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Abstract .  The existing model for multivariate skew normal data does not cohere 
with the joint distribution of a random sample from a univariate skew normal distri- 
bution. This incoherence causes awkward interpretation for data analysis in practice, 
especially in the development of the sampling distribution theory. In this paper, we 
propose a refined model that is coherent with the joint distribution of the univari- 
ate skew normal random sample, for multivariate skew normal data. The proposed 
model extends and strengthens the multivariate skew model described in Azzalini 
(1985, Scandinavian Journal of Statistics, 12, 171-178). We present a stochastic 
representation for the newly proposed model, and discuss a bivariate setting, which 
confirms that the newly proposed model is more plausible than the one given by 
Azzalini and Dalla Valle (1996, Biometrika, 83, 715-726). 

Key words and phrases: Moment generating function, skewness, stochastic repre- 
sentation, quadratic form, multivariate normal distribution, Helmert matrix. 

1. Introduction 

Let X and Y be two independent random variables following the standard normal 
distribution. For any real number A, random variable Z = L ~ IXI + ~ Y  follows 

a distribution with density function 

(1.1) f ( z )  -- 2r - c~  < x < o~ 

where r and ~(.) are the pdf and cdf of the standard normal distribution, respectively. 
The distribution family of Z with density (1.1), denoted as Z ,-- SN(A), is called the skew 
normal distribution (see for example Azzalini (1985); Gupta et al. (2002)). The skew 
normal distribution family extends the widely employed family of normal distributions 
by introducing a skewness factor A. The advantage of this distribution family is that  it 
persists many statistical properties of the normal distribution family (Azzalini (1985), 
Zack (1981)). The study of skew normal distributions explores an approach for statistical 
analysis without the assumption of symmetry for the underlying population distribution. 
Such an extension is necessary because in practice, the underlying distribution may be 
well skew rather than being symmetric. Thus, the skew normal distribution family 
emerges to take into account the skewness property. For example, the application of 
skew normal distribution to time series and spatial statistics was discussed by Genton 
et al. (2001), among others. 

Although random variables with density fimction (1.1) fragmentarily appear in ear- 
lier writings in econometrics and medical studies (see for example Aigner et al. (1977) 
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and Roberts (1966)), the primary work of Azzalini (1985) defines the univariate skew 
normal distribution family and systematically addresses its statistical properties. 

When applying the skew normal distribution family in statistical inference, fre- 
quently we need to discuss the joint distribution of a random sample from the popula- 
tion. This consequently necessitates the study of multivariate skew normal distribution. 
Toward this end, Azzalini (1985) mentioned the following multivariate extension of the 
density in (1.1). 

DEFINITION 1. (Azzalini (1985)) Random vector y follows a multivariate skew 
normal distribution if the joint density of y has the following form: 

k 

(1.2) / (y )  = a)  H r 
j = l  

where Ck(', f~) is the density of a multivariate normal distribution with k x k correlation 
matrix f~ = (Pij), Y = (Yl,. . .  ,Yk)' �9 R k, /31,... ,/3/; are k real numbers. Note that  

= (Pij) is generally not the correlation matrix of y, and c -1 is the orthant probability 
of a standardized normal random variable. The off-diagonal elements of the correlation 
matrix are of the form 5~bjpij with 5~ = )~ffx/1 + A~. We denote the set of random vectors 
following a joint distribution in Definition 1 as SN1 (k, f], ~_), where/3 = (/31,...,/3k)'. 

Obviously, Definition 1 is just a direct and formal extension of the univariate skew 
normal distribution. In 1996, Azzalini and Dalla Valle pointed out the disadvantage 
of Definition 1, and put forward the following version for multivariate skew normal 
distributions. 

DEFINITION 2. (Azzalini and Dalla Valle (1996)) Random vector y follows a mul- 
tivariate skew normal distribution if the joint density of y takes the following form: 

(1.3) I(y)  = 2r for y �9 R k 

where _a is the vector of k real numbers. We denote the set of random vectors following 
a distribution in Definition 2 as SN2(k,  ft, o~). 

As delineated in Azzalini and Dalla Valle (1996), and also in Azzalini and Capitanio 
(1999), Definition 2 is endowed with statistical properties such as the quadratic form 
of a skew normal random vector is X 2, along with a probabilistic interpretation on the 
basis of the stochastic representation. However, in the definition, ft is not the correlation 
matrix of y, and fi = I does not imply that  all components of y are independent in 
Definition 2. 

