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Abstract .  Stone's dimensionality reduction principle has been confirmed on sev- 
eral occasions for independent observations. When dependence is expressed with 
C-mixing, a minimum distance es t imate  ~n is proposed for a smooth projection pur- 
suit regression-type function t~ C e,  that is either additive or multiplicative, in the 
presence of or without interactions. Upper bounds on the Ll-risk and the Ll-error 
of 0,~ are obtained, under restrictions on the order of decay of the mixing coefficient. 
The bounds show explicitly the additive effect of C-mixing on the error, and confirm 
the dimensionality reduction principle. 
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1. Introduction 

A common problem in statistics is the estimation of a density f E f ,  or of a 
regression function 0 C O with real values. Different estimates have been proposed for 
each of these parameters. When ~ and O consist of q-smooth functions with compact 
support X in R d, Stone (1982) showed that the rate of convergence of the optimal 
estimates is n -q/(2q+d) in Lv-distance, 1 < v < co. This rate is not satisfactory for 
reasonable values of n when d is large, due to the sparsity of high dimensional samples 
("the curse of dimensionality"). It is then tempting to approximate 0(x) and f ( x )  by 
either the sum or the product of real valued functions with the same smoothness, that  
are called the functional components of f or 0, having the form either gk(bTz) ,  k > 1, 
or gj (xml , . . . ,Xmrh) ,  rj < d, j > 1; bTx  denotes scalar product of the vectors bk, 
x = ( x l , . . . ,  Xd). The model dimension r is the largest dimension of the domains of the 
g's. Since the g's are defined in sub-spaces of X with smaller dimension, the question 
arises if the optimal rates of convergence will be affected. Stone (1985) conjectured 
that,  in an r-dimensional model of q-smooth densities or regression functions defined on 
,l', the optimal rate of convergence will be n -q/(2q+r) (Stone's heuristic dimensionality 
reduction principle). 

The dimensionality reduction principle was confirmed on several occasions when the 
observations are independent: for the L2 distance, in additive regression (Stone (1985)), 
in generalized additive models (Stone (1986)), in additive projection pursuit regression 
(Chen (1991)), in generalized regression or densities (Stone (1994)); for the L1 distance, 
in additive and multiplicative regression in presence of or without interactions, and 
0(x) a regression-type function, namely any parameter of the conditional distribution of 
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the response variable, not necessarily a conditional mean (Nicoleris and Yatracos (1997), 
denoted by N&Y in the sequel). In the context of quantile regression, Chaudhuri (1991a) 
pointed out that the dimensionality reduction principle is expected to be confirmed for 
simple additive regression models in Lp-distance, 1 _< p <_ oc. 

Practical considerations dictated the replacement of the assumption of independence 
of the observations by a suitable mode of dependence. For example, if {Zj} is a strictly 
stationary discrete time-parameter series of real-valued random variables, a problem of 
interest is the nonparametric estimation of the conditional expectation of Zj+I, on the 
basis of the m previous observations Z j - m + l , . . .  ,Zj .  This is identical to estimating 
the regression E(Yj I Xj), Yj = Zj+I, Xj  = ( Z j - m + l , . . . ,  Zj). Recent work in non- 
parametric estimation of either f or 0 under mixing conditions, indicates that the rates 
of convergence coincide with those under independence, when restrictions are imposed 
on the mixing coefficients; for example, see Truong and Stone (1992), Tran (1993) and 
Roussas and Yatracos (1996). A natural question is, whether the dimensionality reduc- 
tion principle remains valid in this situation. In this work, for a smooth regression-type 
function 0 that follows either an additive or a multiplieative model, and a C-mixing 
sequence of observations for which the partial sums of {r converge, upper bounds 
on the Ll-risk and the Ll-error (in probability) are obtained, for a minimum distance 
estimate On of 0. The upper bounds depend on Kolmogorov's entropy of the parameter 
space and the mixing coefficient, and confirm the dimensionality reduction principle. 

