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Abstrac t .  The purpose of this paper is to investigate the asymptotic properties 
of the least squares estimates (L2-estimates) and the least absolute deviation esti- 
mates (Ll-estimates) of the parameters of a nonlinear regression model subject to a 
set of equality and inequality restrictions, which has a long-range dependent station- 
ary process as its stochastic errors. Then we will compare the asymptotic relative 
efficiencies of the above estimators. 
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I. Introduction 

Recently, there is a growing need for the statistical methodologies based on long- 
range dependence data. Long range dependence appears naturally in various areas, 
especially hydrology, economics, geophysics, communications, see, e.g. Yajima (1988, 
1991), Beran (1992), among others. A typical behavior of long-range dependent sequence 
is that the covariance of this sequence decreases to zero like a power of lag as the lag 
tends to infinity, but  their absolute sum diverges. 

Many authors such as Yajima (1988, 1991), Robinson (1995), Dahlhaus (1995), 
Robinson and Hidalgo (1997) studied the asymptotic properties of (weighted or gen- 
eralized) L2-estimation for certain forms of linear regression models in the presence of 
long range dependence in errors. Koul and Mukherjee (1993), Giraitis et al. (1996) also 
considered the asymptotic properties of various robust estimates in linear regressions in- 
volving long-range dependence. For unconstrained nonlinear regression with long-range 
Gaussian subordinated errors, the asymptotic behavior of some robust estimates, was 
investigated in Koul (1996). 

Recently, constrained regression problems have been dealt with by many authors. 
One can see Liew (1976), Nagaraj and Fuller (1991), Wang (1996) for the motivations 
of making restrictions on the parameters and for the various approaches to deriving the 
asymptotic distributions of L2-estimators for constrained regressions with independent 
innovations. Typically the restrictions on the choice of the parameters could be much 
complex ones including certain mathematical relations between the parameters that need 
to be estimated. Classical techniques, which can still be used to handle least-squares 
estimation with linear equality constraints on the parameters for example, break down 
if there are inequality constraints or a non-differentiable criterion function. Usually, the 
relationship between the samples and the estimates must be found by solving an opti- 
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mization problem. We may use mathematical programming techniques such as epigraph 
convergence in optimization to get constrained estimates as explored by Wang (1996). 

Koul and Mukherjee (1993) and Koul (1996) showed that  some robust estimates 
including L~-estimates are asymptotically equivalent to the L2-estimates in the ease of 
Gaussian long-range dependent errors for unconstrained models. Then one may ask 
whether this conclusion hold or not in constrained case. Therefore it is of interest 
and importance to examine the asymptotic behaviors of Ll-estimators in constrained 
nonlinear regression models when errors are functions of long-range dependent Gaussian 
random variables and compare its asymptotic properties with those of L~-estimators. 

Specifically, in this paper we shall consider the following nonlinear regression model 
with errors whose unknown distribution function (d.f.) is F.  

(1.1) Yi = f ( x i ,  O) + ei, i > 1, 

where 0 E -R d is the unknown parameter to be estimated, ei = G(Ui), i _> 1, G can 
be viewed as F - I ( I  ) (q) is the d.f. of normal N(0, 1) and F - l ( u )  = inf{x : F(x )  >_ u}, 
0 < u _< 1). We will assume that  ~l,r]2,. . .  is a sequence of stationary long-range 
dependent Gaussian random variables. 

Moreover, in many practical cases, we may have some prior knowledge about the 
parameters. For example, this occurs when the experimenter has a strong belief that  the 
parameters lie in some irregular region of R d. For generality, let the prior information 
on 0 be given by 

(1.2) = {0: gi(O) <_ O,i = 1 , . . . , r e ;h i (O)  = 0 , j  = 1 , . . . , p} .  

Here gi(0), hj (0) are functional restrictions (may be nonlinear) on 0. 
For instance, the constraints can be of the form 

AO < C, BO = D, 

where Am x d, Bp x d, Cm x 1, Dp x 1 are given matrices. See Shapiro (1988) and the following 
example. 

Example 1.1. (Heywood cases in factor analysis, Joreskog (1969)) The model for 
confirmative factor analysis can be simplified as 

y = f ( x ,  ~) + e, 

where f ( x ,  ko) = log I ~ ] -  log Ix[, kO is a m • m matrix and its unknown diagonal elements 
~Oii should be nonnegative. So we have the restrictions 

�9 i i > O ,  i = l , . . . , m .  