For Definition 2, Gupta and Chen (2001, 2003) observed that  if Y1, . . . ,  Yk consti- 
tute a random sample from skew normal population SN(A), the distribution of y = 
(Y1,. . . ,  Yk)' is not included in SN2(k ,  f~, ~_). Consequently, the distribution of the mean 
of a random sample does not belong to SN2(k,  f~,a). This phenomenon casts a doubt 
on the appropriateness of Definition 2 being a statistical model for multivariate skew 
normal data. 

In this paper, we propose a refined model for multivariate skew normal data. We 
shall show that  the newly defined model retains many useful statistical properties, and 
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it coherently embraces the joint distribution of identically and independently distributed 
skew normal random variables. To keep the paper concrete and directed, we focus on 
the definition of the new multivariate skew normal family in Section 2, together with the 
comparison between Definitions 1 and 3, as well as the comparison between Definitions 2 
and 3. To provide a probability interpretation, we present a stochastic presentation for 
the proposed model in Section 3, which is then followed by a discussion on bivariate skew 
normal distributions in Section 4. 

2. A new definition of multivariate skew normal distribution 

Consider a random vector with skewness parameter (51, . . . ,  5k)' corresponding to 
its k random elements. Note that the individual shape parameter 5j may affect the 
shape of the other random elements via the correlation coefficient matrix used in the 
multivariate normal density. We propose 

DEFINITION 3. Let f~ be a k x k positive definitive matrix. A k • 1 random vector 
y is called a multivariate skew normal random vector if the density of y is of the form 

(2.1) 
k 

f ( y ,  ~, d) = 2kCk(y, fit) 1-I O(~Y)  
j = l  

where d = (51, . . . ,  5k)' for some real numbers 51 , . . . ,  5k, and _A1,... ,__A k are k real vectors 
satisfying 

(2.2) A = (-~1,-.-, ~k) = ~-1/2 diag(61, . . . ,  5k). 

In the sequel, we consider the set of random vectors following a distribution in the 
family defined in (2.1) as SN3(k, fl, d). 

Remark 1. Note that in Definition 3, setting 6t . . . . .  6k = 0 in (2.1) and (2.2) 
yields the joint density of the multivariate normal distribution Ck(Y, f~). And from (2.2), 
letting A = (__A1,... ,Ak) results in 

A'~tA = diag(512,..., 6~). 

Thus, skew vector d affects the shape of the distribution via eigenvectors ,kl, . . . ,  ~k- 

Remark 2. Note that Definition 1 and Definition 3 are two different distribution 
families. Definition 1 is a special case of Definition 3. To see this, note that  for any 
x E SNI(k ,~ ,3 ) ,  if y = A x  with [A[ # 0, when A # I,  y r SNI(k ,~ ,~) ,  but 
y E SN3(k, ~, d). (We thank one of the referees for pointing out this connection~ Thus 
SN1 (k, gt, ~) is not closed for linear transformations. However, for any x E SN3(k, ~, d), 
A x  C SN3(k,f~, d) for any matrix A with [A[ # 0. 

To see the eligibility of Definition 3, we need to prove that the integral over the 
whole space for the density function given in (2.1) equals 1. 

LEMMA 2.1. With f(y,~t,  d) defined in (2.1), fak f ( y , ~ ,  d)dy = 1. 
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PROOF. Note that 

rk f ( y '  ~2, d)dy 

l Y ' a - 1  H O(A)y)  y = 2k,2 -k/2a,-1/  exp y 
k j= l  

s ( 1 ' )  k 
= 2k(2 r) -k/2exp t IIe(Nftl/ t) dt 

k 
j= l  

Since A'f~ 1/2 = d iag(g l , . . . ,  5k), we have 

= ~ k  2k(27r)-k/2 exp (--~ t' t )  

z l .  

k 

H O(Sytj)dt 
j= l  

[] 

Lemma 2.1 guarantees that (2.1) is eligible for being a density function. Next, we 
shall clarify the relation between Definition 2 and Definition 3. In this regard, we show 
that Definition 3 includes Definition 2 as a special case. The following theorem Mso 
describes the relation between Definition 3 and a random sample drawn from a skew 
normal population. 

THEOREM 2.1. Let S N3( k, $2, d) and S N2( k, ~, 2) denote the two distribution fam- 
ilies defined in Definition 3 and Definition 2, respectively. For any univariate skew 
normal random sample y, y -- (Y1,... ,Yk)' ~ SN3(k,~, d) but y r SN2(k, S2,~). 

