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A b s t r a c t .  We consider a {0, 1}-valued m-th  order stationary Markov chain. We 
study the occurrences of runs where two l ' s  are separated by at most~exactly~at least 
k O's under the overlapping enumeration scheme where k >_ 0 and occurrences of scans 
(at least kl successes in a window of length at most k, 1 _< kl <_ k) under both non- 
overlapping and overlapping enumeration schemes. We derive the generating function 
of first two types of runs. Under the conditions, (1) strong tendency towards success 
and (2) strong tendency towards reversing the state, we establish the convergence of 
waiting times of the r- th occurrence of runs and scans to Poisson type distributions. 
We establish the central limit theorem and law of the iterated logarithm for the 
number of runs and scans up to time n. 

Key words and phrases: m-th order Markov chain, generating function, scans, Pois- 
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i .  Introduction 

Let X1, X2, . . .  be a sequence of {0, 1}-valued r a n d o m  variables. One m a y  th ink  of 
Xn as the  ou tcome of an exper iment  a t  the n - th  t ime  point  and  occurrence of 1 / 0  as 
the success (S) / fa i lure  (F) of the  exper iment .  T h r o u g h o u t  this p a p e r  we will assume 
tha t  the sequence of ou tcomes  cons t i tu tes  a s t a t i ona ry  m - t h  order Markov  chain. For 
any non-negat ive  integer k, we define a run  of type at most k/ type exactly k/ type at 
least k as the  occurrence of two successes sepa ra ted  by at  mos t  k~ exact ly  k~ at  least  
k failures respectively. Kou t r a s  (1996) invest igated the wai t ing t ime d is t r ibut ion  of the  
r - t h  (r > 1) occurrence of run  of t ype  a t  mos t  k under  i.i.d, as well as Markov  chain set 
up and ob ta ined  the genera t ing  funct ion and  Poisson type  convergence of the  wai t ing  
t ime  variable.  Kou t ras  (1996) employed a non-over lapping scheme for count ing runs, in 
the  sense t ha t  a success can only be pa r t  of one possible run. However,  in this paper ,  
we employ an over lapping count ing scheme for all the three types  of runs,  in the  sense 
t ha t  a success m a y  cont r ibu te  towards  count ing of two possible r u n s - - o n e  which ends 
wi th  the  occurrence of the  success and  the  next  one which is s t a r t ed  by it. We associate  

r a n d o m  variables  T (M), T (E) and T (L) with  the wai t ing t ime for the r - t h  occurrence  of 

run  of type  at  mos t  k, type  exac t ly  k and  type  at  least k respectively. Fur ther ,  M (M), 
M(n E) and M (L) represent  the  n u m b e r  of occurrences,  up to t ime  n, of runs  of  t ype  a t  
mos t  k, t ype  exact ly  k and  type  a t  least  k respectively. 
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A natura l  generalization of the concept  of runs of successes of length k as well as 
runs of type  at most  k is achieved th rough  the s tudy  of scans. For non-negat ive integers 
1 _< kl _< k, a scan refers to the occurrence of at least kx successes in a window of length 
at most  k. Clearly, when k = kl,  the  scan is equivalent to the run  of successes of length 
k. For the non-overlapping counting of scans, we can proceed in two ways: in the first 
scheme we count  from scratch every t ime a scan has been observed, while in the second 
scheme we s tar t  counting afresh only after  the window of length k, in which the scan 
has been observed, is completed.  In the overlapping scheme for count ing scans, we count  
the number  of windows (not necessaxily disjoint) of length k, each of which contains a 
scan. It  is evident tha t  if runs of type  at most  k are counted  using a non-overlapping 
scheme of counting runs, then  they  can al ternat ively be viewed as the occurrence of 
scans (in a window of length k + 2 with kx = 2) under  the first non-overlapping scheme 

m(kl,j) s(j) (, .~ 
of counting of scans. We define :/r,k and kl,k ~"/ as the waiting t ime for the r - th  
occurrence of scan and the number  of occurrences of scan up to t ime n respectively 
under  the j - t h  scheme of counting scans (j = I ,  I I  and I I I ) .  Here, I and I I  refer to 
the first and second schemes of non-overlapping count ing of scans, while I I I  represents 
the overlapping counting of scans. In this article, we investigate the  exact  dis tr ibut ion 

of the waiting t ime variables T(~ M) and T (E). Also, we establish several Poisson type  
- (k l  ,i) convergence results for the waiting t ime variables T (M) , T (E), T ( i )  and "1~, k for j -- I ,  

I I  and I I I .  Further ,  we derive the asympto t ic  results for the enumerat ing  variables 
M(n M), M (E) M ( i )  and S (j) , kl,k (n) for j = I ,  I I  and I I I .  

To make the definitions more t ransparent ,  we quote  the same example from Koutras  
(1996). Consider a string of length 20 of symbols - 1  and 0, with k = 1 

1 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 .  

We can see from the above example tha t  for runs of type  at most  k, T~ M) = 6, T (M) -- 7, 

T (M) = 11, T(4 M) ---- 12, T (M) = 14, T (M) = 18, T (M) --- 19 and T (M) = 20. It is 

impor tan t  to note  tha t  the success at tr ial  6 is the end point  of the first run  while it is 
the beginning for the second run. Similarly, the successes at trials 11, 12, 18 and 19 also 

contr ibute  to two runs. For runs of type  exact ly  k, we have T(1 E) = 6, T (E) = 14 while for 

runs of type  at least k, we have T (L) = 4, T (L) = 6, T (L) = 10, T (L) = 14 and T (L) = 17. 

Also we have tha t  M (M) = 8, M (E) ---- 2 and M (L) -- 5. For scans, we consider the 

window of length 3 with kl 2. T h e n  we have, I) 6, I) 11, -~3,3 = 14, 
__ T ( 2 ,  I )  T(2,II) T(2,II) T(2,II) T(2,III) T(42~ I) 18, "5,3 = 20, 1,3 = 6, ~2,3 = 12, ~3,3 = 19 and 1,3 = 6, 

T2(2,III) T(2,III) T(2,III) T(2,II[) T(2,III) T(2,III) 
,3 = 7,  ~ 3 , 3  = 8 ,  4,3 = 11, ~5,3 = 12, •  ~- 13, ~ 7 , 3  = 14, 

TS(2,III) T(2,III) T(2,III) ,3 ---- 18, ~9,3 = 18, ~10,3 = 20. It is obvious tha t  the waiting t ime variable 
Tr(2, I) ,3 can be viewed as the waiting t ime for the r - th  occurrence of the run  of type  at  
most  1 when the runs are obta ined using the non-overlapping counting scheme; however 

T(2,III) for the overlapping counting of scans, "r,3 does not  match  wi th  the corresponding 

waiting t ime variable T (M). 
The  impor tance  of scan statistics and scan waiting t ime distr ibutions arise from 

its applications in diverse scientific fields such as reliability, queueing models, molecular 
biology, stat ist ical  quali ty control,  signal detect ion,  compute r  networking etc. For a 
detai led discussions on applications of scan statistics and related scan waiting time, we 
refer the reader  to Glaz and Balakr ishnan (1999) and Balakrishnan and Kout ras  (2002). 
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Feller (1968) initiated the systematic study of the generating functions of distributions 
of runs of successes of the non-overlapping kind using the renewal theory. In the last 15 
years, there has been a major thrust towards finding the exact distribution of different 
run related statistics. These distributions have been derived under various assumptions 
on the sequence of underlying random variables such as i.i.d, or independent but  not 
identically distributed or first order Markov dependent as well as higher order Markov 
dependency. Several authors have contributed to the development of the theory of runs 
(see Aki (1985, 1992), Philippou (1986), Hirano (1986), Ling (1988), Philippou and 
Makri (1986), Hirano and Aki (1993), Aki and Hirano (1995), Fu and Koutras (1994), 
Koutras (1996), Uchida and Aki (1995), Uchida (1998) and references therein). The 
method of conditional p.g.f. (introduced by Ebneshahrashoob and Sobel (1990)) and the 
method of Markov embedding techniques (introduced by Fu and Koutras (1994)) have 
been effectively used to study such distributions. The waiting time distributions for the 
occurrence of runs of specific type has also been studied extensively by several authors 
(see Aki et al. (1996), Balasubramanian et el. (1993) and references therein). Koutras 
(1996) studied the waiting time distributions for non-overlapping runs of type at most 
k under the independent as well as Markov dependent set up. Uchida (1998) has also 
investigated the waiting time problems for patterns under m-th order Markov set up. 
Several authors have studied the scan waiting time distribution and the scan statistics 
(see, for example, Koutras and Alexandrou (1995), Koutras (1996), Chadjiconstantinidis 
et el. (2000), Chadjiconstantinidis and Koutras (2001) and references therein). Chert and 
Glaz (1999) proposed a Poisson approximation and gave an asymptotic expression for 
tail probabilities of the scan waiting time distribution. Boutsikas and Koutras (2001) 

,~( I I I )  / x has given an approximation scheme for ~kl,~ ~n). We refer to Balakrishnan and Koutras 
(2002) for a detailed and thorough account of the development and recent results on 
scan statistics and scan waiting time distributions. For the theory and applications of 
the continuous scan statistics, we refer the reader to Glaz et al. (2001). In this article, 
we study the scan statistics and the scan waiting time distribution under a m-th order 
Markov chain set up. 

In the next section, we introduce the necessary mathematical definitions and nota- 
tions. In Section 3, we derive the generating functions of the waiting time distributions 
of T (M) and T (E). For both the waiting time variables, we develop a system of lin- 
ear equations using the method of conditional p.g.f.s. In Section 4, various asymptotic 
results on the convergence of waiting time distributions have been derived under two 
broad set-ups. In the first set-up, we assume that the system has a strong tendency 
towards success while in the second set-up we assume that the system has a strong ten- 
dency towards reversing its states, i.e., from failure it would like to switch to success 
and vice versa. Under the first set-up, we show that T (M) converges to a Poisson type 

T ( k l , l )  r p ( k l , l l )  and distribution (Theorem 4.1) and the waiting time variables for scans "r,k , "r,k 

T(~I,IIO exhibit similar Poisson type convergence (Theorem 4.2). Under the second set- 

up, we show that the waiting time variables T (M), T (E) and T (L) converge to sum of 
independent Poisson type random variables (Theorems 4.3, 4.4 and 4.5). In this case, 

similar results have been established for ~r(kl'IH) corresponding to the cases: (a) k even rJg 
and 2kl < k (Theorem 4.6) and (b) k odd and 2kl - 1 <_ k (Theorem 4.7). In the final 

section, we derive the central limit theorems for M (M), M(~ E), M (L) and S(~),k(n ) for 

j = I, I I  and I I I .  Further, law of the iterated logarithm has been obtained for M (M), 
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M(n E), M(n L) and  ~(III) ~J]~l, k ( n ) .  To obtain the above results, we define a sequence of new 
random variables, in terms of the original random variables, so tha t  the sequence of new 
random variables is a s ta t ionary  Markov chain, assuming values in a finite set. We derive 
a meta  central limit theorem and law of the i terated logarithm, involving functions of 
the newly defined random variables (Theorem 5.1). This theorem yields the results for 

, q ( H Z )  M(n M), M (E) M(n L) and ~k~,k (n) as special cases (see Theorems 5.2, 5.3, 5.4 and 5.5). 
For the two non-overlapping scheme of counting scans, we define a sequence of stopping 
times so tha t  condit ioned on these stopping times, the number of occurrences of scans 

become independent.  Hence S (j) (n) k~,k~ can be approximated by a random sum of i.i.d. 
random variables, for bo th  j = I and I I .  This result has been used to establish the 

asymptot ic  normali ty  of S (j) [n~, k~,k~ J J ---- I and I I  (see Lamina 5.1 and Theorem 5.6). 