Example 1.2. (Nonlinear constraints case) In connection with the maximum like- 
lihood estimation (MLE), the case of parameter restrictions in the form of smooth non- 
linear functions was studied by Aitchison and Silvey (1958). Moreover, in the pioneering 
paper by Huber (1967), nonstandard sufficient conditions were given under which the 
MLE is an asymptotically optimal estimator. For certain practical implementation, if 
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we remove these assumptions to get result valid, S, a proper subset of R d, can be identi- 
fied from these nonstandard sufficient conditions and extraneous considerations and then 
actually a restricted MLE are derived for a nonlinear-constrained regression like model 
(1.1). As an example, S can be 

: {0:012 q- 022 + - - .  q- 02 -- 1 < O; 02 <_ 03 _<"" _< @d; h(01 - 02) = 0}. 

For more details, see Silvey (1959) and Sen (1979). 

Given observations (xi, Yi), i ---- 1 , . . . ,  n, the Ll-estimator, denoted by ~(1), is the 
optimal solution of the following minimizing problem: 

(1.3) min ~ lYi - f ( x i ,  0) 1, 
O E S  i = 1  

where S is defined in (1.2). 
The L2-estimator, denoted by ~(2) is the optimal solution of 

n 

(1.4) mi_n ~ lYi - f ( x i ,  0)12. 
06S ~=I 

We will give conditions on the design in order that anl (~(1) _ 00), an2(~(2) _ 00) converge 
in distribution for some suitable sequences anl, an2, where 00 is the true value of O. To 
do this, we use equivalent forms of problems (1.3) and (1.4): 

2 n 

min anl E { l e i  - Ti(v)l - leil} 
n (1.5) i=1 

s.t. v c S n l  

and 

(1.6) 

2 n 

min an2 E { l e i  - Ti(w)l  2 - leil 2} 
n 

i = 1  

s.t. w E Sn2 

where Sn~ = {v : gi(0o + a-~v)  < 0,i  = 1 , . . . , m ; h j ( O o  + a-~v)  -- O,j -- 1 , . . . , p} ,  
r =  1,2. 

Denote the objective functions of (1.5) and (1.6) by Qn(v)  and Vn(w) ,  the optimal 
solutions by ~, ~ respectively, here v = an1 (0 -  Oo), Ti(v)  -- f ( x , ,  Oo + a - ~ l v ) -  f ( x i ,  00); 
w = an2(O -- 00), T i (w)  ---- f ( x i ,  Oo + a ~ l w )  - f (x i ,Oo) .  Obviously, ~3, zb are simply 

(1) - oo)  a n d  an2( (2) - Oo). 
Our aim is to establish the asymptotic behaviors of ~3 and ~b. We briefly describe the 

main idea. First we show that, under some regularity conditions, Qn (v), Vn (W) converge 
uniformly in distribution to some functions Q(v), V ( w )  respectively, then we prove that  
an1 (~(1) _ 00) converges in distribution to the optimal solution of the following program: 

(1.7) min Q(v) 
s.t. v c S  
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where 
S = {v:  (Vgi(Oo))'v <_ 0, i e J;  (Vhj(Oo))'v = 0 , j  = 1 , . . . , p }  

with J = {i : gi(Oo) = 0, i = 1 , . . .  ,m} and an2(0 (2) - 00) converges in distr ibution to 
the optimal solution of the program: 

(1.8) min Y(w). 
wES 

Here ~Tgi(00), Vhj(Oo) are the gradient vectors ofgi(O), hi(O) with respect to 0 at  0 = 00. 
This technique is also used in Wang (1996). 

We shall see in Section 2 tha t  the limiting law of an1 (~(1) _ 00), which is formed by 
a multiple It6-Wiener integral, is usually non normal, if the covariance of ~i decays as 
a regularly varying function. The result is s ta ted in Theorem 2.2. Section 3 is devoted 
to the asymptot ic  dis tr ibut ion of an2(O (2) - 00), which is presented in Theorem 3.2. 
Furthermore,  we discuss the asymptot ic  efficiencies of 0 (1) and ~(2) in Section 4. We 
shall prove tha t  Ll -es t imate  is asymptot ical ly  equivalent to L2-estimate if the errors are 
Gaussian. This result is similar to what  happens in the unconstrained case. But  it is in 
complete contrast  wi th  the i.i.d, errors case. Finally, we show tha t  Ll -es t imate  is much 
more efficient than  L2-estimate at the double exponential  error distribution, the logistic 
error distribution. 