To prove Theorem 2.1, we need the following lemma, which was given by Azzalini 
and Capitanio (1999). 

LEMMA 2.2. (Proposition 6 of Azzalini and Capitanio (1999)) I f  z ,,~ 
SN2(n,~,~),  and Atl2A is a positive definite correlation matrix, A = ( a l , . . . ,  an), 
then the elements of random vector y -- A ' z  are independent if and only if the ,following 
conditions hold simultaneously: 

(a) a ~ a j  = 0 for i ~ j, with i , j  = 1 , . . . , n  and 
(b) a~S~ ~ O ,for at most one i, with i = 1 , . . . ,n .  

PROOF OF THEOREM 2.1. First, we notice that for any skew normal random sam- 
ple, since Y1,. . . ,  Yk are i.i.d. SN(,~) (the univariate skew normal distribution with skew 
parameter A), the joint distribution of y is 

k 

1]  
j = l  

which can be written as 
k 

2%(y,  I) IV[ 
j= l  
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Thus y is in SN3(k, f~, d), with 12 = I ,  and d = ( A , . . . ,  A)'. 
Next let us examine whether  y is in SN2(k, f~,~). If y ,~ SN2(k,f~,~), for some 

correlation matr ix  f~ and skewness vector ct = (c~1,.. . ,  c~n) ~, according to Azzalini and 
Capitanio (1999), f~ is not  necessarily equal to the correlation matr ix  of y.  Now, let 
A = I in Lemma 2.2, a i  is the vector wi th  the i-th element (taking value 1) as the only 
non-zero element. And A~f~A is still a positive definite correlation matrix.  By Lemma 
2.2 wi th  f~ = I ,  a_ can only have one non-zero element. Wi thou t  loss of generality, 
we assume tha t  C~l ~ 0 and c~j = 0 for j = 2 , . . . , n .  Thus if Y1, . . . ,Yn const i tute  a 
random sample from a skew normal population, and if we assume tha t  y = (Y1,. . . ,  Yn) ~ 
follows the multivariate skew normal  distr ibution SN2 (k, f~, ~),  from the independence 
we conclude tha t  ft = I and the skewness vector ~ = ((~1,0, . . . ,  0) ~, C~l ~ 0. 

Now, by Proposi t ion 5 of Azzalini and Capitanio (1999) in the case where A = I ,  
the marginal  distr ibution of y reads 

Y1 "~ SN(o-1, C~l), and Yj ~ SN(aj,  0) for j = 2 , . . . ,  n, 

where SN((~i, o~i) is the skew normal  distr ibution wi th  density function, 
2r a)~(c~iz, o'), with r a) as the density of normal distr ibution with  s tandard  devi- 
ation ai, and (I)(z, a) as the cdf corresponding to r a).  In another  words, a is the scale 
parameter  and c~i becomes the skew parameter.  The marginal distributions obtained 
here are in contradict ion with  the fact tha t  Y1,. . . ,  Yn const i tute a random sample, which 
means tha t  Y1 , . . . ,  Yn follow an identical distribution. Therefore y ft SN2(k, f~,c~), this 
completes the proof of Theorem 2.1. [] 

From Theorem 2.1, we know tha t  given a set of skew normal  random sample y,  it 
can not be in SN2(k,f~,~), but  y E SN3(k, ft, d), thus SN3(k, 12, d) is not the same as 
SN2 (k, gt, ~). 

3. Stochastic representation for distribution family SN3(k, ft, d) 

For Definition 3 proposed in Section 2, we shall i l lustrate the distr ibution family 
with a probabil i ty interpretation.  To give a probabilistic interpretat ion of SNa(k, ft, d), 
we present a stochastic representation for the newly defined distr ibution family, 
SN3(k, f~, d). We first prove a theorem in the case where f~ = I ,  and then, on the 
basis of this theorem, we show in Corollary 3.1 tha t  any member in SN3(k, ~, d) can 
have a stochastic representation.  

THEOREM 3.1. Let x, y be two independent random vectors following Nk(0, I ) .  
Let 

(3. t )  z = d iag  lx/ i___~2, . . .  , I:sl + diag lx/ i__g~2, . . .  , y ,  

�9 . . ,  5 ' R k. w h e r e l x l = ( f X 1 1 ,  IXkl)'. T h e n z ~ S N 3 ( k , I , d )  f o r a n y d = ( S i , . . . ,  k) e 

PROOF. Let 

, �9 . . , 

and 
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( 1  
V = d i a g  ~ . . .  

then we have z = UIx I + V y  and 

(3.2) Vy .., Nk(O, V'  V). 

