,

lim inf P{TT(";;’”I) —k-2(r—1) = kt,A(k+2(r—-l)+kt)}

00 (Jo,j1)

S exp(—pa(m)) (Bagm) ) exp(—pa(m)) (La(m) )
a Jo! Ji! )

This completes the proof. [

Remark. When &k < 2k; — 1, it is easy to observe that the waiting times converge
to infinity. If @ is any initial distribution on N,,, we have,

(a) TRID@) ~k—20r—1) = 2 + 28 + X when k=2k -1
() THTD@) —k—2(r—1)=0 when k> 2k —1

where Z, ,(CO) and Z(_l,z are as in Theorem 4.7 and X is an independent Bernoulli random
variable with P(X = 1) = (odd).

5. Central limit theorem

In this section, we derive central limit theorem for the number of runs up to time
n, of different types, viz., M7(1M), M,(lE) and M,(LL), as well as the number of scans up to
time n, denoted by S,(c]1 ) o(n) for j = I, IT and III, for the stationary m-th order Markov
chain set up. Further, for the same set up, we establish law of the iterated logarithm for
MM, M MEP and S0 ().

We define a sequence of new random variables which form a stationary Markov
chain with finite state space and translate the description of runs of all types as well as
the scans from the set of original random variables to the set of newly defined random
variables. We assume that 0 < p, < 1 for all z € N,,; therefore this new Markov chain
is irreducible. Hence the new Markov chain, being stationary with finite state space and
irreducible, forms an a-mixing sequence. Using results from the central limit theorem for
a-mixing sequences, we derive a very general central limit theorem on arbitrary functions
of the newly defined random variables. Further, we establish moment bounds on the new
set of random variables and applying the bounds in the a-mixing setup, we obtain law
of the iterated logarithm for any function of the newly defined random variables. Now,
by appropriately choosing the function in the above result, we obtain the central limit
theorem and law of the iterated logarithm for M, M and S((éluk)) (n). In case of
runs of type at least k£, the above method cannot be directly applied since there is no
upper bound on the length of the run. However, we can construct a pattern, hence an
associated function, so that M,(LL) can be approximated by the number of above patterns
till time n. This approximation enables us to use the above general theorem to derive

the asymptotic results for M,(,L).
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In order to obtain the results for the scan enumerating variables, S,(Cf)k(n) and

S,gl,z (n), associated with the non-overlapping schemes for counting of scans, we have to
employ a new technique. We define a sequence of stopping times in terms of the newly
defined random variables in such a way that the number of scans between two successive
stopping times become i.i.d. This allows us to approximate both Sg) ,(n) and S’,(cf,z(n),
by a random sum of i.i.d. random variables. Using asymptotic results on random sums of
ii.d. random variables, we derive the appropriate central limit theorem for S,(c?k (n) and

S,gl,z (n). This method can be generalized to a wider class of statistics, which depend on

a finite number of observations and has a finite order auto-correlation structure.
Let | = max(m, 2k, k+2). If I >m, set X_p, = X_pp—1 = -+ = X_;41 = 0. Define
a sequence of random variables {Y, : n > 0} as follows:

-1
Yo=) 21X,
7=0

Since X; € {0,1} for all 4, Y;, assumes values in the set N;. Since the random variables
X, is stationary and m-dependent (m < [}, we have

. !
Pr..(z) if y= fl( )(3’))
. l
PVop1=y|Yn=2)=% ¢ ;)= = Ppo(ey if y=F ()
0 otherwise

where 7, : Ni — N, defined by m,,(z) = 2 mod(2™) and fi(l)(a:) = (2z + i) mod(2'),
i = 0,1. Thus, {Y, : n > 0} is a stationary Markov chain with state space N; with
Yo = z. Therefore, {Y,, : n > 0} is an a-mixing sequence with a, = Kp™ where K > 0
and 0 < p < 1 are constants (see Billingsley (1986)). More formally, let 7§ and F2°
be the o-algebras generated by the random variables (Yp,Y),...,Y,) and (Ya,Ynt1,...)
respectively. Then, we have forany n > 1 and t > 1

(5.1) sup |P(A)P(B) — P(AN B)| < Kp'.
AcFy,BEFS,

From the definition of Y,,, it is clear that X,, = 1 if and only if Y,, is odd. Further,
Y,, contains all the information of the window of length [, starting at n—[+ 1 and ending
at n. We now prove the central limit theorem and law of the iterated logarithm for
arbitrary functions of the sequence {Y,, : n > 1}.