In the sequel, C s tands for a constant  whose value is not of interest and may  vary 
from line to line. 

. 

Set 

Limiting distribution of Ll-est imate ~(1) 

To proceed further,  let Hk, k = 1, 2 , . . .  be the Hermite polynomials, where 

{ ]'~kpx2/2 d k e_XU/2. 
H k ( x )  = ~ - ~ ,  ~ d x  k 

(2.1) uk ---- E{sign(G(~h))Hk(~h)}, k > 1. 

Then sign(ei) has an Hermite expansion given by 

oo 

sign(ei) = sign(G(zh)) = Z -~l. Hk(~li)" 
k ~ T 1  

The Hermite rank of sign(ei) is 

(2.2) 7"1 = inf{k > 1: uk ~ 0}. 

For more details on Hermite expansion, see Taqqu (1975, 1979). 
We assume the following assumptions: 
(C1) ~1, ~72,.-. are stat ionary,  mean zero, unit  variance Gaussian random variables. 

ei = G(~i) has finite variance, and the d.f. F of ei is symmetr ic  around median zero and 
F has a density function F '  such tha t  F ' is positive and continuous at 0; 
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(C2) ,'~(]9) ~--- E ( ? ~ l I ~ k + l )  : k-aL(k) ,  k >_ O, where L(-) is a slowly varying function 
(at infinity) in the sense tha t  

lim L(st) _ 1 for every t E (0, ec) 
~ i ( ~ )  

and 0 < a < 1/T1, 71 is defined in (2.2); 
(C3) f(x{,  0), i = 1 , . . . ,  n are continuously differentiable in 0 at 0 = 0o and there 

is a neighborhood U of 0o such tha t  for all 0 in U it holds tha t  

f(x~, O) - f(x~, 0o) - (Vf(x~, 0o))'(0 - 0o) = ~,(0) llO - OollL 

where Vf (x i ,  0o) -- (XTf (1) (xi, 0o), �9 �9 �9 V f  (d) (xi, 0o))' is the gradient vector of f (x i ,  O) at 
0 -- 0o. ][-]1 denotes the Euclidean norm; and max~ Iri(0)l < c~ uniformly on U; 

(C4) The sequence of matrices 

n 

n - 1  E V f ( x i ,  O 0 ) ( V f ( x i ,  00))  t 
i=1 

has a limit matr ix  K ,  which is positive definite and maxi NVf(xi ,  0o)11 < oc; 
(C5) gi(O), i = 1 , . . .  ,m;  hi(O), j = 1 , . . .  ,p are continuously differentiable in U; 
(C6) Vg~(00), i E J ;  Vhj(00),  j = 1 , . . .  ,p are linearly independent.  
Before presenting the results of this section, let us briefly discuss the assumptions.  

Assumption (C1) is imposed to establish the asymptotics  of Ll-es t imator ,  while As- 
sumption (C2) means tha t  ei is a long-range dependent  error sequence. The purpose of 
imposing Assumptions (C3)-(C6) is to s tudy  the asymptot ics  of estimators in nonlinear 
constrained regression problems. Therefore we may say tha t  Assumptions (C1)-(C6) are 
quite natura l  and mild. Similar assumptions as (C1)-(C4) were also imposed in Koul 
(1996). 

Now let 
2 = n~-I~L-~  - , ( n ) .  an l  

We have the following 

THEOREM 2.1. Under Assumptions (C1)-(C4), it follows that 

Q~(v) -~ Q(v) = F ' ( O ) v ' g v  - v'~ 

in distribution uniformly for all v, where ~ is a d-dimensional real-valued, mean zero 
random vector, 

=   ID- '/2fR Ko(xl .. x  )lx, . .  " d W ( x T 1 )  
TI ! ~r 1 ' �9 , 

where D = 2F(a)cos(a~r/2) ,  u~ is defined in (2.1) and K 0 ( X l , . . . , x ~ l )  is a d-dimen- 
sional vector with 