2. Definitions & notations 

Let X-m+1,  X - m + 2 , .  �9 �9 Xo, X l ,  X 2 ,  �9 �9 �9 , be a sequence of s ta t ionary m- th  order 
{0, 1}-valued Markov chain. I t  is assumed tha t  the states of X-m+1,  X - m + 2 , . - . ,  XO are 
known, i.e., we are given the initial condition {Xo = xo, X-1 = x 1 , . . . ,  X-m+1 = xm-1 }. 
For any i _> 1, define Ni = {0, 1 , . . . ,  2 i - 1}. The initial condition can be represented by 

m--1 x = }-~j=0 2Jxj. Then, x E Arm = {0, 1 , . . . ,  2"* - 1}. Clearly, for any x C N,~ we will 
have a unique initial condit ion which is given by the binary representation of x (written 
in the reverse order). We define, for any n _> 0, 

(2.1) Px = P ( X n + l  ----1 [ X n  = xo, Xn-1  = X l , . . . , X n - m + l  = x m - 1 ) .  

Consequently, qx = P(Xn+I  = 0 [ X n  = x0, X~- I  = Xx , . . . ,  Xn-m+X = xm-1)  = 1 - P x .  
We denote the probabili ty measure governing the system with initial condition x E Nm 
by Px. Fhrther,  we define two functions, fo, fx : Nm ~ Arm as 

fo(x) = 2x(mod 2 m) and f l  (x) = (2x + 1)(mod 2m). 

Note tha t  f o ( x ) / f l ( x )  s tands for the initial condition derived from x if we obtain a 
failure/success in the next trial. 

The probabili ty generating functions of T (M), T (E) and T (L) are denoted by 

r (x, s), r  s) a n d  r L) (X, 8) respectively. In other words, we have r s) = 

~n~ Px(T  (j) = n)s n for j = M,  E,  or L. Further,  let us define, o(M)(x, z), o(E)(x,  Z) 

and o(L) (x , z )  as the generat ing functions of {r  : r > 1}, {r  : r > 1} 

and { r  > 1} respectively, i.e., g2(J)(x,z) = ~-~r~=l r  ~ for j ----- M,  E,  
or L. 

The two non-overlapping counting schemes of scan can be interpreted as follows: 
the first scheme counts the number  of disjoint scans while the second scheme counts the 
number of disjoint windows of length k each of which contains a scan. To facilitate our 
study, while considering the second non-overlapping scheme for counting scans, we set 
the end point of the window of length k, containing the scan, as the end point of the 
scan itself. More precisely, we define the counting random variables for scans as follows: 

(I) 
Rk~,k(n) ---- l{xn +E j=n-k+l'~-I X~ 11 t=j~-l(1--R(~l) k(t)) >kl -- 

n--1 

k~,k(n) = l i e  jE.-k+~ zJ ~-~gl } (1 - -  R (j)) 
j = n - k + l  
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R ( I I I )  ,~ > 
~,k (n) = 1{= j=n-k+l XJ-  kl } 

with  the  convent ion t h a t  R (1) n ( I I ) /  ~ n ( I I I )  ~ kl,k(n) = 0 for n < kl,  nk~,k(n) = ~k~,k (n) = 0 for n < k. 

It should be noted tha t  (0 Rkl , k (n  ) = 1 if and only if n is the end point  of a scan when 

counted under  the first non-overlapping scheme. Similarly, it is evident t ha t  R(~I~(n)and 

R ( u I ) ,  , kl,k (n) counts the scans under  the second non-overlapping scheme and the overlapping 
scheme respectively. Thus,  we may define the scan waiting t ime variables, for r _> 1, as 

where j is I ,  I I  or I I I .  Finally, the scan statistics (the number  of scans up to t ime 
S(j) , , n R 0) ~i) n) S (j) /n),  under  the j - t h  scheme of counting, is defined by kl,k(n) = ~ i= 1  k~,k~ k l , k t  

where j is ei ther I ,  I I  or I I I .  

3. Genera t ing  funct ions 

In this section, we obta in  the generat ing functions of the probabil i ty  dis t r ibut ion of 

the waiting t ime variables T (M) and T (E). We define a new event in the following way: 
suppose tha t  we are given an initial condit ion x which is odd; this represents  the event 
t ha t  X0 = 1. However, when we s ta r t  looking for a run  (of any type) ,  we ignore the 
value of Xo. We define the new event which will consider this case and take into account  
the value of X0. Formally speaking, given x odd, we say tha t  an associated run of type 
at most  k occurs at t ime n if we observe n - 1 failures followed by a success for n _< k + 1 
and for n > k + 1, if we see more t han  k failures at the beginning and then  observe a 
run  of type  at most k at  t ime n. It implies tha t  when we take X0 into account,  we get 
a run  of type  at most  k which ends at t ime n. For runs of type  exact ly  k, we define an 
associated run in the similar way: given an initial condit ion tha t  x is odd,  we say tha t  
an associated run of type  exact ly  k occurs at  t ime n if a run  of type  exact ly  k occurs at  
t ime n when we s ta r t  looking from t ime 0. 

Define ' Nm_ 1 = {y : y ---- 2x + 1 ,x  C Nm-1} as the set of all odd numbers  in Nm. 

' s ; ' )  s ( / )  For x E N ~ _  1, let and be the waiting t imes of the r - th  occurrence of the 
associated run  of type  at  most  k and type  exact ly  k respectively. Define, for r > 1, 

the probabi l i ty  generat ing funct ion of the waiting times S (M) and S (E) by Cr (M) (x, s) 

and ~2r(E)(x, S) respectively. Fur ther ,  define II/(M)(x, Z) and ~(E)(x ,  Z) as the generat ing 

funct ion of the sequences {r  s ) : r  > 1} and {r  s ) : r  > 1} respectively. 
Define the sequence of events, 

for i ---- 0, 1 , . . . , k  and 

A i = { X j = 0 f o r  l < _ j < i a n d X i + l = l }  

Ak+l = { X j  = 0  for 1 < j  _< k +  1}. 

Clearly, the events {Ai : i = 0, 1 , . . . ,  k + 1} form a par t i t ion  of the  sample spa~e. 
Now, condit ioning on the ou tcome observed at the first t ime point ,  the  following 

equat ion is easy to derive: for any r > 1 and n > 1, 

(3.1) P x ( T  (M) = n) = qxP$o(x)(T(M) = n -- 1) + pxPl l (x ) ( s (M)  = n - 1). 
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This equat ion can now be used to derive the following relation between their respective 
probabi l i ty  generating functions: 

(3.2) r (x, s) = q~sr (M) (fo(x), s) + pxsr  (M) (f l  (X), 8). 

This, in turn, gives us a linear relation be tween ~ ( u )  (x, z) and k~ (M) (x, z). 

(3.3) r (x, z) = q~s(~ (M) (fo (x), z) + pxskO (u) ( f i  (x), z). 

We define for x, y ~ Arm, 

l 
1 if y = x  

a~M)(x,Y) = --qxs if y - -  fo(X) 

0 otherwise 

! 
and for x C Nm and y C i ~ a _ l ,  

- p x s  if y = f l ( x )  
a~M)(x'Y)= 0 otherwise. 

Let 
A~ M) (a~M)(x,y))~,yeNm and A(1 M) (M) = = (am (x,Y))xeNm, N' yE ,~-1 

be the associated matrices. Hence, we can express the set of above equations as 

(3.4) A ( M ) ~ ( M )  + A~M)~(M)  : 0 
11 

where (I)(M) = ((I)(M)(x, Z))xENm and ~(M) = (ko(M)(x,z))xeN2_," 
A similar argument  holds also for runs of type  exact ly k. As earlier, conditioning 

on the result of the first trial, we obtain  exact ly the same relation between P ( T  (E) = n) 

and P ( S  (E) = n) which, in turn,  yields the  equations: 

(3.5) + --o 

A (E) A(M) and a (E)  •(M) where = " ' 1 1  ~ 1 2  ~- " ' 1 2  �9 11 

3.1 Runs of type at most k 
Now, we can easily derive the 

Px(S (M) -- n). For r = 1, we have 

following r e l a t i o n  b e t w e e n  Px(T(r M) : n) and 

f Px(An-1)  P (s M) = 
Px(Ak+I)Pffo+I(~)(T(M) = n -  k - 1) ( 

for n =  1 , 2 , . . . , k + 1  

for n > k + l .  

For r > 2, we can find the following relation by conditioning on the par t i t ion 
{Ai : i = 0, 1 , . . . , k  + 1}. When  m > k + 1, we have: 

k+l 
Px(S (M) = n) = E Px(s(M) : n, Ai) 

i=O 



WAITING TIME DISTRIBUTIONS 323 

w h e r e  f o ( x )  = x a n d  f a + ' ( ~ )  = 
When  m < k + 1, we have, 

p~( s~  (v )  = n) 
k+l  

k+ l  

P~(S(~ M) = n I Ai)P~(A~) 
i-=O 
k 

E D i (r l l P ~ ( A i )  � 9  = n - i - 
i = 0  

+ Px(Ak+l)P'k+'(x) ( T ( M ) "  " - -o  " - -  = n -- k - 1) 

fo(f~(x)). 

= E Px(s(M) = n I Ai)Px(Ai) 
i=0 
m - 2  
~-',._, D f l ( / ~ ( x ) )  ~Or_lrC(M) = n - i - 1)Px(Ai) 
i=0 

k 

+ E PI(S~M) = n - i -  1)Px(Ai)+ Px(Ak+I)Po(T (M) = n - k -  1). 
i=m--1 

From the  definition of functions f0 and f l ,  it is clear t h a t  they  satisfy the  following 
relations: 

(3.6) f~+J = 0 a n d  fl(fg--l+J(x)) =- 1 for j > O,X E Nm. 

Using these relations, b o t h  the cases, namely m > k + 1 and m < k + 1, can be combined 
to yield, 

r ~) = 

k 

E Px(Ai)si+l 
i=o 

R rA ~Sk+l~(M)[~k+l(x~ S) ~- x~, k+l} ~Pl I, JO \ 1, 
k 

E Px(Ai)si+lr 
i=o 

+ Px(Ak+I )sk+i~) (M) (fo k+ i  (x) ,  8) 

for  r---~ 1 

for r >  1. 

These will give us ano ther  set of equations 

(3.7) 
k 

�9 (M)(x, z) = ~ P~(Ai)si+lz~(M)(fl(f~(x)) , z) 
i=0 

+ Px (Ak+l)s k+lff(M) (fok+ X (X), Z) 

k 

+ E Px(Ai)si+lz" 
,/=o 
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The probabilities P~(Ai) can easily be computed.  Indeed, 

{ p/~(~) ~ q/g(x) for 0 < i < k 

(3.8) P~(Ai) : j=o 

fiqf~)(x) for i = k + 1. 
j=O 

! 
We define for x,y E N ~ _ I ,  

1 if y : x  
a(M)(X y) = Px(di)si+lz if y = fl(f~(x)) 

22 ~ , O otherwise 

and for x C N '  a n d  y E Nm, rn--1 

Let 

for some i = 0, 1 , . . . , k  

-Px(Ak+l)8 k+l if y = fko+l(x ) 
a~M)(x'Y)= 0 otherwise. 