2. Motivation, definitions, the models, the tools 

In classical nonparametric regression, (X1, Y1), . . . ,  (Xn,  Yn) are a sample of inde- 
pendent pairs, copies of (X,  Y); Y is a real valued response, X takes values in a known 
compact set 2( in R d, d > 1. Conditionally on X i  = xi, the random variable Y/ has 
density f (y  [ xi,O(xi)) and 0(xi) = E(Y/ [ X i  = xi), 0 E 13. In a regression-type 
problem, the regression function 0 is not necessarily a conditional mean. 

The following questions provided the motivation behind the regression-type problem: 
1) Is there an explanation for the coincidence of the optimal rates of convergence 

of a density or a regression function with the same smoothness? 
2) Would the same optimal rates have been observed if, other things being equal, 

the regression function were a quantile or another parameter of the conditional density? 
In Yatracos (1985), the upper bound on the Ll-rate of convergence of a minimum 

distance estimate of a density f depends on the size of the parameter space 5 r,  measured 
using its Kolmogorov's entropy (see below). Kolmogorov's entropies of regression and 
density functions with the same smoothness are of the same order. The missing link 
to answer both questions is that, a regression problem can be viewed as a combination 
of several density estimation problems, each occurring at the observed values of the 
independent variable. This observation is behind the form of the proposed minimum 
distance estimate in the regression-type problem. 

To introduce the functional components of 0, let 2din be a compact subset in Rm; 
assume without loss of generality that Xm = [0, 1] m, m = 1 , . . . ,  d, and denote Xd by X. 
Let 13q,m be a space of q-smooth functions on A2T~ with values in a known compact G of 
the real line. Every 0 E Oq,rn is p-times differentiable, with the p-th derivative satisfying 
a Lipschitz condition with parameters (L, a); that is [0 (p) ( x )  - 0 (p) (y)[ ~ L[[x - y[[~, 
0 (p) (x) is any p-th order mixed partial derivative of 0 evaluated at x, q = p+a, 0 < a < 1. 
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Estimates will be constructed for the models that follow, confirming the dimen- 
sionality reduction principle under restrictions pertaining the form of dependence. Our 
main interest is the estimation of 0 rather than its functional components. Under the 
assumptions (A2) and (A4) (see next section), model identifiability holds; if 01 r 02, the 
L l -d i s t ance  between the joint densities I[f(" [ ,  01) - f(" I ' ,  02)[[ is positive. 

The additive super-model. 

KI K2 

O(X) : E Olj(byx) + E Cj(Xml,...,Xm,.~) 
j = l  j:l 

The multiplicative super-model. 

0(X) K1 T K2 = ~:lOlj(bj  x)l-Ij=l~)j(Xm,,..., Xm.j ). 

In  these  models, x = ( X l , X 2 , . . .  ,Xd) , 01j E eq,1,  ~)j E Oq,rj, b is an  e lement  of  the  

unit sphere centered at the origin, bTx denotes the scalar product of the vectors b and 
x, ( m l , . . . ,  mrj)  are such that m i r  mj  for i ~ j .  K1,/<2 are either known or unknown 
but  bounded by the known constants D1, D2 respectively, 2 < rj  _< d -  1. 

Both models without interactions (the r and with K1 not necessarily bounded, 
appear in Friedman and Stuetzle (1981) and in Huber (1985), and are called projection 
pursuit regression models (PPR); the model dimension r = 1. Special cases of these 
models appear in Stone (1982, 1985) and Chen (1991). The P P R  models bypass the 
curse of dimensionality when /(1 ~ D1, /(2 < D2, as seen in Stone (1985, 1994) and 
Chen (1991) (but with D1 = d). In the presence of interactions, the model dimension r 
is the largest dimension of the domains of the r 

The distances used to define optimality of the proposed estimate, and Kolmogorov's 
entropy of the parameter space follow. 

DEFINITION 2.1. For any two functions 0 and 0 on 2(, their L l ( d x )  and sup-norm 
distances are respectively given by 

lie - DII IO( ) - O ( x ) l d x  and IIO - 0[1  = sup(lO(x) - o(x)l; x E x} .  