K o j ( X l , . . . , X T 1  ) = lim K n j ( X l , . . . , x ~ i  ) 
n ---* O0 

n 

: :  liInoo Yt - 1  ~Vf(J)(x , ,Oo)e~(~,+" '+~. l ) /n~,  
t = l  

j = 1 , . . . , d .  
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W is the random spectrum of the Gaussian white-noise process, and the covariance 
u 2 
- r l  matrix of ~ is ~_ ! N(T1, c~), which is positive definite with 

E(~-I, c~) ---- nlimoo nr 'a- lL -rl (n) ~ .  V f(xi,  Oo)(V f (x j ,  Oo))'(~/(i - j))r'. 
i , j = l  

PROOF. By Theorem 2.2 of Koul (1996) and the convexity property of the absolute 
value function (cf. Rockafellar (1970)), it follows easily that 

Qn(v) - F ' (O)v 'gv  -  'anl Z W ( x .  Oo)sign(ei) 0 
n i = l  

in probability uniformly for all v. Hence, in order to establish the uniform weak conver- 
gence of Qn (v), it suffices to show that  

n 

(2.3) nrl~/2-1L-~-l/2(n) ~ V f(xi ,  Oo)sign(ei) --~ 
i=1 

in distribution. 
In fact (2.3) is the weighted version of Theorem 1' in Dobrushin and Major (1979). 

Therefore the proof of Theorem 2.2 of Koul (1996), Theorem 1' and Remark 1.1 in 
Dobrushin and Major (1979) implies the relation (2.3) and hence the desired result�9 [] 

THEOREM 2.2. Suppose Assumptions (C1)-(C6) hold true. Then 
(i) n~/2L-~'/2(n)(O (1) - 0o) is bounded in probability; 

(ii) / f  the set of optimal solutions of Problem (1.7) is a singleton for each value of 
~, then n~a/2L-~/2(n)(O O) -Oo) converges in distribution to the optimal solution v* of 
problem (1.7). Furthermore, 

v . = { M o ( ,  /f v* E So, 
Mi~,...,ik(, if v* E Si~,...,i~, k = 1 ,2 , . . . ,  

where 

So = {v:  (vgi(Oo))'v < O,i e J;(vhj(Oo))'v = 0, j  = 1 , . . . ,p} ,  

Si~,...,ik = {v: (vgi(Oo))'v < 0, i �9 g \ { i l , . . . , ik} ;  (vgi(Oo))'v = 0, i �9 { i l , . . . , ik} ;  

(vhj(Oo))'v ---- O,j ----- 1, . . .  ,p} 

and Mo, Mi~, i~ are the first blocks of the m a t r i c e s  S o  1 , H -1 . respectively, 
�9 -.~ ~ 1 ~ . . . ~  k 

H0 = (Vh)' 0 ' 

2F ' (0 )K  vgi~ --- Vgik V h~ 

U i l  ~ . . . # k  

(vg i l ) '  0 . . . . . .  0 
�9 �9 o 

o . . . . . .  o 
( V h ) '  0 . . . . . .  0 

, i l , . . . , i k  E J, 
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here Vh stands for (Vhj(00), j = 1 , . . .  ,p). 

PROOF. Note tha t  v = 0 is a feasible solution of program (1.5) and ~3 = a~1 (~(1) _ 
0o) is the optimal solution of (1.5), tha t  is, 

0 >_ Q~(~) - Q~(0) = Q~(~). 

Then to prove (i), it suffices to verify the following Claim: for any e > 0, there exists 
a constant  M~ such tha t  with probabili ty greater than  1 - ~, when Ilvl[ > Ms, we have 
Q (v) > 0. 

Let A1 _> A2 _> . ." >_ Ad > 0 be its characteristic roots and l l , . . . , l a  be its stan- 
dardized characteristic vectors. Since r is a real-valued, mean zero random variable with 
finite positive definite covariance matr ix  Var(r it follows from Theorem 2.1 tha t  

d 

Var(Qn(v))--* v'Var(r : ~ Aia~ <  lflVll 2 
i=1 

d uniformly for all v, where v can be wri t ten as v = ~]i=1 aili. Hence for n large enough 
and any r > O, by Chebyshev's inequality, we have 