A ( M )  (M) (a21 and ) (M) "'21 = ---(a22 (x,Y))~,yeN2_, 

and b (M) = ~-~o P~(Ai) si+xz. Hence, we can write the set of equations in (3.7) as 

(3.9) A(M)(~ (M) -'~ A(M)~II(M) = b (M) 

where (I)(M) and ~I/(M) a r e  as defined earlier. Therefore, we have 

THEOREM 3.1. The generating function of {(I)(M)(x, s) : r _> 1} is given by 

( 3 . 1 0 )  r [ a ( M ) t a ( M ) ~ - l a ( M )  _ A(M)~-IA(M)(A(M)~-lh(M) 
: k " ~ 1 2  \ ~ 2 2  ) ":L21 1 1  ] 1 2  ~ 2 2  ] ~ " 

3.2 Runs of type exactly k 
We derive a relation between Px(T (E) = n) and Px(S (E) -- n) by using a similar 

technique. For r = 1, we have 

I Pz(An) for n = k 

k--1 

Px(S~ E) = n) = E P~(Ai)PI,(~(x)) (S~E) = n -  i - 1) otherwise. 
i=o 

+ P~(Ak+I)P/~+I(~)(T~ E) = n -  k - 1) 

For r > 2, using the relations in (3.6), we can combine the two cases, namely, k + 1 > m 
and k + 1 <_ m, to obtain the  following equations: 

k+l  

P~(S(~ E) = n) = E Px(s(~E) = n I Ai)Px(Ai) 
i=O 
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Therefore, we have 

s )  = 

k-1 
---- ~ Pfl(f~(x))(~(r E) Y--- ~'~- i - -  t ) P ~ ( A , )  

i=O 

+ P~(Ak)Pf~(fok(~))(S(E_~ = n -  k - 1) 

+ Px(Ak+I)Pf{+~(~)(T (E) = n - k - 1). 

k-1 

Z P x ( A i ) s i + l r  for r = 1 
i=0 

+ Px (Ak)s k+l + Px (Ak+l)S k+l (~(E)(f3+l (X), s) 
k--1 
E Px(Ai)si+lr 
i=o for r > 1. 

+ P~(Ak)sk+~r ) 
k+l (E) k+l + Px(Ak+l)S c~r (f~ (x) ,s)  

As before, this gives us the following set of equations, 

k-1 
t~ (E) (x, z) ---- E P~(A~)si+lq2(E)(fl(f;(x))' z) + Px(Ak)sk+iz 

i=O 
~- Px (Ak) sk+l ZffJ(E)(fl (f~ (x)),  z) + Px (Ak+l)  sk+l  (I)(E)(fo k+l (x), z). 

The probabil i t ies Px(Ai) are specified in equat ion (3.8). Define, for x, y E N~n_l, 

1 

-Px(Ai)8 i+l 
a~ E) (x, y) = _ p x (Ak ) sk + l  z 

0 

! 
and for x E Nm_ 1 and y E Nm, 

-Px(Ak+l)S  k+l 

: o 

Let 

if y = x  

if y - - f i ( f ~ ( x ) )  for some i = 0 , 1 , . . . , k - 1  

if y = fi(fok(X)) 
otherwise 

y = fko+l(x ) if 

otherwise. 

A(~I ) (E) (E) , ---- (a21 (x, Y))xEN'm-I,YeN'~ and ~22~(E) = (a22 (x, Y))x,yEN~_I 

and b (E) = Px(Ak)sk+lz. Hence, we can write the set of above equat ions as 

(3.11) A(2~)& (E) + A(~ )~  (E) = b (E) 

where (I)(E) and ~(E)  are as defined earlier. Therefore,  as before, we have 

THEOREM 3.2. The generating function of {~(E)(x,s) : r >_ 1} is given by 

(3.12) ~(E) {A(E)fA(E)~--IA(E) a(E)~-la(E){a(E)~-lb(E). 
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4. Limit distributions 

In this section, we obtain several limit laws of the distr ibution of the waiting times. 
We will take a direct evaluation route for the results. For this, we require the following 
lemmas about  weak convergence of discrete r andom variables. We could not find the 
exact result tha t  we require, in any of the s tandard  references (Feller (1968), Billingsley 
(1986), Chung (1974)) and hence we incorporate it for the completeness of the paper.  

LEMMA 4.1. Let { ~  : r > 1} be a sequence of random variables taking values on 
Z = { 0 , + 1 , + 2 , . . . }  such that 

lim inf P ( ~  = t) >% Pt for  all t �9 Z 
r ---* o 0  

o o  

where ~ t = - o o  Pt = 1, then ~r =:v ~ where P(~ = t) = Pt for  all t �9 Z.  

PROOF. First we claim tha t  the  sequence of random variables {~r : r k 1} is tight. 
K Indeed, for any e > 0, we first choose K so large tha t  ~-~t=-g Pt > 1 -- e/2. Now, for 

every t, It[ < K,  we choose Nt so large tha t  whenever r > Nt ,  P(~r = t) > Pt - e / ( s g ) .  
Now, setting g = max{Nt : It[ < g } ,  we have for t _> N,  

K 

P(Ir ~ K) = ~ P(5~ - t) > 
t = - K  

K 

E p t - ( 2 K +  1)e/ (8K)  > 1 - c .  
t = - - K  

Now, by Corollary of Theorem 25.10 of Billingsley (1986), it is enough to show 

that  if for any sub-sequence {~,  : i _> 1} such tha t  ~r~ ==~ ~', then  ~' =~ ~. We have, 
P(~ '  = t) = limi__.~ P ( ~  = t) _> lim infr--.oo P ( ~  = t) = P(~ -= t). If for some to �9 Z, 
P(~ '  = to) > P(~  -- to), then  we have 

o o  

1 =  E P ( r 1 7 6 1 7 6 1 6 2  
t = - o o  t#to t#to 

This is a contradiction, proving tha t  ~' d ~. [] 

We also need the following lemma for proving several of our results. 

LEMMA 4.2. Let {~r : r > 1} be a sequence of random variables taking values on 
Z such that 

(1)Pt_j(2) for  all t , j  6 Z l iminf  P(~r = t, A~ r)) _> Pj 

where y-~t~_oo p~ 1) = 1 = ~-~_oop~ 2) and {A~r) : j 6 Z} are disjoint events for  each r. 
Then 

where p(~(1) = t) = p~l) and p(~(2) = t) = p~2) for  all t �9 Z and ~(1) & ~(2) are 
independent. 
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PROOF. Clearly, for any t E Z, p(~(1) + ~(2) = t) = 2_,j=-cr176176 p(1)j Pt-j'(2) Thus, it is 
enough, by Lemma 4.1, to show that 

o o  

l i m i n f P ( ~ r = t )  > E (1) (2) r - ~  - Pj Pt - j"  
j = - c r  

J (1) (2) 
To prove this, we consider any e > 0 and choose J so large that ~-] j=- j  Pj P t - j  > 
~ (1) (2) 

j=-oo Pj P t - j  -- ~" Now, we have, 

o ~  

l iminfP(~r  = t) > liminf E P(~r = t ,  Aj(r)) 
r - - + O O  T'--~ OO 

j ~ - - O O  

J 

> lim inf E P(~r = t ,A~  ~)) 
j~- -J  

J 

> E liminf P(~,- = t,A~ r)) 
r ----+oo j = - 3  

J 
> ~ (1) (2) 
- ~ P) P t - j  

j = - J  

f i  _(1)_(2) 
>- ~9 v t - j  - e. 

j~ -oo  

Since c > 0 is arbitrary, we get the desired result. [] 

We say that a random variable Za follows a Poisson distribution of multiplicity k 
with parameter A (k E Z and A > 0) if 

P ( Z k  = kt )  - exp(-A)At t! for t = 0 , 1 , . . . .  

In the sequel, we will denote this by Zk ~ Poi(k, A). Note that, when k = 1 it is the 
usual Poisson distribution. 

4.1 Strong tendency  towards success 
We first consider the case of overlapping runs of type at most k. The assumption 

that we make on the probabilities is that  system has a strong tendency towards success. 
We formalize this by stating that for u q N,~, Pu (as a function of r) converges to 1 in 
such a way that 

(4.1) r(1 - Pu) ~ #u where #u > 0 is a positive constant. 

We require the probability of the following event to establish our results. Fix w > m 
where m is the order of the Markov chain. For t > 0 and l > w ( t  + 1) + t, define 

B~ w) (l) = {all strings of length l consisting of O's and l ' s  with exactly t O's 

such that the number of l 's ,  before the first occurrence of 0 or 

between i-th and (i + 1)-th occurrence of 0 for i = 1, 2 , . . . ,  t - 1 

or after the last (t-th) occurrence of 0, is at least w}. 
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In other words, if ro is the number of l 's  before the first occurrence of 0 and r~ is the 
number of l 's  between i-th and (i + 1)-th occurrences of 0 for i = 1, 2 , . . . ,  t - 1 and rt  
is the number of l 's  after t-th occurrence of 0, then ri _> w for all i -- 0, 1 , . . .  ,t and 

t ~-~=0 r~ = 1 - t. We obtain the probability of the event B} ~) (l) in the next lemma. 

LEMMA 4.3. For  any  ini t ia l  condi t ion  x E Nm,  

t Px 1-I Pff(x) (p2m-1)l-t-m(t+l) 
j=l 

r a - 1  

x (1 p2 -2 I I  Psf(2, -2) 
j = l  

PROOF. It is easy to note that, under the initial condition x E Nm,  the probability 
of any string in B} ~) (1) is given by 

m--1 

( 4 . 3 )  Px 1-I PY~(x) (p2m-1)r~ - P 2 " ~ - l )  

j = l  

X p2m_2 

I"T 
�9 �9 �9 P2 TM-2 1 1  

j = l  

m - 1  

x P 2 m - 2  I - ~  
j = l  

= x PI~ 

m - 1  

1-I Pf;(2m-2) (p2m-1)rl-m(1 -- P 2 " ~ - l )  
j = l  

m - 1  

p f ~ ( 2 . ~ _ 2 )  (P2m-l) rt-1 - m ( 1  --  p 2 . ~ _ l )  

�9 r t - - m  Pf~ (2 m - 2 )  (P 2m-l) 

(p2m--1) l - t -m(t+l)  (1 - p2m--1) t 

m--1 

X 2 m _ 2  Py~(2~-2) 
j = l  

t since Y~j=o r j  = l - t and f0 and fl  are as defined earlier. Clearly, the probability (4.3) 

for any string in B}W)(1) is independent of the choice of ri's. Thus, the probability of 

B~ ~) (1) is obtained by multiplying (4.3) with number of all such possible strings. 
Now, using combinatorial arguments we calculate the number of such possible 

strings. Indeed, it is equivalent to distributing l - t similar objects to (t + 1) groups 
so that each group has at least w objects. This is given by (l-w~t+l)). T h i s  completes 
the proof of lemma. [] 

THEOREM 4.1. 
r --+ o(3, 

Under  any  ini t ia l  condi t ion ,  i f  the condi t ion  (4.1) holds,  then as 

(a) T (M) - (r q- 1) ~ Z 1 when  k ~__ 1 
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(b) T ( M ) - ( r + I ) ~ Z 2  when k = O  

where Zi ~ Poi(i,  p2m_1) for  i = 1, 2. 