The notation z,~ ~ wn denotes that zn ~ O ( w , )  and wn ~ O(zn). O ~ is an 
e-iS-dense subset of a metric space (O, fi), if every point in O is at a ~-distance not 
exceeding c from some point in O ~. Kolmogorov and Tikhomirov (1959) have shown 
that given radius a ,  > 0, the most economical an-II" II~-dense subset Oq, m of Oq,m 

has cardinality N,~(an), such that log2 Nm(a~) ~ (1/an)m/q; Oq, m is a discretization of 
Oq,,~. The quantity log 2 Nm(a),  a > 0, is called Kolmogorov's entropy of the space Oq,m 
and measures the size of the parameter space. 

With a finite number n of observations we cannot estimate the unknown parameter 
without error, thus, without much loss, the proposed estimates will take values in a 
discretization of the parameter space under the model. Le Cam (1973) constructed 
estimates of a probability measure using discretizations based on Hellinger distance and 
multiple testing procedures. An extended list of references in nonparametric estimation 
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of either a density or a regression function under independence may be found in N&Y. 
The reader may consult Devroye (1987) for the properties and the use of the Ll-distance, 
and Le Cam and Yang (1990) for questions on estimation in abstract spaces. 

The notions of optimality in probability and risk optimality follow. 

DEFINITION 2.2. A sequence of estimators {Tn} is optimal in probability for 0, 
with respect to the distance t~, if there is a sequence {6n}, n = 1, 2 , . . . ,  decreasing to 
zero such that, 

(2.1) lim l imsupsup  P[fi(Tn, 0) > CSn] = 0 
C---~ co  n - - , o o  0 

(2.2) lim lim inf inf sup P[tS(Sn, 0) > C5,, l = 1. 
C----,0 n-- - - ,~  S,~ 0 

If only (2.1) (resp. (2.2)) holds 5n is an upper (resp. lower) convergence rate in probability. 
The sequence of estimators {Tn} is risk-optimal with respect to tb, with rate of 

convergence {bn} decreasing to zero, if there are positive constants CL, Cu such that 

(2.3) 
(2.4) 

CLbn <_ in f{sup{E~(Sn,  0); 0 C O}; Sn} 

< sup{E~(Tn,  0); 0 E O} < Cu~n. 

If only (2.4) (resp. (2.3)) holds, 5n is a risk upper (resp. lower) convergence rate. 

Upper convergence rates are often obtained bounding ~(Tn, 0) from above with a 
finite sum, and an error term that will decrease to zero as the sample size increases. 
Bounds on the finite sum may be obtained using inequalities like Hoeffding's (1963). 
Lower convergence rates may be achieved using Fano's Lemma or its extension in regres- 
sion (Ibragimov and Khas'minski (1981), Le Cam (1986), Yatracos (1988)). 

For the regression-type problem determined by the models, upper convergence rates 
and lower bounds on minimax rates are obtained for the Ll-error and the Ll-risk of 
the proposed estimate, via the Ll-distance and the Kullback information between condi- 
tional distributions of the response variable. The definitions of both distance measures 
follow. 

DEFINITION 2.3. For two probability measures Q, S, defined on the probability 
space (147, A), the L:-distance is defined as IIQ- SII = 2 sup{IQ(A) -S (A) I ;  A e at}; the 
Kullback information is given by K ( Q ,  S) = Ec~ log(dQ/dS),  if Q is absolutely continuous 
with respect to S, and is equal to +co otherwise. 

The following proposition is a useful tool relating rates of convergence of estimates 
with those of their derivatives, and explaining why it is easier to estimate a function than 
its derivatives. Let 0 (s) be an [s]-th order mixed partial derivative of 0, not identically 

O, s c R d, [s] = sl + . . .  + Sd. An upper bound for II0 (s) - 0 (s) I] is provided below. 