P(iQn(v)  - E(Q,~(v))] <_ I]v]lbs) >_ 1 - e 

uniformly for 411 v by choosing bs = ~ / ~ - .  This implies tha t  

(2.4) P{Q~(v) > -[]v]]b~ + F'(O)v'Kv + 6} >_ 1 - e 

uniformly for all v, where 6 ~ 0 as n ~ oc. Again since Ft(O)K is positive definite, still 
define A1 _> A2 > . . .  _> Ad > 0 and l l , . . . , I d  be characteristic roots and standardized 
characteristic vectors of F t ( 0 ) K ,  we have 

d 

-ll llbs + F ' ( O ) v ' g v  = -lr llbs + > Aallvll - ltvllb . 
i=1 

For n large enough, let Ms, 5 be chosen so tha t  

inf {-HvHbs + F'(O)v'gv + ~} > O. 
H>M~ 

This, in turn,  when using (2.4), means tha t  

IIv {Qn(v)} > Ilvll>M~inf {-[]vl]bs + F'(O)v'Kv+ 5 } 

> l - e  

and hence the validity of the Claim. This completes the proof of (i). 
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Next we turn to verify (ii). It follows from Theorem 2 in Wang (1996) that 
lim~__.o~ Snl  = S (here the convergence is in Kuratowski's sense). Then by Theorem 
2.1, it is immediate to formulate a limit program of problem (1.5), that is problem (1.7): 

m i n - v ' ~  + F ' ( O ) v ' K v .  
v c S  

Applying the similar arguments as used in Section 4 of Wang (1996), we get the result 
that the optimal solution of problem (1.5), ~ = nr~a /2L~ /2 (n ) (~ ( ] )  - 0o), converges in 
distribution to the optimal solution v* of problem (1.7). 

Finally we derive the distribution of v*. For the first case that v* E So, by Kuhn- 
Tucker conditions, v* must satisfy the equations 

p 

2F'(0)K,-  r + Z rjVhj(00)=0, 
j = l  

(Vh j (Oo) ) ' v  = O, j = 1,. .. ,p,  

where rj ,  j = 1 , . . .  , p  are the Lagrangian multipliers. The matrix form of this equation 
system can be written as 

Solving this system it follows that 

(2.5) v* = Mo~. 

Since v* E So and the objective function of program (1.7) is a positive definite quadratic 
function, thus (2.5) is the expression of the optimal solution in So of program (1.7). 

If for some sample values of r M0~ 9~ So, the optimal solution must lie on the relative 
boundary of S. Let us find the expression of the optimal solution on the intersection 
of faces S i l , . . . ,  Sik. By Kuhn-Tucker conditions the optimal solution of program (1.7) 
located on Si 1 ..... ik must satisfy the equations 

ik p 

2r'(0)K~ - r + Z At v gt(00) + Z rjVhj(0o) = 0, 
(2.6) t=il j=l  

( v g , ( 0 o ) ) ' v  = o, t - -  i l , . . . , i~,  

( v h j ( O o ) ) ' v  = 0, j = 1 , . . . , p ,  

where At, t = i l , . . . ,  ik; r j ,  j = 1 , . . .  ,p are the Lagrangian multipliers. The solution of 
system (2.6) can be expressed as 

(2 .7 )  V* • M i l  ..... ik ~. 

As program (1.7) is a convex program, the optimal solution of program (1.7) on Sil ..... ik 
has the expression (2.7). Thus the proof of Theorem 2.2 is completed. [] 

R e m a r k  2.1. For the case of T1 = 1, from the Hermite expansion of sign(ei), we 
know that ~ has a normal distribution with mean zero and covariance matrix u12E(1, ~). 
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As a consequence, nC~/2L-1/2(n)(O(1) - 00) converges in distr ibution to a piecewisely 
normal r andom vector v*, where 

v* = ~ Mo~ ~ N(0,  u12MoE(1, c~)Mo), if v* E So, 

[ Miz, . . . , i~ ~" N(O, u2Mi~ ..... ikE(1,c~)Mil ..... ik), if v* E Si~ ..... ik, k = 1,2, . . . .  

3. kimiting distribution of L2-estimate ~(2) 

In this section we consider the  L2-estimate ~(2) of parameter  0, tha t  is the optimal  
solution of program (1.6). Here Assumption (C2) is changed as 

(C2') 3'(k) -- k - ~ L ( k ) ,  0 < c~ < l/T2, where ~-2 is the Hermite  rank of the function 
a(x)  

Let 
2 = n ~2~ L- ' 2  (n). an2 

The following two theorems are similar to Theorems 2.1-2.2 in Section 2, so we omit the 
proofs. 