For any real vector w C R k, we have 

P(z  <_ w) = Etxi{P(z <_ w I Ixl)} 

A R J U N  K. G U P T A  A N D  JO H N  T. CHEN 

f 
= I P(z  < w)2kCk(x , I )dx  

JR 

(where 

where q~k(x, E) = fR(x) Ck(Y, E)dy. 

f ( w l , . . . , w k )  = d(P(z <_ w) ) /dw 

R~_ = (o, +~)~) 

P ( Y y  << w - Vx )2kCk(x , I )dx  

Ok(W -- Ux,  V'  V)2kCk(x, I )dx  

Thus, the joint density of z is 

f 

= [ {d(~k(W -- Ux,  V'  V))/dw}2kCk(x,  I )dx  
JR 

=/R (2~)-klVI-12kexp {-~((w- U~,)'(V-1)'v-X(w- U~,))} 

1 i 

(note that V is a diagonal matrix and (3.2)) 

= fR (27r)-klVl-12kexp{ - ~ [ w ' v - 2 w - w ' v - 2 v x  

- x ' U ' V - 2 w  + x tU ~V -2 U x  + x 'x]}dx .  

Since U and V are diagonal matrices, they are exchangeable. Also 

x ~U ~V - 2 U x  4- x~x = w rV -2x ,  

thus we have 

f(wl,...,wk) 
/R { 1  x ' U '  w ' V  -2 : (27r)-k[ V[-12 k exp - ~ [ x '  V - 2 x  - V - 2 w  - U x  

% 

+ w ' U ' V - 2 U w  _ w ' U ' V - 2 U w  + w ' V - 2 w ] ~ d x  ) 
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= fR~_(27r)-klVl-12k exp{--2[(X-- U w ) ' V - 2 ( x  - Uw) 

+ w ' ( V  -2 _ U ' V - 2 V ) w ] } d x .  

Note that  V -2 - U' V - 2 U  = I,  we have 

f (Wl , . . .  ,Wk) 

= f~ (27r)-k/2tV,-12k exp{--l (x - U w ) ' V - 2 ( x -  U w ) } r  

= 2kr /R (27r)-k/21V,-12~ exp {--1(* -- Uw)' V-2(x - Uw) } dx 

= 2 k ~ k ( W , i )  f l  ~ * 1 __1t2 j=l - ~  exp { } dtj 

(letting t = v - l ( x -  Uw)) 
k 

= 2kCk(w, X) H(1  - ~(-6W~)) 
j=- i  

k 

= 2kCk(w'X) H a2(hjWj), 
j-~l 

where R* = (-6jwj ,  oc). Therefore z E SNa(k, ft, d). [] 

From Theorem 3.1, one can construct  a s tochast ic  representat ion for any member  
in SN3(k, f~, d) as follows. 

COROLLARY 3.1. For any y C SN3 (k, ft, d) with parameter matrix ~ and skewness 
factor d = (61 , . . . , 6k )  ~, w = ~tl/2z has the same distribution as y, where z is the 
random vector defined in (3.1). 

PROOF. First, let the 6i's in Theorem 3.1 the same as the skewness factors 6j 's for 
random vector  y.  By  Theorem 3.1, we know that  the densi ty of z in (3.1) reads 

k 

2%(~, I) H ~(hjzj) 
j = l  

Thus the dis tr ibut ion of random vector  w = ~1/2z is 

k 

2~r ~, a) H ~((0,. . . ,  6~,..., o )a -1 /~ ) .  
j = l  

Lett ing ~ = f l - 1 /2 (0 , . . .  , 6 j , . . .  ,0) ' ,  we know tha t  w has the  same dis t r ibut ion as y 
(since A = ( ~ ) '  = ~ -1 /2  diag(61, . . . ,  5k)). [] 
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4. The  bivar iate skew-normal  d is t r ibu t ion  

After describing the model and its probability interpretation, in this section, we 
shall discuss a special case where k -- 2, namely the bivariate distribution of the newly 
defined distribution family. First the density function in (2.1) reads 

(4.1) f(y,  ~, d) = 22(2zc) -1 det(~)-U2e(-l12)u'n-'ucb(51P~1y)d2(52p~y), 

where the parameter matrix 

Thus the inverse matrix of ~ reads 

f l - 1  

and 

(4.2) 

1) 
1 ( 1  - ~ )  