PROPOSITION 2.1. (Yatracos (1989b), Proposition 2) Let On be an estimate of  the 
real valued function 0. Both On, 0 are defined on a compact set in R d, have mixed partial 
derivatives of  order p, and the p-th derivative has modulus of continuity w(z), z > 0. 
Then, for  1 < [s] <_ p and II ]Iv the Lv-distance,  1 < v < cx~, 

IlO(~) - O(s)]l v <_ cl~-[S]w(bn) + e2b~[~]HOn - 011 ~. 
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To introduce the notion of C-mixing, let U~ be Rm-valued random variables defined 
on a probability space (f~, 9 c, P) ,  n = 1, 2, . . . .  For i, j with 1 N i < j < c~, let ~-[ be 
the a-field generated by the r.v.'s U~, i < n < j .  

DEFINITION 2.4. The not necessarily (strictly) stationary sequence {On}, n _> 1, 
is C-mixing with mixing coefficient r if as n increases to infinity 

s u p {  I P ( A N B ) - P ( A ) P ( B ) I  5 ~ , B E  k >  1} r O; 
P ( A )  ; A E k+n, - 

if the stochastic process is stationary the sup over k is superfluous. 

The following inequality is fundamental to calculate rates of convergence of estimates 
under the assumption of C-mixing. It is used instead of Hoeffding's (1963) inequality to 
bound the tails of sums of bounded random variables, and can be found in Roussas and 
Ioannides (1987) and Roussas and Yatracos (1996). Let L, = v(n) and # = #(n) = [)-~], 
be both positive integers tending to infinite, where [x] denotes the integral part of x. 

PROPOSITION 2.2. Let Zn, n > 1, be real valued r.v. 's centered at their expectation 
and bounded in absolute value by M ,  that are C-mixing such that ~n~__l r =- r < 0% 
L = 1 + 4r and Zn = �88 ~k=ln Zk. Then, for  all 0 < ~n ~-- LMttn and n >_ 1, 

P(IZ.I > G) - 611 4- 2c1/2r -n(~'~2/2LM2. 

3. Minimum distance estimation, the discretizations, the assumptions 

The minimum distance estimation method was formalized as a principle by 
Wolfowitz (1957). A lot of work has been devoted ever since to this topic. In par- 
ticular, under regularity conditions, it is shown that the minimum distance estimator 
is robust and asymptotically efficient (Beran (1977), Millar (1981), Donoho and Liu 
(1988a)). Pathologies of some minimum distance estimates for the normal model are 
examined in Donoho and Liu (1988b). The proposed minimum distance estimate 0n of 
a regression type function 0, motivated by an estimate of a density (Yatracos (1985)), 
has been used in Yatracos (1989a, 1992), Roussas and Yatracos (1996) and N&Y. For 
the reasons mentioned in the previous section, 0n takes values in a discretization of the 
parameter space. 

The discretization of the parameter space, for the additive and multiplicative super 
models, is obtained using an - ]l" ]]~ discretizations of the spaces of the functional 
components of 0, and n -1/2 - I] " l]~ discretizations of the unit sphere for the unknown 
vector parameters bj in the projection pursuit model components, j -- 1 , . . . , K 1 ;  the 

estimates of the bj 's  are included in 0n. The cardinalities of the so obtained c(an + 
n-1 /2)  - ]l" ]1~- dense subsets have the same order N D' f-  ~--dD1/2nD2 Ar ~ n j  . . . .  j=l ~,,.~ (an); for the 
details see NN:Y. In the sequel, denote by O n any of these discretizations and by N ( a n )  
their cardinalities; with abuse of notation, a n is used to denote a,, 4. n -1/2. 
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Given X1 = x l , . . . , X n  = a s ,  define the sets 

Ak,m# = {y:  f ( y  l x~,Ok(Wi)) > f ( y  l x, i, Om(Xi))}, Ok e ~n, 
0,~ E 0 n, 1 < k < m < N(a,~), i = 1 , . . . , n ,  

to be used in the definition of the minimum distance estimate. IA(X)  = 1, if x C A, and 
it is 0 otherwise. 