THEOREM 3.1. Suppose conditions (C1), (C2'), (C3) and (C4) are satisfied, then 

Vn(w)  ---* V ( w )  = w'  g w  - 2w'~ 

in distribution uniforvnly for  all w, where ~ = (~1,. . . , ~d)' is a d-dimensional  real-valued, 
mean zero random vector, 

= l~2v.D-~2/2/R,2 K o ( x l , . . .  , x ~ ) l x l l ( ~ - ' ) / 2 . . . I x , 2 1 ( ~ - x ) / 2 d W ( x l ) "  .dW(x.2), 

here I, 2 = E{G(rh)H~2(rh)}  and the covariance matrix  of ~, E ( r2 ,a ) ,  is positive 
definite with 

E(~-2, a )  = limoo n ' 2 " - l L - ' ~  (n) ~ V f ( x ~ ,  00)(Vf(x3,  Oo))'('~(i - j ) )~ ' .  
i , j= l  

THEOREM 3.2. Under Assumpt ions  (C1), (C2'), (C3)-(C6),  we have 
(i) n~2~/2L-~2/2(n)(O(2) - 0o) is bounded in probability; 

(ii) I f  the set of optimal solutions of  problem (1.8) is a singleton for  each value of  
~, then n~2a/2L-~2/2(n)(O(2) - 0o) converges in distribution to the optimal solution w* 
of problem (1.8). A n d  

w*= Mo , if w*eSo, 
M Q  ..... ik ~, i f  w* C Si, ..... ik , k = 1 , 2 , . . . ,  

- - - 1  ~ i_1  . respectively. Ho is here Mo, M i l  ..... ik are the f irst  blocks of  the matrices Ho , ~1 ..... ~k 
defined by 

H 0 =  (Vh) '  ' 
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~Ii~ ..... ix is defined in the same way as Hi~ ..... ik being replaced 2 F ' ( 0 ) K  by K .  

Remark 3.1. As shown in Remark  2.1, for the case of 7-2 = 1, ~ also has a normal 
distr ibution with mean zero and covariance matr ix  112E(1, c 0. Then na/2L - 1/2 (u)(~(2) _ 
00) converges in distr ibution to a piecewisely normal random vector w*, 

w* = Mo{_ ,-~ N(0,  t~MoE(1,_ a)Mo),  _ if w* E So, 

Mi, ..... i ~ " ~  N(O,l~Mil ..... ikE(1,c~)Mi~ ..... ix), if w* e &l ..... ix, k = 1,2, . . . .  

4. Asymptotic efficiencies of Ll-estimates and L2-estimates 

In this section we will list the asymptot ic  distributions of Ll-es t imates  and L2- 
estimates in the i.i.d, errors case and  in the long-range dependent errors case for uncon- 
strained nonlinear regression. Then,  together with the estimates derived in Section 2 
and Section 3, we compare the asymptot ic  covariance structures of all these estimates. 

It is well known tha t  unconstrained L1- and L2-estimates with i.i.d, errors are 
asymptot ical ly  normal, and L2-estimate is asymptotical ly more efficient than  Ll -es t imate  
under  the i.i.d. Gaussian errors. For constrained case, Wang (1996) showed the conver- 
gence in distr ibution of L2-estimates. Using similar arguments as tha t  in Sections 2 
and 3, we can even give the limiting distr ibutions of L1- and L2-estimates. 

THEOREM 4.1. Suppose the errors {ei} are Gaussian, then under Assumptions 
(C3)-(C6),  we have 

(i) n l /2 (00  ) - 00), nW2(0 (2) - 00) are bounded in probability; 
(ii) If  the sets of optimal solutions of problems (1.7) and (1.8) are singletons for 

each value of ~* and {*, where ~* and ~* have the normal distribution N(O, K ) ,  then 
nl/2(0 (1) - 00), nl /2(0 (2) - 00) converge in distribution to the optimal solution v* and w* 
of problems (1.7) and (1.8), respectively. And 

W* 

{ M o C ,  if  v * c & ,  
J ~  * V* il ..... ik~ , if E Sil ..... i~, k = 1 , 2 , . . . ,  

Mo~*, if  w* E So, 

/ 1 / /  * w *  . . . .  = il ..... ik~ , i f  e Si~ ,ix, k 1 , 2 , . . . .  