PROOF OF THEOREM 4.1. We use Lemma 4.1 for this proof. To show part  (a), we 

fix any t E {0, 1, 2 , . . . }  and obtain  a lower bound  for the probabil i ty  P~(T (M) - ( r +  1) = 

t). In order to do so, we choose w = max(m,  1) and consider the event B}~)(r  + 1 + t) 
for r >_ w(t  + 1). Clearly, 

B ~ ) ( r  + 1 + t) C {T~(') - (r + 1) = t} 

since for each string in B~ ~) (r + 1 + t), there are exactly r overlapping runs of type  at 
most  k (k > 1). Thus we have, 

Px(T  (M) - (r -b 1) = t) 

>_ Px(B~W)(r + 1 + t)) 

r +  l - w ( t  + l ) +  
= t Px H Pf~(z) (p2m-1)~+l-(t+l)m 

j = l  

( m--1 

x (1 -p2 .~_1)  t p2m_2 pf/(2m_2) 

r t 
= ~-.(1 + o(1))(1 - p2.~_l)t(p2m_l) r 

tp m--ff ) Ip ~m-1 )t X x Pf~(x) (p2r~--l) (1-(t+l)m) 2m--2 Pf~(2"~--2) 
j = l  

exp(--p2m- 1)(r t 

t~ 

since r(1 - Pu) ~ #u as r --~ oo for u C Nm. This, by Lemma 4.1, completes  the proof  
of par t  (a). 

For par t  (b), we consider the  probabi l i ty  P~(T ( M ) -  ( r+  1) = 2t) and obta in  a lower 
bound  in a similar manner.  Again, for w = max(m,  1) and r >_ w(t  -t- 1), note tha t  

B}W)(r + 1 + 2t) _C {T  (M) - (r + 1) = 2t} 

since for any string in B}~)(r  + 1 + 2t), we have exactly r overlapping runs of type  at 
most  k (k = 0). Therefore, we have 

P x ( T  (M) - (r + 1) ----- 2t) 

_ P ~ ( N w ) ( r  + 1 + 2t)) 

) = r + 1 - w(t  + 1) + 2t x H PSi(x) (p~_~)r+ ,+~ - ( t+ l )m 
t \ j---1 
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m--1 

• (1 -p2m_l )  t p2m_2 H P/;(2m-2) 
j = l  

r t 
= ~V(1 + o(1))(1 - p 2 m _ l ) t ( p 2 m _ l )  r 

x Px PI~(x) (p2m-1)-( t+l)(m-1)  P2m-2 P/I (2m-2) 
j = l  "= 

e x p ( - - / ~ 2 m _ l )  ( /~2m-1) t 

t! 

as r ~ oo by using the condition of the theorem. [] 

Remark.  Since the limiting distribution is independent of the initial condition, 
we can put any initial distribution on the initial conditions. Suppose that  0 is the 
probability distribution on (0, 1} m. As we have already discussed, 0 can be identified 

m--1 
as a probability measure on Nm by the mapping (x0, x l , . . . ,  Xm-1)  -~ x = ~ j = o  2Jxj 

where each xi E (0, 1}. Let T(M)(o)  be the waiting time for the r- th occurrence of the 
run of type at most k where the initial condition is governed by the distribution 0. From 
the theorem 4.1, we can easily conclude that  

(a) T(rM)(o) -- (r q- 1) ~ Z1 when k > 1 

(b) T(M)(o)  -- (r + 1) ~ Z2 when k = 0 

by first conditioning on x C Nm and then summing over all possible values of x E Nm.  
The random variables, Z1 and Z2, are as in the Theorem 4.1. 

Now, we derive the convergence results for scan waiting time variables T(kl'J) for T~k 
j ---- I ,  I I  and I I I .  It is clear that  when k = kl, the scan is equivalent to a run of successes 

rp(kl ,I) --(kl  ,II) 
of length k. In such a case, the waiting time variables -r,k and :/r,k are same and 
they represent the waiting time for the r- th occurrence of the non-overlapping run of 

~,(kl,H1) successes of length k, while "r,k represents the waiting time of the r-th occurrence 
of the overlapping run of successes of length k. Sarkar and Anuradha (2002) obtained 
the Poisson convergence of the waiting time distribution for the r- th occurrence for a 
more generalized run for the m-th order Markov chain under the same condition (4.1). 
This generalized run includes both overlapping runs as well as non-overlapping runs of 
successes of length k. We quote those results here without giving proofs. 

THEOREM 4.2. Under any initial condition, i f  (4.1) holds, then as r -~ oo, 

k 

T ( k l , I ) _ r k ~ Z i  when kl = k > l ().a  r,k 
i = l  

T(k~,I) _ rk l  =~ Z~ when kl < k (b) . r,k 
k 

(c) T (k~r,k ,H) _ rk  =~ ~ Zi when kl = k _> 1 
i=1 
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~r(k~'H) -- rk ~ O when kl < k (d) ~ ,k  

(e) T ( k ~ , k Y O - - ( r + k - - 1 ) ~ Z k  when k l = k > _ l  

(f) T ( k ~ * ~ , k J I I ) - - ( r + k - - 1 ) ~ 0  when kl < k  

where for i > 1, Z~ ,.~ Poi(i,  #2~-1)  and are independent and Z~ ,.~ Poi(1, k1#2-~-1). 

PROOF. We prove the cases (b) and (d) only. For proof  of par t  (b), fix t > 0 and 

set w = max(k1 + 1, m) We note that ,  ~r(k~'I) _ rkl = t} D B~ w) (rkl + t) for all r such 
�9 ( ~  r ,k  - -  

t h a t  rkl > (t + 1)w. Now, using Lemma 4.3, we have 

p ET( k~,O l iminf  x~r ,k  -- rkl ---- t) > l iminf  p fB(W)(rkl + t)) = e x p ( - k i # 2 m _ i ) ( k U ~ 2 m - i ) t  
- ~ t t !  r ---+ (~:) r - - - ~ o 0  

This, by Lemma 4.1, is sufficient for our purpose.  
For par t  (d), fix ~ > 0 and choose o r > 1 such tha t  ~J=o exp(-k)~2m-1)(kA2m-1)J/ 

j!  >_ 1 - ~. Set w = max(k + 1, m) and note that ,  for r so large that  rk > (J + 1)w + J ,  
we have 

Y 

U ~)(rk)  c {Tg 1'") _- rk}�9 
t=0  

Thus,  we have, 

J 

liminfPx(T(k, 1JI) = rk) > liminf~--]~ Pz(B}W)(rk)) 
t = 0  

J 

= E exp(-kA2m-1)(k)~2m-1)t/t! 
t=0  

>l-c. 

Since c > 0 is arbitrary, this proves the result. The  proof  of par t  (f) is similar and we 
omit it. [] 

Remark�9 As remarked earlier, since the limiting dis t r ibut ion does not depend upon  
the x E Arm, same results continue to hold, when we replace the initial condit ion by a 
dis tr ibut ion on 0 on Nm. 

4.2 Strong tendency towards reversing state 
More interesting results are obta ined when the sys tem has a strong tendency of 

reversing its state,  i.e., if it is in s ta te  1 it would tend to switch to s ta te  0 and vice versa. 
Formally speaking, we set, 

(4.4) rp~ --* #4 if u is odd (i.e., X0 = 1) 
r ( 1  - p,~) ~ ~ ,  if  ~ is  e v e n  ( i . e . ,  X o  = O) ) as  r ~ oo  

where #4 > 0 for all u E Nm. For next few theorems we require a lower bound  for the  
probabil i ty  of the following event which we obtain  in the next lemma. Suppose tha t  
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j 0 , j l  2 0 are given and l is sufficiently large and w > m. Define the event 

B} w) (jo,jl) = {all strings of length l consisting of l ' s  and O's, s tar t ing with  1 and 

having exactly jo/jl occurrences of 00 /11  respectively and no runs 

of l ' s  of length 3 or more and no runs of O's of length 3 or more are 

present and between any two occurrences of (00 or 11) there are at  

least w symbols (including both  types of l ' s  and O's)}. 

The event B}W)(jo,jl) comprises of all strings of length l, consisting of al ternat ing l ' s  
and O's, s tar t ing with 1; however sometimes 1 may follow a 1 and 0 may follow a 0. 
There are exactly j0 occurrences of 00's  and j l  occurrences of l l ' s .  Further  we insist 
tha t  between any two such occurrences (00 or 11) there are at  least w symbols (including 
both  types of l ' s  and O's). 

Define now 

f 2 ( 2  m - 1 ) / 3  if m i s e v e n  
c~(m)  t (2 m - 2 ) / 3  if m i s o d d  

(2 m - 1)/3 if m is even 
fl(m) -- (2c~(m) + 1)(mod 2 m) = (2 m+l - 1)/3 if m is odd. 

(4.5) 

and 

(4.6) 

Let 

(4.7) 

and 
(4.8) 

a(m)(l;jo,jl) = [ ( / -  (j0 + j l ) ) /2]  - (j0 + 1)[m/21 - j l [ ( m  + 1)/2] 

~m)(l;jo,jl) = [ ( /+  1 - (jo + j l ) ) /2]  - (j0 + 1)[(m + 1)/21 - j l l m / 2 ]  

where [s] is the largest integer less than  or equal to s. 
condition. Define 

I 
s--1 

1-I (1 - Ph~O)(u))pyo(h~O)(u)) 
j=O 

(4 .9 )  ~/O(Y, ?~9,) = s--1 

H (1 - Ph~O)(u))pio(h~O)(y))(1 -- Ph(O)(u)) 
j=o 

and 

(4.10) -- { 
s--1 

j~_oPh~l) (y)(1 -- Ph  (h~ 1) (y))) 

8--1 

jl-IoPh~)(y)(1 P$1(h~)(y)))Ph!l)(y) 

where h(~ = h(ol)(y) = y and h~~ 
for all j _> 1. Now we have, 

Let y C Nm be any initial 

if m = 2s is even 

if m - - 2 s + l i s o d d  

if m - -  2s is even 

if m = 2 s + l i s o d d  

= 

LEMMA 4.4. For any initial condition x E Nm which is even, we have 

(4.11) Pz(B[W)(jo,jl)) 



WAITING TIME DISTRIBUTIONS 333 

n~ m)(/;jo,jl) [1 ." " -> P~(m) t l  - p~(m)) n(om)(/'3~ 

p~(,~) (1 - p,~(,r~))J~ ) + 1,m)J~Vo(Z(rn) - 1 ,m) j~ 

{I ( l -  - ( j0  + + 
\ / l0 
([(l  + l - 2w - (jo § j l ) (2w + 

PROOF. To find the probabili ty of a string in B~W)(jo,jl), we note tha t ,  since 
w > m, each occurrence of 11 is followed by at least m symbols of a l ternat ing O's and 
l ' s ,  s tar t ing with 0 ( ~ )  and each occurrences of 00 is followed by at  least m 

>m 
symbols of a l ternat ing l ' s  and O's, s tar t ing with 1 ( ~ ) .  Therefore, except the l ' s  

_>m 
which occur, at trials not greater than  m from the s tar t  of the string, or within m trials 
from an occurrence of either 00 or 11 or the l ' s  which is preceded by another  1 (the 
second 1 in 11), all l ' s  will be preceded by m symbols of al ternat ing O's and l ' s  ending 
with a 0 ( ~ ) .  Note tha t  we only have to look m-trials backwards to calculate the 

? n  

probabili ty of any occurrence (0 or 1) since the model is m-dependent .  Similarly, except 
the O's which occur, at trials less than  or equal to m from the s tar t  of the string, or 
within m trials from an occurrence of either 00 or 11 or the 0 which is preceded by 
another  0 (the second 0 in 00), all O's will be preceded by ~ .  We illustrate this 

m 

by an example with m --- 5 and jo = 1 and j l  = 2: 

m m m m 

~ o l o f o l o o ~ 1 o l o f o l o 1 1 6 1 O l d l O 1 1 6 1 O l d l O l  
.o.o. o .o.o. . o~o.o . o.o.o 

Here, l's and the O's which are marked by a. and a o respectively, are the symbols 
which we leave out in the counting. Remaining l's and O's are preceded by 01010 and 
10101 respectively. 