THEOREM 5.1. Let v: Ny — R be any function. Then, we have,
Y, oY) - (U o) _
Vno
where 0 > 0 and Z follows a standard normal distribution. Further, law of the iterated

logarithm holds for {v(Y;) :i > 1}, i.e.,

n n
lim sup Zi:l v(Y;) - E(Zi:l v(Yi))
n—00 o+/2nloglogn

=1 almost surely.
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Proor. Using example 27.6 of Billingsley ((1986), p. 363), we obtain that {v(Y}) :
i > 0} is a stationary sequence of random variables. Further, we also obtain that
{v(Y;) : i > 0} is a mixing sequence with mixing constants o, given by a, = Kp"
where K and p are defined in (5.1). Therefore, we are able to apply the Theorem 27.4
of Billingsley to obtain the central limit theorem.

For the proof of the law of the iterated logarithm, we use Theorem 1.2.1 of Philipp
(1971). Let M; = max{|v(j)| : j € N;}. Since, N; is a finite set, M; < oco. Thus, we
have, for any n > 0,

lo(Yn) = E(u(Ya))| < [v(Yo)l + E(ju(Ya)]) < 2My.

Thus, the condition of Philipp (1971) is satisfied by the family {v(Y;,) : n > 0} and hence
law of the iterated logarithm holds. (]

Now, we use this meta theorem, with special choices of functions v : N; — R,
to derive the central limit theorems as well as law of the iterated logarithm for the

enumerating variables M,(LM), MT(LE), M and S;(cflkl ) (n).

THEOREM 5.2. Let M{™ be the number of runs of type at most k up to trial n.
Then

MM — B(MM)
=7
\/EO'M
where opr > 0 and Z follows a standard normal distribution. Further, law of the tterated
logarithm holds for M,(,M), i.e.,

limsu MT(LM) — E(MT(lM))
n—»oop omv/2nloglogn

=1 almost surely.

ProoF. Consider the function vps : N; — {0, 1} defined as

omt () = 1 if zmod(2/)=2"'+1 forsome j=2,3,...,k+2
M7 10 otherwise.

It is easy to note that ¥, mod(27) =271 +1ifand only if X, = X,_j41 =1land X; =0
forn-j+2<i<n, j=23,...,k+2 Thus, vp(Y,) =1 if and only if a run of type
at most k ends at time n for n > k + 2. Therefore, we have k +1 + 377, ., vm(Y;) =

MM >3 o (). Since | X0 var(Y;) — S0y var(Y5)] < k + 1, we have the
central limit theorem and law of the iterated logarithm from Theorem 5.1. [

Considering the function vg : N; — {0,1} defined by

on(z) = 1 if zmod(2F+2) =2k+1 11
B "~ 10 otherwise

we obtain the following limit theorem for the runs of type exactly k, proof of which we
omit.
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THEOREM 5.3. Let M,(LE) be the number of runs of type exactly k up to time n.
Then
M — B(MP))
Vnog
where og > 0 and Z follows a standard normal distribution. Further, law of the iterated
logarithm holds for MT(LE), i.e.,

=7

M — B(M)
lim sup z
n—oo Opy2nloglogn

=1 almaost surely.