DEFINITION 3.1. Let (X1,Y1),.-., (Xn, Yn) be observations according to one of 
the models already described. The minimum distance estimator 0n of 0 satisfies the 
relation 

,} sup IAk.m, i (Y~) - PL~(~:,)(Ak,.~,i) 
l_<k<m<N(~.0 n 

= E(IAk,m., (Yi) - Po,(~,)(Ak,m,i))  �9 
i : 1  

inf sup { 1  
l <r<N(a~) l <_k<m<_N(an) 

As a special case, when xi = x, i = 1 , . . . ,  n, the Ll-minimum distance estimate of 
a density is obtained (Yatracos (1985)). 

The following assumptions are made: 
(A1) {(Xn,  Yn)} is a stationary sequence of observations that  is C-mixing and 

oo 

(A2) c l l t -  s l_  Ilf(" I x , t ) -  f(" I x,~)ll ~ c~lt- ~1; 
Cl,C2 are constants greater than zero, independent of x, I1" II is the Ll-distance of the 
conditional densities and t, s take real values in the compact G where the elements of 
Oq,~ take values. 

(A3) The form of the conditional density f ( y  I x, 0(x)) is known. 
(A4) The density g(x) of X is bounded below and above, by the positive, finite 

constants A and B, respectively. 
(Ab) For every s, t, possible values of 0(x), with P~ denoting the probability measure 

with density f ( y  I x ,  s) and c > 0, it holds 

K(Ps, P , )  _< - t)  2. 

Assumptions (A2)-(A4) are used to construct the proposed minimum distance esti- 
mate, and to calculate upper convergence rates. (A2) allows interchanging the distance 
between parameters with that of the corresponding conditional distributions. Without 
(A3), we cannot obtain the sets Ak,m, i used in the minimum distance criterion. This is 
the price to be paid in a regression-type problem, since the nature of the parameter 0 in 
the conditional density is unknown, and one cannot determine the functional of the Y's 
that should be used to estimate 0. Similar assumptions can be found also in classical 
regression; for example, in Stone (1994), with the conditional densities assumed to be ei- 
ther Bernoulli or Poisson, and in Donoho, Johnstone, Kerkyacharian and Picard (1995), 
with the errors assumed to be normal. (A4) has been used in Chaudhuri (1991b), Chen 
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(1991), Stone (1982, 1985, 1994) and by several other authors. In the calculations of 
upper convergence rates, this assumption allows us to pass, without much loss, from the 
L l -d i s tance  II0n - 011 to the expectation EIO~(X ) - O(i) l .  From ( i l ) ,  convergence of 
the partial sums of {r is used to prove that  EIOn(X ) - O(X)I can be approximated 
almost surely by a sum of random variables uniformly in 0, and leads to convergence rates 
confirming the dimensionality reduction principle. Without (Ab), the lower convergence 
rates obtained for independent samples may not coincide with the upper convergence 
rates. (A2) and (Ab) hold in several of the assumed models for the Y's (Yatracos (1988, 
1989a)). 

4. Rates of convergence 

The steps to bound II/}n - 011 with a finite sum have been described in the previous 
section; Proposition 4.1 is crucial for the approximation. 

Let O be the parameter space for the regression-type problem, and O n the c(a ,  + 
n -1/2) --[[" [[~-- dense subset with cardinality N(an) defined in the previous section, 
with the sequence {an} decreasing to 0 and c > O; an to be determined such that On is 
optimal. Let On be an estimate of the unknown regression-type function O, with values 
in 0 n, and Ok, Om be elements of O n. Let Po(xJ be a probability measure with density 
f ( y  [ xi, O(xi)), i = 1 , . . . ,  n; Q is the distribution of any of the X's;  Qn and QO~ denote 
respectively the joint distribution of ( X 1 , . . . ,  Xn)  and the distribution of the infinite 
vector of the X's.  Define the quantities: 

n 

E]Ok -- Om[ : EIOk(X) -- O m ( X ) l ,  En]Ok - Om I -~ 1 E [Ok(Xi )  -- O m ( X i ) l '  
n 

i=l 
n 

1 E l O k ( X i ) _ O m ( X i ) l  ' An(Ok, Ore)= EIOk(X) Om(X)l- 
i= 1  

N(a.)  