Now, the probability of a 1 which is preceded by ~ is given by P~(m) and the 

m 

probability of a 0 which is preceded by ~ is given by i - P~(m) where ~(m) and 

m 

~(rn) are defined in (4.5) and (4.6). We can find the number of l ' s ,  denoted by ~ l (m) ,  
which are preceded by ~ .  When  m is odd, m = 2 s + l ,  at  the s tar t  of the string and 

m 

after each occurrence of 00, there are ( s +  1) = [ (m+ 1)/2] many l ' s  and s = [m/2] many  
O's which occur at trials no larger t han  m from the s tar t  of the string or the occurrence 
of 00 respectively. Similarly, for each occurrence of 11, we have s = [m/2] many  l ' s  
and (s § 1) = [(m + 1)/2] many O's which occur at trials no larger than  m from the 
occurrence of 11. Therefore, the number  of l ' s  which are preceded by ~ ,  is given by 

m 

[(/§ 1 -  ( j o+j l ) ) / 2 ] - j l  s - ( jo+ 1)(s+ 1) = [(/+1 - (j0 + j l  ) ) / 2 ] -  ( jo+ 1 ) [ ( m + 1 ) / 2 ] - j l  [m/2]. 
Arguing similarly, we have, if m is even, m = 2s, then  the number of successes preceded 
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by ~ is given by, [ ( /+  1 - (j0 + j l ) ) /2]  - s(jo + j :  + 1) = [( /+ 1 - (jo + j l ) ) /2]  - 
m 

[m/2] (J0 + Jl + 1) = [(/+ 1 - (J0 + j l ) ) /2]  - (j0 + 1)[(m + 1)/2] - j :  [m/2]. Similarly, the 

number of O's which are preceded by ~ is denoted by ~(om)(l;jo,jl) and is given in 
m (4.7). 

For l ' s  which are preceded by ~ ,  the probability is given by P~(ra) and O's 
m 

which are preceded by ~ ,  the probability is given by 1 - p~(~). 

m 

Finally, for any string of length m, starting with I and consisting of alternating l ' s  
rr~--I " V~ 23y - Nm, the probability can be and O's, preceded by any initial condition y = z_,j=0 3 C 

computed in the following way. Suppose that m = 2s, then, the probability 

"~1 (Y, m )  ---- P(X1  -= 1,X2 = 0 , . . .  ,X2s-1  = 1, 

X2s -- O JXo =- yo, X-1  = Y l , . . . , X - m + I  = Ym--1) 

Ph(o~)(y) (1 -- p f:(h(o~)(y)))phi:)(~)(1 -- p/:(hi~)(V))).. "Ph~2:(~)( 1 -- Pj~(hi~,(U))) 
8--1 

1 - I  - 
j=O 

where h(01) (y) =yandh~l)(y)( . .= _ . _ _  (1~..__]b(.t.l(h~.:l(y)))forj=l,2,...,s_l. W h e n m = 2 s + l ,  
the probability can be computed similarly and is given by 

VI(Y, m) = P ( X  1 -~- 1, X 2 - -  0 , . . . ,  X2s : 0 ,  

X2s+l = 1 [ Xo = y o , X - :  = Y l , - - - , X - m + l  : Ym--1) 
8--1 

j=0 

Similar computations can be carried out for strings of length m starting with a 0 and 
consisting of alternating O's and l 's.  Indeed, the probability is denoted by Vo(Y, m) and 
is given in (4.9). 

Combining all the results, the probability of any string in B[ w) (j0, j l )  is given by 

(4.12) "tc~m)(l;j~ "~" "~(m)(l;jo'J:)~Jl f l  - pa(m)) j~ 
l~o~(m) [1 - -  t 'ptm) / Yf~(rn) k 

x 71 (x, re)V: (a(m) + 1, m) j' Vo(/3(m) - 1, m) j~ 

We observe that the probability of the string is actually independent of the positions of 

occurrences of 00 and 11. Therefore, the probability of Px(B~ ~~ (jo, j l ) )  can be obtained 
by multiplying the above probability with the number of possible permutations. However, 
it is rather difficult to calculate the exact number of permutations, hence we obtain a 
lower bound which is sufficient for our purpose. 

Now, to obtain a lower bound of the number of permutations, we proceed as fol- 
lows: we assume that at the start or after each occurrence of 00, there are w pairs 
of 10, i.e., 1010. . .  1010 and each occurrence of 11 is followed by w pairs of 01, i.e., 
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0101. . .  0101. We can employ combinatorial methods to compute the lower bound as 

follows: suppose that we have two classes, A and B. The class A, consists of two types of 
elements 1 and 110101 . . .  0101, with exactly j l  elements of type 110101 . . .  0101 while 

the class B contains two types of elements 0 and 001010 . . .  1010, with j0 elements of 

2w 
type 001010 . . .  1010. First, we fill up the first 2w places with 1010. . .  1010 which can 

only be done in one way. Now, we are left with 1 - 2 w - j 0 ( 2 w + 2 )  - j l ( 2 W + 2 ) + j o + j i  = 
l - 2w - (j0 + j l ) (2w + 1) many places, the odd places of which should be filled up with 
elements from class A and the even places by elements from class B. This can be done 
in 

(4.13) 
([(l  - 2 w -  (jo + j l ) ( 2 w  + ( [ ( l  + l - 2w - (jo + j l ) ( 2 w  + 

ways. This certainly gives a lower bound for the number of permutations. Therefore, 
combining (4.12) and (4.13), we get the result. [] 

Now, using Lemma 4.4, we will analyze the waiting time distributions for various 
types of runs. 

THEOREM 4.3. I f  the initial condition is that x is even (i.e., Xo  = O) and the 
condition (4.4) holds, we have 

(a) T (M) - (2r + 1) ~ Z (~ + Z O) when k = 1 

(b) T (M) - (2r + I) ~ Z~ ~  (1) when k >_ 2 

where Z~ ~ ,.~ Poi(1,#~(m)), Z (~ ~ Poi(3, pa(m)) and Z(I~ ,,, Poi(-1,pZ(m))  and Z(1)-I is 

independent of both Z~ ~ and Z (~ 

PROOF. For part (a), fix any t E Z and consider the set Lt = {( j0 , j l )  : j o , j l  >_ 
~(2r+t+l) = {the string of 0, 3j0 - j l  = t}. Fix any (J0,j l)  E L t  and define the event "'(jo,jl) 

length (2r + 1) + t has exactly j0 occurrences of 00 and exactly j l  occurrences of 11}. 
A(2r+t+l) Whenever it is not possible to find runs of the above kind, we set (Jodl) as the empty 

A ( 2 r + t + l )  set. Note that for any fixed t and (Jl,Jo) E Lt,  the set (jo,jl) will be non-empty for 
all sufficiently large r. 

Set w = max(4, m) and note that each string in o(~) /~ j l )  also belongs to LJ2r+ 1 +t  I, J0,  
A(2~+t+l) n(~,) , .  T (M) 1) t for (jo,j~) and further for each string in lJ2r+l+t~Jo,jl) , we have = ( 2 r +  + 
all sufficiently large r. Thus, we get, 

A(2r+t-bl) n ( w )  t �9 
{ T  ( M )  - (2 r  q- 1) : t , .~ ( jo , j l )  } D l:12r+l+t[30,jx ) 

for all r sufficiently large. Hence, from Lemma 4.4, we have, 

A(2r+t-I-1) "l 
- ( 2 r  + 1 )  - -  , 
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W )  �9 �9 

~_ Px(B2r+l+t(Jo,21)) 

:> p:i~)mr 2r +t +l;j~ ) ( 1 -  pD(m) )~ (~ (2r+t +i;j~ )pJ~l(m) ( 1 -  pa(m) ) j~ 

X ~/1 (X, Tn)~ 1 (oL(m) -t-1, m)Jl  ~/o(~(/rt ) -- 1, m )  j~ 

ff[(2r + t + 1 - 2w - ( 2 w  + 1)(jo + j l )) /2]) '~ x \ ; Jo 
/ [ ( 2 r  n t- t -t- 2 -- 2W - - ( j0  -I- j l ) (2W -t- 1))/21~ X \ ) j l  

r jl +jo 
1 = P,(m)( - Pz(m))r( 1 - P~(m))J~ 1 + o(1)) x ~ ( 1  + o(1)) 

exp (_pa (m) ) (pa (m) )Jo  exp(_pZ(m))(#Z(m))i l  

jo ! j l  ! 

and this proves the result. 
For par t  (b), we follow a similar procedure.  For any t E Z, let Lt  be the set 

{ ( j l , j0 )  : j o , j l  >_ 0,jo - j l  = t}. Set w = max(4, m).  Since k _> 2, for each string 
(w) �9 �9 

in B2r+1+t(Jo,21),  the r - th  occurrence of the run of type  at most  k (>  2) is completed 
exactly on (2r + 1) + t. Thus,  we have, for all sufficiently large r, 

{ T  (M) (2r + 1) = t A (2r+t+1)l _ (w) , �9 
- ' (jo,jl) j D B2r+1+t(3o,31 ) 

A(2rTt+l) where "~(jo,jl) is as defined above. So, using L e m m a  4.4, we get 

P x ( T  (M)  - (2r + 1) = t A (2r+t+l)~ 
' ( j o , j l )  / 

(w) �9 �9 
>-- Px (B2r+l+t (20,31)) 

rJo+Jl 
r 1 >- P~(m)( - PZ(m))r(  1 - Pa(m))J~ + o(1)) x ~ ( 1  + o(1)) 

exp( -pa(m)) (pa(m)  )jo exp(-pZ(m))(#~(m)) j l  
- - +  

Jo] j l !  

as r ~ or This completes the proof of the theorem. [] 

R e m a r k .  If the initial condition x is odd, i.e., Xo = 1, then the string will s tar t  
with a 0 at the first trial and then the rest of the argument  can be easily carried over to 
prove that ,  

(a) T (M) - (2r + 2) =~ Z3 (~ + Z(1) when k = 1 

(b) T (M) - (2r + 2) => Z~ ~ + ZO1 ) when k > 2 

where Z~ ~ Z (~ and Z (1) are defined in Theorem 4.3. Suppose tha t  0 is any probabili ty 
distribution on Nm,  the set of all initial conditions. By first conditioning on x C Arm, x 
even and then summing over all x even, we can establish tha t  with probability 0(even) = 

Exeven 0(X), T ( M ) ( o ) - - ( 2 r  + 1) converges to (Z3 (~ + Z(ll )) if k = 1 and to (Z~ ~ + Z(ll )) if 

k > 2. Similarly, with probabili ty 0(odd), Tr (M) (0) - (2r + 1) converges to 1 + (Z (~ + Z(_ 1)) 
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if k = 1 and to 1 + (Z~ ~ + Z(_I~) if k > 2. These can be combined together  as follows: 
let X be Bernoulli r andom variable with P ( X  = 1) = 0(odd) and be independent  of 

random variables Z~ ~ Z (~ and Z('~. Then,  

(a) T(M)(o) -- (2r + 1) ~ X + Z3 (~ + Z(_11 ) when  k = 1 

(b) T(~")(O) - (2r + 1) ~ X + Z~ ~ + Z(') when k >_ 2. 