1 - w 2 - w  1 

~-1/2 = (1 - w2)-1/2 ( (x/1 (vzl --- ww +_ "v/lvfi-++ ~)/2w)/2 

From (4.2), Equation (4.1) becomes 

(4.3) 

with 

(x/1 - w - 1Vi-4-~)/2 
(VI ~ + 1VV4-5)/2) �9 

f(Yl, Y2, w, 51,52) 

= 22(27r)-1(1 -- w2)-l12e(-(y~-2~y, y2+y~)12(1-,,~2))d2(51P~ly)~(52p'2y ) 

Pl 

P 2  --~ 

( v r  <,o + 1V~--5~)/2) 
( v r  m -  1Vv4-5)/2 ' 

(v' l  - ~ - 1V1-4-5)/2 
(v'x ~ + ~ ) / 2  ) " 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

J 

Fig. 1. Bivar ia te  skew no r ma l  w i th  w = 0.3. 
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Fig. 2. Bivariate normal distribution. 
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-1 

-1.5 

-2 
i 1 i i 

-2 -1 0 1 2 

Fig. 3. Bivariate skew normal with w = 0. 

The contour plot of density (4.3) when 51 = 4, 52 = 0.4 and w -- 0.3 is given 
in Fig. 1. Comparing Fig. 1 with Fig. 2 that  outlines a contour plot of the standard 
bivariate normal density, we can see the symmetry of the standard bivariate normal 
density is changed by the shape parameters w, 51 and 52. These parameters make the 
density skew and distorted. In Fig. 3, we provide a contour plot of density (4.3) with 
51 = 52 -- 3.0 and w = 0. The plot in Fig. 3 suggests that  in bivariate case, random 
variables Yl and Y2 are independent if and only if w = 0. While this property holds for 
the bivariate normal distribution family, in the bivariate skew normal family defined by 
Azzalini and Dalla Valle (1996), this property is invalid, which causes the interpretation 
of w somewhat awkward. In the following theorem, we prove that  in the definition of 
SN3(k, ~t, d), the property between independence and w = 0 remains valid. This makes 
the definition of SN3(k, ~, d) more plausible. 

THEOREM 4.1. Let y be a bivariate random vector in SN3(k, ~t, d). Then Y1 and 
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Y2 are independent if and only if w = O. 

PROOF. The moment  generating function of y = (~1) can be obtained as 

M(t) = 4exp{(t~ + 2wtlt2 + t2)/2}d2(hlpllt1 + hlpl~.t2)~(h2pmtl + h2p22t2) 

where 

and 

Thus 

(4.4) 

By the fact that  

and 

we have, from (4.4), that  

( 4 . 5 )  

(~1 
h l  ~ -  - -  

52 
h 2 =  lx/i-~22 , 

= = ( . , / i  - + 

P21 = P12 = (X "/1 - -  a; - -  v ' T +  co)~2. 

OM(tl,_O_tlot~t2) tl=t~=o = w + 2 (hlh2PnP22 + hlh2p21p12). 

2 h E(Y1) = V/~hlpll q- Vf~ 2p21 

E(Y2) = ~/~hlp12 + ~/~h2p22, 

COV(Y1,Y2)=E(Y1Y2)-E(Y1)E(Y2)= ( 1 +  1(h2 + h ~ ) ) w .  

Therefore, if I11 and Y2 are independent,  by (4.5) we know immediately that  w = 0; on 
the other hand, if w = 0, by the density in (4.3), one can see that  the joint density is 
the product  of two individual skew normal densities, which means that  Y1 and Y2 are 
independent.  

5. Concluding remarks 

We present a distribution family of multivariate skew normal distributions that  
embraces the joint distribution of a random sample from a univariate skew normal dis- 
tribution. The  newly defined distribution family, SN3(k, f~, d), is endowed with many 
statistical properties, including the coherency between a multivariate distribution family 
and the corresponding univariate skew normal samples. The persistence of statistical 
properties enriches the theory of skew normal distribution which can be employed when 
the symmetry of the underlying population cannot be plausibly assumed. Compared 
with existing multivariate models for populations with skew distributions, SNa(k, ft, d) 
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extends and strengthens the multivariate model proposed by Azzalini (1985), and it 
has greater flexibility with respect to the model proposed by Azzalini and Dalla Valle 
(1996). However, using the link between SN3(k, ft, d) and SNI(k, f~, ~), statistical prop- 
erties such as conditional and marginal distributions, moments of SAr3(k, f~, d) may be 
derived indirectly from the properties of SN1 (k, f~,/3). 
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