An(e,~,m) = U { ( X l ' X 2 ' ' ' ' ' X n )  : An (Ok 'Om)  > C'~n}' 
k = l  

N(a.)  

A~(en )=  U An(r 
m = l  

From now on, the letters C, C1, C2 . . .  will denote generic, positive constants, inde- 
pendent of n. 

PROPOSITION 4.1. Let On, An(Vn), An(ca,m), An(Ok, Om) be defined as above, for 
a regression-type problem following either the additive or the multiplicative super-model, 
and with observations satisfying (A1), 

CCn (2LM2c*l~  1/2 = I 0, c* > 0, and 

V/ n 
[(WlogN(a.)) J' 

with w < L and L, M, u all defined in Proposition 2.2. - 1 - ~  
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Then, 
a) q'~(An(en,m)) <_ 6N(an)  1"5-c', 
b) P [ { ( X 1 , Y 1 ) , . . . , ( X n ,  Yn): An(0n,0m) >cen}]  <_ Qn(A,~(e,~,m)), 
c) For e* > 1.5 it holds y~.nC~=l N(an) 15-~* < oo, and therefore, 

P[l iminf{A~(0n,  Ore) _< cen}] = 1. 

Thus, there is a set of probability 1 such that A~(0~, 0m) _< ce~ almost surely. 
d) Qn(An@n)  ) <_ 6N(an)  2"5-c*, 
e) N(a~) P[Um=I { ( X 1 , Y 1 ) , . . . , ( X n , Y n ) :  An(On,Ore) > C~n}] ~ Q'~(An(en)), 
f) For c* > 2.5 it holds Zn~__I N(an)  25-c* < oc, and therefore 

P [liminf/Na 1 
Thus, there is a set of probability 1 such that for every 0 in 0 and its nearest neighbor 
Om it holds Z~n(On,Om) ~ CEn. 

The proposition which shows explicitly the additive effect of the dependence on the 
error II0n- 011 follows. 

PROPOSITION 4.2. Let ( X 1 , Y 1 ) , . . . , ( X n ,  Yn) be a sample in a regression-type 
problem for which assumptions (A1)-(A4) hold, and 0 follows either the additive or 
the multiplicative super-model. The random vectors X i  take values in [0, 1] d, d _> 1, 
and Yi are the corresponding real valued responses, i = 1 , . . .  ,n .  Then, the minimum 
distance estimate On is uniformly consistent with upper rate 5n, in Ll-distance, such 
that 

log an log[1 ~- 61r 1/2 
~n " a n  -t- + , 12 

n_ )1/2] and w < L .  L appears in Proposition 2.2. where C 1 = 2e l/e, u = [(WlogN(an ) _ , 

If the unknown parameter  0 does not follow exactly one of the two models, let 0* 
be its closest approximation in the chosen model  such tha t  II0 - 0"11  < e. Following 
Proposit ion 2 in Yatracos (1985) and (A2), it is easy to see tha t  II0. - 011 <_ cle + c2~n, 
with 5n as in Proposit ion 4.2. 

The corollaries below, confirm the dimensionali ty reduction principle for the L1- 
error and the Ll-risk in es t imat ing 0 by 0n, and 0 (s) by 0(~ s). 

COROLLARY 4.1. Under the assumptions in Proposition 4.2 and (A5), the Ll-rate 
of convergence in probability ~n is no slower than the optimal rate under independence: 

a) for the additive and the multiplicative super model with interactions 

~n ~'~ n-q/(2q+r), 

where r is the model dimension; 
b) for the additive and multiplicative super model without interactions 

~n ~ n-q/(2q+l). 
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In both a) and b), the rate of convergence of ~ (~) to 0 (~) is no slower than n -(q-ls])/(2q+r), 
r > l .  