Next, we s tudy the case of runs of type exact ly k. 

THEOREM 4.4. I f  the initial condition is that x is even (i.e., Xo  = O) and the 
condition (4.4) holds, we have 

where Z} 1) 

T (E) - ( 2 r  § 1) ::~ Z3 (0) § Z~ 1) when k = 1 

Poi(1,#~(m)) and Z (~ ~ Poi(3, pa(m)) and Z} 1) and Z (~ are independent. 

PROOF. The proof of this is similar. For t E {0, 1 , . . .} ,  set Lt -- { ( j l , jo )  : j o , j l  _> 

0, 3jo + j l  = t} and consider the probabili ty P x ( T  (E) - (2r + 1) = o,§ .~(2r+t+l)~.(jo,j~) j where 
A(2r+t+l) n(w) ~ . T(E) (jo,j~) is as defined earlier. Again, for each string in t~2r+l+t~90,Jl), we have = 
(2r + 1) + t where w = max(4, m). Hence, we have, for all sufficiently large r, 

{Tr (E) - (2r + 1) § A(2r+tq-1)l- It(w) ~"'(jo,j~) , D ( jo , j l ) .  -- ~"2r+l+t 

So, using Lemma  4.4, we have 

A(2rq -tq-1) Px(T(~ E) - (2r + 1) = t,..(jo51) ' 
(~) �9 . 

~_ Px(B2r+l+t(30,31)) 
rio +jl 

_> pr(m)(1 -- pz(m))r(1 -- p,(m))J~ + O(1)) X ~ ( 1  + O(1)) 

exp(--#a(m)) (#a(m))J~ exp (_#Z(m))(#Z(m))j~ 

jo! j l  ! 

as r ~ oc. This completes the proof of the theorem. [] 

Remark.  If the initial condit ion x is odd, as before, we can establish 

T (E) - ( 2 r  -[- 2) ::~ Z3 (0) § Z~ 1) when k ~- 1 

where Z3 (~ and Z} 1) are as specified in Theorem 4.4. Hence, given any probabili ty 
distribution 0 on Nm, 

T(rE)(o)-  (2r § 1) ::~ X § Z3 (0) § Z} 1) when k = 1 

where X is an independent  Bernoulli  r andom variable with P ( X  = 1) = 0(odd). 
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Now, we consider the case of runs of type  at least k. The proof  of the next theorem 
is similar to the proof  of the Theorem 4.3 and we omit it. 

THEOREM 4.5. I f  the initial condition is that x is even (i.e., Xo = O) and the 
condition (4.4) holds, we have 

(a) T (L) - (2r + 1) ~ Z~ ~ + ZO)I when k = 0 

(b) T ( i )  - ( 2 r +  1) ==> Z} ~ + Z~ ') when k = 1 

where Z}~ ~ Poi (1 ,p . (m)) ,  Z} 1) ~- Poi(1,pZ(.~)) and Z(_ 1) ~ Poi ( -1 ,#Z(m))  and Z} ~ is 

independent of  both Z(_I~ and Z~ 1) . 

Remark.  If 0 is any dis t r ibut ion on the initial conditions, we have 

(a) T(L)(o)  -- (2r + 1) ~ X + Z~ ~ + Z(_I~ when k = 0 

(b) T ( L ) ( o ) -  (2r + 1) ~ X + Z~ ~ + Z~ 1) when k = 1 

where Z~ ~ z(_ll ) and Z~ 1) are as in Theorem 4.5 and X is an independent  Bernoulli  
random variable with P ( X  = 1) = 0(odd).  

Finally we investigate the limiting distr ibutions of scan waiting t imes under  this set 
up. Unfor tunate ly  the methods  employed here are not sophist icated enough to obta in  
the limiting distr ibutions of T ( k l ' I )  and T (kl'II) However, these are good enough for *r,k r,k " 

,~(k~ , l i d  the wait ing t ime dis t r ibut ion o i l ; ,  k . 

T ( k " H I )  namely: (a) k is Two different scenarios emerge for the scan waiting t ime .r,k ' 

even and (b) k is odd. We s tudy  them separately. 

THEOREM 4.6. 
holds, we have 

Under any initial condition, i f  k is even and the condition (4.4) 

T ( k l , I I l )  
( a )   r,k - 

T(k~,III) (b) . r,k - 

where Z (~ k, ~ e o i ( k l , P . ( m ) / 2 ) .  

( r + k - 1 ) ~ Z  (~ when k = 2 k l  kl 

(r + k - 1) ~ 0 when k > 2kl 

V ~J vn{  #B(m) ~{ P~B(m) ~j / PROOF. F o r p a r t  ( a ) , f ixe  > 0. Choose J l a r g e s o t h a t / _ _ . j = o e . . v ~ - ~ j t - - - g - -  j . 
j! >_ 1 - e. Fix any t >_ 0. For w = max(4,  m, 2k) and for all sufficiently large r, we have 

J 

{T(,~ 1JII) - (r + k - 1) = kit} _D U { T ( ,  kl 'IIO - (r + k - 1) = kl t ,  A (r+k-l+klt)(tJ) } 

j=0  

J 

D U B(w) . . . .  - -  r +  k -  l + k ~  t t ~' J J" 
j = 0  
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Therefore, we obtain, 

Px fT(kl ' I I I )  - (r + k - 1) = kat} 
t ~ r,k 

J 

_ P ( ~ )  > 

j=0 
J 

r/2 "1 --~ ff__~P~(m)t - - P ~ ( m ) ) r / 2 ( 1 - - p ~ ( m ) ) t ~ ( m ) ( l  + o ( 1 ) )  X t [ j !  ( 1 + O ( 1 ) )  
j=O 

J exp( -pa(m) /2 ) (pa(m) /2 )  t exp(--PO(m)/2)(#O(ra)/2) j 

~ t! j !  j=0 

> (1 -- e ) exp ( - -#a (m) /2 ) ( IZa (m) /2 ) t  

- t !  

Since e > 0 is arbitrary, this proves tha t  l iminfr-- .~ P{T(~k ~'ItI) -- (r + k - 1) = k i t }  >_ 

exp(- -#~(m)/2)(#a(m)/2) t / t ! .  This proves part  (a). 
J For par t  (b), we choose e > 0 and J so large tha t  ~-~j=oeXp(--pa(m)/2)(tta(m)/2)J/ 

J 
j!  > 1 - e and E j = o  exp( -P~(m) /2) (#~(ml /2 )J /J !  -> 1 - e. Now, for all sufficiently large 
r and w as defined above, 

J 
{~( k x , I I I )  __ (r + k - 1) = 0} D U R(~) ( jo , j l ) .  

l r ,  k -- ~ r + k - - 1  
jo , j  l = l 

p.cT(kl J i l l  _ (r + k - 1) = 0} > Therefore, using Lemma 4.4, we have tha t  lim infr~c~ t ~,k -- 

(1 -- e) 2. Since e > 0 is arbitrary, this completes the proof. [] 

Remark.  When k < 2kl, it is easy to conclude tha t  the scan wait ing times converge 
to infinity. As earlier, we can s tar t  wi th  a initial distr ibution 0 on Nm. Since the. l imit ing 
distr ibution is independent of the initial condition, we have, 

(kl  , I I I )  
(a) T~',k (0) - (r + k - 1) ~ Z(~ when k -- 2kl 

(k1,11I) 
(b) T~, k ( 0 ) - ( r + k - 1 ) = ~ 0  when k > 2 k l  

where 7(o) is same as in Theorem 4.6. 

Next we explore the case when k is odd. 

where Z (~ 
dent. 

THEOREM 4.7. I f  the initial condition is that x is even (i.e., Xo = 0), k is odd 
and the condition (4.4) holds, we have 

_ _ 7(1) when k 2kl - 1 (a) ~(kl,III)~r,k k 2(r - 1) ~ Zk (~ + ~ - k  = 

T ( k z  , I I I )  (b) ~r,k - k - ( r - 1 ) ~ 0  when k > 2 k l - 1  

Poi(k,#~(m) ) and g(1) ~ - k  ~ Po i ( -k ,#z (m) )  and 7(~ and g(1) ~k ~ - k  are indepen- 
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PaOOF. We only prove par t  (a). For any t E Z, we define Lt = { ( j 0 , j l )  : j 0 , j l  _> 
A(k+2(r-1)+kt )  0, J 0 - j l  = t}. For any (jo, j l)  ELt ,  consider the event (jo,jl) . For all sufficiently 

large r,  this is a well-defined event and also note,  

__ __ d(kW2(r--1)Tkt)  (w) �9 �9 
t ~fT(kl'III)r,k k 2(r  -- 1) ---- k t , . . ( jo , j~  ) } _~ Bk+2(r_ l )+kt (30 ,31  ) 

where w = max(4,  m, 2k). Therefore,  using Lem m a  4.4, we conclude tha t ,  

-~,(k~,HI) k t  A (k+2(r-1)+kt) 1 l i r m i n f P t l r ,  k - k - 2(r  - 1) = ' (Jo,J0 J 

> exp ( -#a (m) ) (#a (m) )  j~ exp(-P~(m))(#~(m))  j~ 

- -  j o !  j l !  

This completes the proof. [] 

Remark. When  k < 2kl - 1, it is easy to observe tha t  the waiting t imes converge 
to infinity. If 0 is any initial dis t r ibut ion on Nm, we have, 

(kl ,III) 7(0)  7(1)  (a) T), k ( O ) - k - 2 ( r - 1 ) ~ , ~ k  + ' ~ - k + X  when k - - 2 k l - 1  

T(kl J H )  fA~ 
(b) ~r,k w J - k - 2 ( r - 1 ) ~ 0  when k > 2 k l - 1  

where 7(0) and Z 0) "k  -k  are as in Theorem 4.7 and X is an independent  Bernoulli  r andom 
variable with P ( X  = 1) = 0(odd).  

5. Central limit theorem 

In this section, we derive central  limit theorem for the number  of runs up to t ime 

n, of different types,  viz., M (M), M (E) and M (L), as well as the number  of scans up to 

t ime n, denoted  by (J) Skl,k(n ) for j ---- I ,  I I  and I I I ,  for the s ta t ionary  m - th  order  Markov 
chain set up. Further ,  for the same set up, we establish law of the i tera ted logari thm for 
M(n M), M (E), M (L) and S (III)  kl,k (n). 