Now, we concentrate on the scan statistics S( I)(n) where 1 < k; < k. Define a
family of functions {m;:t=0,1,...,k} on N; — R in the following way: mo(z) = 0 and
mi(z) = zmod(2?) for t > 1. Now, deﬁne the function vg : Ny — {0,1} defined by

k
1 if Z(ﬂ't(x) —m_1(z)) /28 > ky

Us(l‘) =
0  otherwise.
It should be noted that vg(Y,) = 1 if and only if the window of length k starting at

n — k + 1 and ending at n, contains at least k; many successes, i.e., a scan is observed
in the window of length k ending at n. Therefore, using this function, we derive the

following limit theorem for S,glkl ) (n) from Theorem 5.1.

THEOREM 5.4. Let S(HI) (n) be the number of scans up to time n, obtained by
using the overlapping scheme of counting scans. Then

Shuie (1) — B(Siyy ()
ﬁaglll)
(II1)

where og > 0 and Z follows a standard normal distribution. Further, law of the
iterated logarithm holds for S(IH) (n), i.e,

11 III
o Sk () = B8 ()
1m sup

n—00 agn)\/2n loglogn

=7

=1 almost surely.

Remark. The arguments above use actually the mixing nature of the underlying
random variables and will continue to hold for general stationary mixing sequences with
appropriate conditions on the mixing constants. It is also evident that any pattern or
a family of patterns which are determined by the values of finitely many X;’s, can be
similarly represented by a suitably constructed function and therefore, the asymptotic
results in such cases can be similarly derived from Theorem 5.1.

Next, we concentrate on the runs of type at least k. This situation is different
from the previous cases, since, in this case, there is no upper bound on how far the run,
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starting at time n, can go. So, to apply the above technique, we need to approximate
this run by some pattern which is of finite length.

THEOREM 5.5. Let M,(lL) be the number of runs of type at least k up to time n.
Then . .
M - B

\/EO'L
where o, > 0 and Z follows a standard normal distribution. Further, law of the iterated
logarithm holds for My’), i.e.,

VA

. MP — p(MM)
lim sup
n—oo 0rv/2nloglogn

=1 almost surely.

PrROOF. In order to approximate runs of type at least k, we define the function
v, : N; — {0,1} as follows:

on(z) = 1 if zmod(2k+!) =2
L 0 otherwise.

It is easy to see that vp(Y,) = 1if X,,_x =1 and X,_g41 = --- = X, = 0. Thus, this
function will count the number of occurrences of the event that a success is followed by
at least k failures.

Suppose that i; < is < --- < i, are the starting points of runs of type at least k,
up to time n. Hence, we must have X;, = 1 and Xj,4; = 0 for j = 1,2,...,k. Hence,
v (Yi,+x) = 1 for each t = 1,2,...,s. Therefore, we must have,

n

MP) < " v (V).
j=k+1

Conversely, if K+ 1 < ji < j2 < -+ < js < n be the trials for which v, (Y};,) = 1 for
t=1,2,...,s, then j; — k must also be starting point of a run of type at least k, for
t=1,2,...,8 — 1. Therefore, we must have,

n
M®P > N u, (V) -1
J=k+1

Combining this with above, we have,
n
ME - o (V)| <k+2
j=1
From Theorem 5.1 and the above estimate, the result follows. O

Now, we consider the random variables S,(Cf?k (n) and S,(C{I,Z(n) It is obvious that
X, = 1if and only if Y, is odd. So, the random variables {R,(cll)k(n) :n > 1} and
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{R(II) (n) : n > 1} can be re-defined using Y,’s in the following way:

n—1
RO 1 if ma)+ > m(Y)) H 1-RO.®) 2k
k(n) j=n—k+1 =j

0 otherwise

n-—1
II II

Rgclyl)(:(n) = H (1 - R( )(J))l{): j=n—k+1 7"1(Y )>k1}
j=n—k+1

where 7 (z) = zmod(2).
Now, we consider a sequence of increasing stopping times {7, : t > 0} defined as
=0and fort > 1, 7 = inf{n > n—; : Y,y = 0}. Clearly, as t — oo, 7y T o0.
The Markov chain {Y, : n > 0} has finite state space N;. Further it is irreducible,
since 0 < p, < 1 for all x € N,,. Hence 7y < oo almost surely. It is evident that
the stopping times occur if and only if we observe a sequence of O’s of length [, in the
original sequence of random variables. This breaks the auto-correlation structure of the
occurrences of scan and as a result, the number of scans before the stopping time and
after the stopping time behave independently. We make this formal in the next lemma
using the strong Markov property.