COROLLARY 4.2. Under the assumptions in Proposition 4.2 and (A5), the risk of 
On converges to 0 at the optimal rate obtained for the same model under independence; 
the upper convergence rates in probability hold almost surely. 

5. Concluding remarks 

The dimensionality reduction principle has been confirmed for regression-type func- 
tions that  follow the additive and the multiplicative super-models, when dependence 
is expressed in terms of C-mixing. The principle is expected to hold for the minimum 
distance e s t i m a t e  0n under other forms of dependence, as for example a-mixing, if an 
appropriate exponential bound becomes available for the tails of the sums of random 
variables with the assumed type of dependence. 
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Appendix 

PROOF OF PROPOSITION 4.1. a) For ~ ~ 0 it holds, 

\IN(an)'- _ ) 
( n . 1 )  Qn(An(~n,m)) ~_ Qn ( U=I { ( X l , . . . , X n ) :  An(Ok,Ore) > C~n} 

N(a,) 

_< ~ Q " [ ( X 1 , . . . , X , ~ ) :  An(Ok,O,~) > czn] 
k=l  

<_ i(a,~) sup Q~[(Xl, . . . ,X~):  An(Ok,Ore) > c~] 
l<k<N(a,~) 

6N(an) [1 + 2el/2r -nc2r 

provided 0 < cr <_ LMI~ n 
The last inequality in (A.1) was obtained using Proposition 2.2; M denotes the 

bound of the difference of functions in Oq,d. Note that  # is the largest integer such that  
1 It will be enough then to have 2up < n; for large n, 3v# = 2u3# > n or ~ > ~-g. 

0 < Cs n ~ LM 
- -  3 v  " 

n 1/2 satisfying (A.4). We have Let C1 = 2e 1/2 and take u = [ ( w ~ )  1, with w 
then for large n, 

i f  n "~ 1/2 ( n )1/2 

-~LWlogN(an))  < u <  WlogN(an ) 

or  

1 4 log N(an) 
(A.2) v2 ~ and 

W n 

log N(an) ~ 1/2 1 
--.  

k wn / v 
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It follows that 
n2u log[1 + Vie(v)] _< ~y2 C1/]r 

Using (A.2) and since from (A1) r = o(u-1), for sufficiently large n it holds 

(A.3) n 2uu log[1 + C1r < .h logN(an) .  

Choosing in (A.1) ce~ = (2LM2c * logN(a.))a/2 and using (A.3) we obtain 
n ] ' 

< 

the constant e* may be chosen to be greater than 1.5. 
From (A.2), the condition 0 < ce~ < LM holds if -NV-~ 

or 

(A.4) 

(2LM2e. logN( ))1/2 0 <_ an LM (logN(an)) 1/2 <-a--jz 

L W < - -  - 18c* 

P[(X1,Y1),... ,(Xn,Yn) : An(On,Ore) > CAin] 
-N(an) ] 

=P U {(Xl 'Yl )" '"(Xn'Yn):On=Ok' in(On,  Om)>C~n} 

= P  

< P  

k=l 

"N(an) 
U 
k=l 

b) 

{ ( X l , g l ) , . . . , ( X n , g n )  : On ---- Ok,,~n(Ok,Om) > C~n}] 

"N(an) ] 
U {(Xl ,Yl) , . . . , (Xn,  Yn): An(Ok,Ore)> CCn} 
k=l 

since An(Ok, On) does not depend on the Y's. 

: Q"(An(e~,, m)), 

c) P[An(On,Om) > czn, infinitely often n] 
o o  

_< lim E P[(X1,Y1) ... (Xn,Yn) : An(On, Ore)>czn] 
k ___+ o o ' , n=k 

0 o  o o  

_< lim E Qn(An(en,m)) < 6 lim E N(an)l"5-c* = O. 
k--*oo -- k--~oo n:k n=k 

The proofs of (d), (e) and (f) are analogous to those of (a), (b), (c), with N2(an) in (d) 
instead of N(a~) as an upper bound in an inequality derived as (A.1). 