We define a sequence of new random variables which form a s ta t ionary  Markov 
chain with finite s ta te  space and t rans la te  the descript ion of runs of all types  as well as 
the scans from the set of original r andom variables to the set of newly defined r andom 
variables. We assume tha t  0 < Px < 1 for all x E Nm; therefore  this new Markov chain 
is irreducible. Hence the new Markov chain, being s ta t ionary  with finite s ta te  space and 
irreducible, forms an c~-mixing sequence. Using results from the central  limit theorem for 
a -mixing  sequences, we derive a very general  central  limit theorem on a rb i t ra ry  functions 
of the newly defined random variables. Fur ther ,  we establish moment  bounds  on the new 
set of r a ndom variables and applying the bounds in the a-mixing  setup, we obta in  law 
of the i te ra ted  logar i thm for any funct ion of the newly defined random variables. Now, 
by appropr ia te ly  choosing the funct ion in the above result,  we obta in  the central  limit 

, S (III)  theorem and law of the i te ra ted  logar i thm for M (M) M (E) and (kl,a)(n). In case of 

runs of type  at least k, the above me thod  cannot  be direct ly applied since there  is no 
upper  bound  on the length of the run. However, we can construct  a pa t te rn ,  hence an 

associated function, so tha t  M (L) can be approx imated  by the number  of above pa t te rns  
till t ime n. This  approximat ion  enables us to use the above general  theorem to derive 

the asympto t ic  results for M (L). 
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In order to obtain the results for the scan enumerat ing variables, SU!k(n) and 

S(H) : , k~,k ~n), associated with the non-overlapping schemes for counting of scans, we have to 
employ a new technique. We define a sequence of stopping times in terms of the newly 
defined random variables in such a way tha t  the number of scans between two successive 

0(II)," times become i.i.d. This allows us to approximate both  SU)k(n) and stopping 
by a random sum of i.i.d, random variables. Using asymptot ic  results on random sums of 

i.i.d, random variables, we derive the appropriate central limit theorem for S(I!k(n) and 

s (H) :  k~,k(n). This method  can be generalized to a wider class of statistics, which depend on 
a finite number of observations and has a finite order auto-correlation structure.  

Let l = max(m,  2k, k + 2). If 1 > m, set X - m  = X - m - 1  . . . . .  X-l+1 = O. Define 
a sequence of random variables {Yn : n _> 0} as follows: 

l--1 

Y~ = ~ 2Jx._j. 
j = 0  

Since Xi E {0, 1} for all i, Y~ assumes values in the set Nl. Since the random variables 
Xn is s ta t ionary and m-dependent  (rn <_ l), we have 

P(Yn+I ---- Y I Yn = x) = ( 

P~m(x) if y : f~t)(x) 

q~m(x) : 1 - P ~ ( x )  if y = f(O(x) 
0 otherwise 

where ~m : Nl --~ Nm defined by rm(X) = x mod(2 m) and f(O(x) = (2x + i)mod(21), 
i ---- 0, 1. Thus, {Yn : n > 0} is a s ta t ionary  Markov chain with state space Nl wi th  
Y0 = x. Therefore, {Yn : n > 0} is an a-mixing sequence with  an  = KP n where K > 0 
and 0 < p < 1 are constants  (see Billingsley (1986)). More formally, let ~'~ and }-~  
be the a-algebras generated by the random variables (Y0, Y1, . - . ,  Yn) and (Yn, Yn+l, . . . )  
respectively. Then, we have for any n > 1 and t _> 1 

(5.1) sup ]P(A)P(B) - P ( A  A B)I <_ KP t. 
A~'rn B=~:oo 

From the definition of Yn, it is clear tha t  X~ -- 1 if and only if Y~ is odd. Further,  
Y~ contains all the information of the window of length l, s tar t ing at  n - l + 1 and ending 
at n. We now prove the central limit theorem and law of the i terated logari thm for 
arbi t rary functions of the sequence {Yn : n > 1}. 

THEOREM 5.1. Let v : Nl ~ ~ be any function. Then, we have, 

E i = l  v(Y/) -- E n ( E i = l  =~Z 

where a > 0 and Z follows a standard no~nal distribution. Further, law of the iterated 
logarithm holds for {v(Yi) : i _> 1}, i.e., 

n (~-~i=1 V (Y~)) l i r a  s u p  E i = I  v (Y/ )  - E n 
n~oo ax/2n log log n 

--- 1 almost surely. 
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PROOF. Using example 27.6 of Billingsley ((1986), p. 363), we obtain tha t  {v(Yi) : 
i >_ 0} is a s ta t ionary sequence of random variables. Further,  we also obtain tha t  
{v(Y~) : i > 0} is a mixing sequence with mixing constants an ,  given by an  = K p  n 
where K and p are defined in (5.1). Therefore, we are able to apply the Theorem 27.4 
of Billingsley to obtain the central limit theorem. 

For the proof of the law of the i terated logarithm, we use Theorem 1.2.1 of Philipp 
(1971). Let M1 = max{Iv(j)l  : j E Nl}. Since, Nl is a finite set, M1 < c~. Thus, we 
have, for any n > 0, 

IV(Yn) -- E(v(Y ))I Iv(Y )I + 2M1. 

Thus, the condition of Philipp (1971) is satisfied by the family {v(Yn) : n > 0} and hence 
law of the i terated logari thm holds. [] 

Now, we use this me ta  theorem, with special choices of functions v : Nt ---* ~, 
to derive the central limit theorems as well as law of the i terated logari thm for the 

,~( I I I )  / \ enumerat ing variables M (M), M (E), M (L) and ~kl,k ~n). 

THEOREM 5.2. Let M (M) be the number of runs of type at most k up to trial n. 
Then 

M(M) _ E(M(nM)) 
~ Z  

x/rnff  M 

where CrM > 0 and Z follows a standard normal distribution. Further, law of the iterated 
logarithm holds for M (M) , i.e., 

M(nM) - E ( M ( n ' ) )  
lim sup = 1 almost surely. 

n ~  ffM x/2n log log n 

PROOF. Consider the function VM : Nl --~ {0, 1} defined as 

1 if x m o d ( 2  j)  = 2 j -1  -~ 1 
VM(X) = 0 otherwise. 

for some j = 2 , 3 , . . . , k + 2  

It is easy to note tha t  Yn mod(2J) = 2 j -1  + 1 if and only if Xn = X n - j + l  = 1 and Xi = 0 
for n - j + 2 < i < n, j = 2, 3 , . . . ,  k + 2. Thus, vM(Yn) = 1 if and only if a run of type 

n at most  k ends at t ime n for n > k + 2. Therefore, we have k + 1 + ~-~j=k+2 vM(Yj)  > 

M (M) >_ ~-]jn=k+ 2 vM(Yj).  Since [ ~-~jn__ 1 VM(Yj) -- ~]jn=k+ 2 VM(Ys)[ _< k + 1, we have the 
central limit theorem and law of the i terated logari thm from Theorem 5.1. [] 

Considering the function VE : Nz ~ {0, 1} defined by 

1 if x mod(2 k+2) = 2 k+l + 1 
VE(X) ~-- 0 otherwise 

we obtain the following limit theorem for the runs of type exactly k, proof of which we 
omit. 
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THEOREM 5.3. Let M (E) be the number of runs of type exactly k up to time n. 
Then 

MU ) - E(MU )) 
~ Z  

X/-s E 

where are > 0 and Z follows a standard normal distribution. Further, law of the iterated 

loga~ithm holds for M (E), i.e., 

M U  ) - E(MU )) 
l imsup = 1 almost surely. 

n~c~ ar E v/2n log log n 

~ ( I I I ) /  ~ _ _ Now, we concentrate on the scan statistics ~k~,k ['~/ where 1 < kl < k. Define a 
family of functions {7rt : t = 0, 1 , . . . ,  k} on Nt ~ R in the following way: 7r0(x) = 0 and 
7rt(x) = x m o d ( 2  t) for t _> 1. Now, define the function v s :  Nt --+ {0, 1} defined by 

1 if (Trt(x) - 7rt_](x))/2 t-1 > kt 
v s ( x )  = - 

0 otherwise. 

It should be noted tha t  vs(Y,~) -- 1 if and only if the window of length k s tar t ing at  
n - k + 1 and ending at n, contains at  least kl many  successes, i.e., a scan is observed 
in the window of length k ending at  n. Therefore, using this function, we derive the 

, - , ( l i t )  / following limit theorem for ~kl,k [n) from Theorem 5.1. 

, ~ ( I I I )  / x 
THEOREM 5.4. Let ~kl,k In) be the number of scans up to time n, obtained by 

using the overlapping scheme of counting scans. Then 

S(III) (iii) 
kl,k ( n ) -  E(Skl,k (n)) 

V/-~ (III) 
arS 

~ Z  

(HI) where as > 0 and Z follows a standard nomnal distribution. Further, law of the 

iterated logarithm holds for ~,(11I) , ~kl,k (n), i.e., 

, ~ ( I I I )  / 

l imsup ~"~kl,k ~n) - E k S k l , k ) k n ] ]  : 1 a l m o s t  surely. 
( (.III ( ~ 

n ~  a(ff IO ~/2n log log n 

Remark. The arguments  above use actually the mixing na ture  of the underlying 
random variables and will continue to hold for general s ta t ionary mixing sequences wi th  
appropriate conditions on the mixing constants.  It is also evident tha t  any pa t te rn  or 
a family of pat terns  which are determined by the values of finitely many  X/ 's ,  can be 
similarly represented by a suitably constructed function and therefore, the asymptot ic  
results in such cases can be similarly derived from Theorem 5.1. 

Next, we concentrate on the runs of type at  least k. This s i tuat ion is different 
from the previous cases, since, in this case, there is no upper bound on how far the run, 
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s ta r t ing  at  t ime  n, can go. So, to app ly  the above technique,  we need to a p p r o x i m a t e  
this run  by  some p a t t e r n  which is of finite length. 

THEOREM 5.5. Let M (L) be the number of runs of type at least k up to time n. 
Then 

M( L) - Z 
V/'nO-L 

where aL > 0 and Z follows a standard normal distribution. Further, law of the iterated 
logarithm holds for M (L), i.e., 

lira sup 
n--,~ aLv/2n log log n 

= 1 almost surely. 

PROOF. In order to app rox ima te  runs of type  at  least  k, we define the  funct ion 
VL : Nz --~ {0, 1} as follows: 

1 if x m o d ( 2  k + 1 ) = 2  k 

VL(X) = 0 otherwise.  

I t  is easy to see t ha t  VL(Yn) = 1 if X n - k  = 1 and Xn_k+ 1 . . . . .  X n = 0. Thus ,  this  
funct ion will count  the num ber  of occurrences of the  event  t h a t  a success is followed by  
at  least  k failures. 

Suppose  t h a t  il < i2 < . --  < is are the s t a r t ing  points  of  runs  of type  a t  least  k, 
up to  t ime  n. Hence,  we mus t  have Xi  t = 1 and Xi,+j = 0 for j = 1, 2 , . . . ,  k. Hence, 
vL(Yi~+k) = 1 for each t = 1, 2 , . . . ,  s. Therefore,  we mus t  have, 

M~ L) < f i  vL(Yi). 
j = k + l  

Conversely, if k + 1 < j l  < j2 < " '"  < js  _< n be  the  trials for which VL(Yjt ) - = -  1 for 
t ---- 1, 2 , . . . ,  s, t hen  jt - k must  also be  s t a r t ing  point  of a run  of t ype  a t  least  k, for 
t = 1, 2 , . . . ,  s - 1. Therefore ,  we mus t  have, 

n 

M(L) >-- E vL(Yi)--  1. 
j=k+l 

Combin ing  this wi th  above,  we have, 

n 

M (L) - j~lVL(Yi)= <_ k + 2. 