Define,
I Tt+1
I
Ut( ) = Z Ry )k(l)
i=7¢+1
II jiasy
Ir
v =3 BIG)
i=1s+1

for t > 0. We have

LEMMA 5.1. For any initial condition z, we have,

e the random variables {Ut(l) :t > 0} are independent. Further, {Ut(l) 1t > 1} are
identically distributed,

e the random variables {U" : t > 0} are independent. Further, U ¢ > 1)
are identically distributed.

First, we prove the central limit theorems assuming Lemma 5.1.

THEOREM 5.6. Let S(I)k(n) and S(”) w(n) be the number of scans up to time n
using the non-overlapping schemes of countmg scans. Then we have

I
SD, (n) — B(SE, (n)

(a) \/ﬁa(l) =27
S0 () — B(sUD (n
(b) St " )\/ﬁaggf)kl £(%)

where og), aéH) >0 and Z follows a standard normal distribution.
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PROOF. We prove part (a) of Theorem 5.6 only. The other can be proved similarly.
Since {Y, : n > 0} is an irreducible Markov chain with finite state space, it has an unique
stationary distribution. Let (6p,61,...,05 1) be the stationary distribution. Further,
we have that E(71) < co. Define W(n) = inf{t > 1: 7 > n}. Since the Markov chain is
positive recurrent,

W(n) . 1

— >0 almost surely as n — oo.
n 90

Let (o7)2 = Var(U") and set (c{)2 = (o§")2/6, > 0.
Now, we have,
S8 (m) = B(SL, (n))
Jn
n TW(n I I
_u" - Bug?) N SO @ - BUD) T Rik) — B(RY(0))
NG Vn Vn '

Since E(JUSD — EUP))) < 2BWY) < 2B(n) < 0,

I I
ug” - BUg")
Jn

Also, E(| 120 RO, (6) — E(RY (1)) < 2E(r2 — 71) < 00; as a result,

—0 as n — oo.

TW(n I . I .
Sve (RO, (1) — E(RD, (1) p
— 0 as n — 00.
vn

Since we have W(n)/n — 1/6p almost surely as n — oo, using proposition 10.1 of

Bhattacharya and Waymire (1990), for the i.i.d. sequence of random variables {Ut(I) :
t > 1}, we have

YrMw - B
W (n)

Combining all these, we conclude that (S,(C?k(n) - E(S,(cf)k (n)))/v/n = N(O, (ag))2). O

= N(0,(a{")?).

Finally, we prove the Lemma 5.1.

ProoF OF LEMMA 5.1. Since 7z T oo as t — oo, for any ¢ > 1, we can find ¢t > 0
such that 7 < ¢ < 7341. Now, we define new sequences of random variables as follows:
set ROD(i)=0for1<i<k;—1and RUD(G)=0for1<i<k—1and

i—1
D )1 M)+ > wl(Y)H(l—R(”(t))>k1
RY(i) = j=max(i—k+1,7e+1) t=j
0 otherwise
i—1
RUID () = II A=RBIDGNUm sy )2k}

j=max(i—k+1,7¢+1)
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Also, define, for each t > 0,

Tt4+1 Te41
‘/t(l) - Z R(I)('l) and ‘/t(II) — Z R(II)(Z)

j=7e+1 J=Te+1

From the definition of V(I) and V(H) for j < t, it is clear that both of them are

determined by the process {Y n < Tt+1} ie., V( ) and V( are both F,,,, = o(Yn :
n < Ty4+1) measurable random variables.