PROOF OF PROPOSITION 4.2�9 The goal is to derive an upper bound for [[0n - 0[[. 
Let 0~ be the nearest neighbor of 0 in O n, and 0n be the minimum distance estimate of 
0. Then we have: 

f IOn(x)- O(=)ld= <_ C2(an +n -1/~) + [ l<(x) Or(x)ldx, 
Jx Jx 
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and using assumption (A4) 

<_ C2(a,, + n -i/2) + A-1E[On - 0,-[ <_ C2(an + n -1/2) + C3en + En[On - 0,-[ 

by Proposition 4.1 (f), with en " (logN(~.) g )1/2; from the definition of 0n 

sup - (IAtr -- Po,(=,)(Ak,m,i)) 
l<k<m<_N(a~) n 

<_ C2(an + n -1/2) + Caen + C4 

and using assumption (A2) 

(A.5) 

&.S. 

} 
<_ Csan + C2n -1/2 + C3~n 

{# } + C6 sup 1 IAk.,~,~ (~)  Po(xd (Ak,m,i)) - -  _ ~ 

l<_k<rrt<N(an) n 

Let % = (Sn-  C s a n -  C2n -1/2 -C3e,~)/C6, and denote by Po the conditional probability 
of the Y's given the X's .  Using Proposition 2.2 it holds: 

(A.6) P[llOn- o[I > 5n] {1# } ] 
<_ E e ~  sup - -  > 

l<k<m<N(a,~) 

_< 6N(an) ~ [1 + Clr 2c 

for 0 < 7n < LU (the bound M of Proposition 2.2 in this case is 1). 
- -  n 

For (A.6) to converge to 0 as n increases, it is enough tha t  

(A.7) n72 21ogN(an) - n log[1 + C1r ~ c~. 
2--Y- 

Taking ~n = P V ~ [  l~ -{- log[l+gld, b(u)]]l/2 2, + Csan + Caen 4- C2n -1/2 we obtain 
")% = f lv /~[  l~ + l~162 and for (A.7) to hold it is enough that  

n 2 u  1 

p2 [ logN(an)+ n log[1 -1- 61r - 2 1 o g N ( a n ) -  n log[1 + Clr _ _ , 2 u  oo, 

orp2 > 2 ,  p > 0 .  
For 0 < % _< L~ it suffices that  0 < 7n < L or by (A.2), (A.3) that  

L 
(A.8) w < - -  

- 3602" 

Therefore, for the proposition to hold, it is enough from (A.4) and (A.8) to have: 

p 2 > 2 ,  c* >2 .5 ,  w_<min  18c*'36p 2 < 7--2" p > 0 ,  

Using the inequality 

al /2+bl /2  
< ( a + b )  1/2 < a 1/2+b 1/2, 
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it holds that  

n 
~ a ~ + ( l ~  

1/2 log[1 + + . ) 
1/2 

PROOF OF COROLLARY 4.1. When the observations are independent, lower con- 
vergence rates for a regression-type problem are obtained in Yatracos (1998). Both a) 
and b) follow from (A.3), choosing an = (logN(a.))l/2. 

The convergence rates for the derivatives follow from the rate of II0n - 011 and 
Proposition 2.1, with bn ~ a 1/q. 

PROOF OF COROLLARY 4.2. With  the chosen value for 5n and (A.3) it holds 

(A.9) P[llt)n - 011 > < 6[N(an)]2-P2[1 + C l r  (1-p2)(n/2u)  

<_ 6[N(an)] 2"5-1"5p2. 

For the Ll-risk, truncating at 6n we obtain for p large enough 

Elfin - 0[I < 5n + CTP[ll0n -- 011 > 5hi _< CS5n- 

From (A.9) and p large enough, it also holds that v ' ~  fNfa ~125-1s02 A. .~n=l  t ~ ni l  < co.  Thus, 
the rate of convergence (~n of  the Ll-error holds almost surely. 
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