Prom T h e o r e m  5.1 and  the  above es t imate ,  the resul t  follows. [] 

(I) o(II) + 
Now, we consider the  r a n d o m  variables  Skl,k(n ) and Dkl,kin). I t  is obvious t h a t  

Xn = 1 if and  only if Y,~ is odd. So, the r a n d o m  variables  {Rkl ,k (n) :  n ( I )  >_ 1} and 
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{l~(II) 
�9 ~k~,k(n) : n > 1} can be re-defined using Yn's in the following way: 

n-1 n--1 
1 if 7r, (Yn) + Z R(I) k l , k ( n )  = j = n - k + l  

0 otherwise 

n--1 
R(H) , , k~,k[n) = 

H (1 (I) - Rkl,k( t))  >_ kl 
t=j 

H (1 -- ~]~(k/l(~) ( j )) l{~ jn=n_k4_l,Kl(yj)~kl } 
j=n-k+l 

where ~, (x) --- x rood(2). 
Now, we consider a sequence of increasing stopping times {~-t : t _> 0} defined as 

~-0 = 0 and for t _> 1, Tt = inf{n > Tt-1 : Yn = 0}. Clearly, as t ~ cx~, rt T c~. 
The Markov chain {Y~ : n >_ 0} has finite state space Nt. Fur ther  it is irreducible, 
since 0 < Px < 1 for all x E N,~. Hence Tt < OC almost surely. It is evident tha t  
the stopping times occur if and only if we observe a sequence of O's of length l, in the 
original sequence of random variables. This breaks the auto-correlation s tructure of the 
occurrences of scan and as a result, the number of scans before the stopping t ime and 
after the stopping t ime behave independently. We make this formal in the next lemma 
using the strong Markov property. 

Define, 

7t+1 
g(I) E ( I ) .  = Rkl,k( ) 

i=Tt+l 
Tt+l 

g~ I,) = ~ R(kIl()k(i) 
i=rt+l 

for t _> O. We have 

LEMMA 5.1. For any initial condition x, we have, 

�9 the random variables {U(I) :  t >_ 0} are independent. Further, {U(I) :  t >_ 1} are 
identically distributed, 

�9 the random variables {U( I I ) :  t >_ 0} are independent. Further, {u ~ H) :  t > 1} 
are identically distributed. 

First ,  we prove the central limit theorems assuming Lemma 5.1. 

(I) , ( i i ) ,  , 
THEOREM 5.6. Let S~l,k(n ) and ~kl,k(n) be the number of scans up to t ime n 

using the non-overlapping schemes of counting scans. Then we have 

(') 
( a )  S L ' k ( n )  - ' Z 

V/no -(I) 
r,(II) r x 

(b) ~kl '~(n) -  S(SIZl[~(n)) ~ Z 

where o'(s I), O-(S II) > 0 and Z follows a standard normal distribution. 
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PROOF. We prove part  (a) of Theorem 5.6 only. The other can be proved similarly. 
Since {Yn : n > 0} is an irreducible Maxkov chain with finite s tate  space, it has an unique 
s ta t ionary distribution. Let  (00,01, . . . ,02,_1)  be the s ta t ionary distribution. Further,  
we have tha t  E(T1) < co. Define W(n)  = inf{t _> 1 : rt > n}. Since the Markov chain is 
positive recurrent,  

W(n)  1 
+ - -  > 0 almost surely as n ~ co. 

n 0o 

--~ {"r(1)'~2 = ( " ( ( 1 ) ) 2 / 0  0 > O. Let ((r(I)) 2 Var(U~ I)) and set tu 8 ) 
Now, we have, 

(;) 

x-~W(n)(U(1  ) E ( U ( I ) ) )  V~rw(~) (I) . U(o 1 ) -  E ( U ( ; ) )  _[_ z.. .~i=l k i ---- - -  - -  A - ~ i = n + l  R k , , k ( ' ) -  E(R([{k(i)) 

Since E(IU(o I) - E(U(oI))I) <_ 2E(U(o I)) <_ 2E( r l )  < co, 

U(o 1) - S(U(o 1)) p 
) 0  as n--+ O0. 

Also, E(I V'~w(n) R (O ~" Z-,i=n+l ki,a(z) -- E(R({),k(i))l) <- 2E(r2 - r l )  < co; as a result, 

Erw(~) (R(I) ( i ~ -  E(R({  ), (i))) p 
i = n T l k  kl,kk ] k 

) 0 a s  n - - ~ c o .  

Since we have W ( n ) / n  --* 1/00 almost surely as n -~ co, using proposit ion 10.1 of 

Bha t tacharya  and Waymire (1990), for the i.i.d, sequence of random variables {U (O : 
t _> 1}, we have 

E W ( n ) ( u ( O - -  E(U(iI))) N(0, (a(00)2). i = 1  k i ==~ 

Combining all these, we conclude tha t  (1) (Sk~,k(n) -- E ( S ( ~ ) k ( n ) ) ) / v ~  =~ N(O, (a(1))2). [] 

Finally, we prove the L e m m a  5.1. 

PROOF OF LEMMA 5.1. Since rt T oc as t -~ co, for any i _> 1, we can find t _> 0 
such tha t  rt < i < Tt+l. Now, we define new sequences of random variables as follows: 
s e t R ( : ) ( i ) = 0 f o r l < i < k l - l a n d R  (:l)(i) = O for l < i < k -  l and 

i - -1  i - -1  

1 if 7~l(Y/) ~- E ~l(YJ) 1-I (1 - R(O(t))  >- kl 
R (I) ( i)  : j = m a x ( i - k T l , r t + l )  t=j 

0 otherwise 

i - -1  

R(11)(i) II (1 - -  R ( I I ) ( j ) ) I { ~  3 . . . .  (i--k+l,vt-{-1) 71"l (YJ)  - ~ k ` } "  

j = m a x ( i - k +  l,rt+ l ) 
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Also, define, for each t >_ O, 

Tt+l "rt+l 
vt(l> = E ~(I ) ( i )  and gt(II) = E n(II)( i )"  

j = r t + l  j=Tt+l 

From the definition of Vff  ) and V ( u ) ,  for j _< t, it is clear tha t  bo th  of them are 

determined by the process { Y n : n  <_ "rt+l}, i.e., V (I) and V (H)  are bo th  $-r = a(Yn:  
n _< Tt+l) measurable  random variables. 

Now, for Tt < i, the random variables R(I)(i) and R(U)(i)  are measurable  with 
respect to 9 ~ +  = a(Y~ : n >_ Tt + 1). Indeed, R(I)(Tt + 1) = 1 if and only if 7rl(Yr _> 
kl; hence it is 9cr measurable.  Assume that  it is t rue for i. Since R(I)(i  + 1) is a 
function of {Yj : i _> j _> ~-t + 1} and {R(O( j )  : i _> j > rt + 1} and by induct ion 
hypothesis,  R(I)( j)  is measurable  w.r.t. 5cr for i > j >_ Tt + 1, we have that  R ( O ( i +  1) 

is bcr measurable.  A similar argument  holds for R(II)(i).  Therefore, bo th  lit (O and 

Vt UO, are ~'rr measurable.  
Since {Y~ : n _> 0} is a Markov chain with finite s ta te  space, it obeys  the strong 

Markov property.  Thus, the conditional dis tr ibut ion of the process {Y3 : j >_ Tt+t }, given 
the process up to t ime ~'t+~($-,~+1), using the strong Markov property,  is same as tha t  

of {Yn : n > 0} with the initial condit ion Y0 = Y~-~+~ -- 0. Since ~/-(I) is measurable  with 
- -  * t + l  

respect to $-r,+~+, for any F C I~ we must  have F1 such that  

Pxk (g~(1)t+l e F) ~-- P;((YTt+Iw1,Y~-t+lq-2,. .. , )  e F1). 

Using the strong Markov property,  we have 

rv(r)  
(5.2) Pxk, t+l  ~ r I J:+++,) = Px((Yrt+l+l,Yr++t+2,...) E r l  I 

= P0((Y1, Y2,.- .)  E F1). 

Since the conditional dis t r ibut ion of ~/U). t+l given ~'~-~+~ does not depend on ~-~+,, vU). t+l is 

independent  of 9c~+~. As a consequence, v (O  is independent  of random variables which 
" t+l  

are measurable  with respect  to 9r+++t. Therefore, v(O, t+l  is independent  of {Vff  ) : 0 _< j _< 
t}. Further,  from (5.2), we must  have, 

P + ( V t ~  c F ) =  Po((Y~,Y2, . . . )  ~ F1) 

which is independent  of t for t > 0. H e n c e / v ( O  
- / ' t a x  : t _> 0} is a sequence of i.i.d, r andom 

v(11) 
variables. Same arguments  can be  carried out for "t+l �9 

R(O . . . .  (H) , . ,  Only thing we need to show now is RU)(i)  = kl,k(~) and R(II)(i)  = nkl,k(z ) for all 

i > 1. By  definition, R (I)(i) (z) . n(H) , . ,  _ ---- Rkl,k(z ) = 0 for i = 1, . �9 ., k l - 1  and RUI)(i)  = Xtk~,k[~) = 
0 for i = 1 , . . . ,  k - 1. Assume that ,  it is t rue for i - 1. Fix t > 0 such that  +-t < i < Tt+t- 
Now, if +-t(w) <_ i - k + 1, then R(I)(i) = 1 if and only if" ~j=i-k+li-1 zrt(Yj) 1-Is=j(l~--t _ 

n(I) (s)) + (t) = }--~j=i-k+l 7rl (YJ) I-L=j ( 1 - T'I - -  Rk, ,k(s)) + (Yi) > kl (by induct ion hy- 

pothesis) and therefore, if and only if R(~!k(i) = 1. Similarly, R(U)(i)  r l i -1  (1 - -~- 1 lj=i--k+lk 
R (I I ) ( j ) ) l{~ ++ > i-1 (H) . j=i-k+l +r,(Yj)_kl} ---- H J = i - k + l ( 1  -- Rk~,k(3)) l{  E j=+-k+~ 7rl(Yj)_>k,} = 
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R(~X)(i). I f  ~-t(w) > i - k + 1, no t e  t h a t  Y~ = 0 which  impl ies  t h a t  X j  = 0, hence  
i--1 i -1  (I) 

7rl (~ j )  ---- O, for all j = T t - - l + l , . .  . ,  Tt. There fore ,~-~ j=i_k+17r1(Y j ) l - I s=j (1-Rk~ ,k ( s ) )  = 

i -1  1-1i-1(1 (I) i -1  i -1  
E j : ~ - t + l  71I(YJ) xxs=j ,  Rkl ,k(8))  ---- 7rX (Yj) (1 - R (1) - -  Ej=7- t+l  1-Is=j (s))  wh ich  impl ies  

t h a t  R(~),k(i ) = R(I)( i ) .  Similar ly,  we i i have,  Ey=i-k+l 7rl(YJ) = E j = r t + l  71I(YJ) �9 Fur- 
ther, since l > 2k, for  j = Tt -- k + 1 , . . . ,  Tt, t he  w i n d o w  of  l eng th  k, s t a r t i n g  a t  j - k + 1 

T~(II) : .~ and  end ing  a t  j ,  con ta ins  no successes.  Since kl >_ 1, we have  t tkl ,k(3 ) = 0. T h u s ,  
v i i -1  (1 (U) �9 VI i-1 (1 (II) . v i i - 1  { l  

we have  11j=i-k+i~ -- Rkl ,k(3))  = 11j=~+1~ -- Rki ,k(3))  = l ~ j = r ~ + i t  -- R ( u ) ( J ) )  �9 
There fo re ,  we conc lude  t h a t  R (II) (i) n ( H ) , . ,  = ~tkl,k(z ). T h i s  c o m p l e t e s  the  p r o o f  of  l e m m a .  []  
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