Now, for 7 < i, the random variables R(D (i) and RUD (i) are measurable with
respect to F,+ = O'(Yn :n > 1+ 1). Indeed, R (1, +1) = 1 if and only if 71 (Yy,41) >
ki; hence it is F,,+ measurable. Assume that it is true for 4. Since R(D(i + 1) is a
function of {Y; : ¢ > j > 7 + 1} and {RU(§) : i > j > 7, + 1} and by induction
hypothesis, R (j) is measurable w.r.t. F,, 4 for i > j > 7, + 1, we have that RO (i + 1)
is F,,+ measurable. A similar argument holds for RUD(i). Therefore, both Vt(I) and
Vt(u), are F,,+ measurable.

Since {Y, : n > 0} is a Markov chain with finite state space, it obeys the strong
Markov property. Thus, the conditional distribution of the process {Y; : 7 > 741}, given
the process up to time 741(Fr,,, ), using the strong Markov property, is same as that
of {Y,, : n > 0} with the initial condition Yy = Y;,,, = 0. Since Vt(ﬁ is measurable with
respect to ., 4, for any I' € R we must have I'; such that

Po(V{) € 1) = Po(Yoost1, Yrugpso-,) € T0).
Using the strong Markov property, we have

I
(5'2) PZ(V;({—} el | ]:Tt+1) = PCB((YTt+1+1aYTt+1+2a .- ) € 1_‘1 I ]:Tz+1)
= P()((Yi,YQ,...) S F])

does not depend on F;

Vi s
t+1 t+17
independent of 7, ,. As a consequence, Vt(g is independent of random variables which

Therefore, Vt(ﬁ is independent of {Vj(I) :0<5<

Since the conditional distribution of Vt(ﬁ given F,

are measurable with respect to 7, .
t}. Further, from (5.2), we must have,

P(VY) €T) = R((11,Ya,...) €T1)

which is independent of ¢ for t > 0. Hence {Vt(ﬁ t > 0} is a sequence of i.i.d. random
variables. Same arguments can be carried out for V;(ﬁ)

Only thing we need to show now is R (i) = R,(cl)k(z) and RUD (3) = R(H) (@) for all
i>1. By deﬁnition R (4) = R(I) W) =0fori=1,... k;—1and RUD(3) = R,(CIII,)C(Z) =
0fori=1,. — 1. Assume that it is true for i — 1 le t>0 such that 7, < i < TH_1
Now, if 'rt(w) < i—k + 1, then R(I)( ) = 1 if and only if ZJ k41 Wl(Y)Hs_J(l —

RO(s))+m1 (%) = 50 _gs M (V) TToZ; (1= R4 (8)) +m1(Y3) > ky (by induction hy-

pothesis) and therefore, if and only if R,(c )k( )= 1 Similarly, RUD (4) = H;;:_kﬂ(l -
II

RN menzky = o = BE2Os s my)zh)
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(H) p(@). If 7(w) > i — k + 1, note that Y;, = 0 which implies that X; = 0, hence
m (Y) =0, for all] =71—l+1,..., 7. Therefore, Z’:i k+1 m1(Y5) H;;;( g)k(s)) =

Sy R LSS0 — B4 (0) = S 0 ma(35) [Eh(1 — RO (5) which implies
that R,(i),k(z) = R(I)(z). Slmllarly, we have, Z;:i_kﬂ 7r1(Y) = Y ierp1 M1(Y;). Fur-
ther, since { > 2k, for j =7 —k+1,..., 7, the window of length k, starting at j — k+1
and ending at J, contains no successes. Since k; > 1, we have R(H)( j) = 0. Thus,

we have [['2 4,1 (1 = RUG)) = 1o, (@ = REDG)) = TT12L . (1 = RUD().
Therefore, we conclude that RUD (3) = R(H)( ). This completes the proof of lemma. [
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