Due to the complexity of these limiting distributions, it is not easy to compare the 
asymptot ic  efficiencies of these estimators.  However, if we know the location of v* and 
w*, then  by Theorem 4.1 one can easily get the asymptot ic  covariance s t ructure  of the 
estimates. 

For example, if v*, w* E S1, where 

Then we have 

and 

S1 = {v : ( V g l ( O o ) ) ' v  : O; (Vgi (Oo)) 'v  ( O,i e I \  {1}; 

(Vhy(Oo) ) ' v  = 0 , j  = 1 , . . .  ,p}. 

~t l /2(0  (1) -- 00) --4 N ( 0 ,  M1KM1), 
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n l / 2 ( ~  (2) - 0 0 ) - - ~  N(0, 2~1K2~1) 

in distribution. Elementary calculations yield 

(4.1) M: (2Ft(0)K) -1 [I ~ -1  - 1  ,, - 1  = - vg: ( (Ug:)  K Vg:) (Vgl) K 

- V h Q - : ( V h ) ' K - :  + R:] 

and 

(4.2) 

where 

t - 1  --1 t - 1  M: = K - I [ I -  Vgl((Vgl)  K Vgl) (Vgl) K 

-- V h Q - l ( V h )  ' K - 1  + Rll, 

R1 = ( ( V g l ) ' K - 1 V g : ) - : V h Q - I ( ( ~ h ) ' K - 1 V g l ) ( V g : ) ' K  -1 

Jr- Vgl ( ( V g l ) ' g - l V g l ) - i  ( ( V g l ) ' g  -1Vh)Q - I ( V h ) ' K  -1 

- ~ g l ( ( V g : ) ' g - l v g l )  -1 ( ( V g : ) ' g - : V h ) Q - l ( ( V h ) ' K - : V g l )  

• ( V g l ) ' K  - 1  ( ( V g l ) ' g - l V g l )  -1, 

Q = ( V h ) ' g - l V h  _ ( ( V h ) ' K - 1 V g l ) ( ( V g , ) ' K - : V g l )  -1 ( (Vg: ) 'K -1Vh) .  

2F'(0) = ~ ,  this implies Since that 

M I K M ,  = 
A 

Then we can conclude that L2-estimate is asymptotically more efficient than Ll-estimate 
for constrained model with the i.i.d. Gaussian errors. 

Next let us concentrate on the long-range dependent errors case for the uncon- 
strained model. We note that the case of v* E So or w* C So is essentially equivalent 
to an unconstrained problem, if we don't consider the equality constraints hi(0) = 0, 
j -- 1 , . . .  ,p. Thus it follows from Theorems 2.2 and 3.2 that  the limiting distribution 
of L:-estimates, n~-:'~/2L-r:/2(n)(O O) -0o) ,  is equal to (2F ' (0 )K) - I~  and L2-estimates, 
n~2'~/2L-r2/2(n)(O (2) - 00), converges in distribution to K - : ~ .  

If G(x) = x, i.e. the errors {ei} are Gaussian, it is easy to see that T1 = T2 = 1, 

U: = V/~, 11 = 1 and 2Ft(0) = V/~ -, then from Remarks 2.1 and 3.1, we 

know that ~ ~ N(0, ~E(1, a)) and ~ ~ N(0, E(1, a)).  Hence na/2L-1/2(n)(~ O) - 00) 

and nC~/2L-:/2(n)(O(2)- 00) have the same normal limiting distribution 
N(0, K - : E ( 1 ,  or )K-l ) .  This implies that, if the long-range dependent errors are Gaus- 
sian, Ll-estimates and L2-estimates will have the same asymptotic covariance structure 
for unconstrained nonlinear regressions, which coincide with the results in Koul and 
Murkherjee (1993) and Koul (1996). 

If there are restrictions of parameters appeared in nonlinear regression models, we 
still have the asymptotic equivalence of Ll-estimates and L2-estimates for the Gaussian 
errors case. The asymptotic equivalence is not affected by the appearance of constraints. 

For instance, again suppose the errors {ei} are Gaussian and v*, w* G $1, we have 

na/2L-1/2(n)(~ (1) - 0o) --> N(O, u21MIE(1, a ) M 1 ) ,  

and 
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na/2L-1/2(n)(O(2) - 00) -+ N(0 ,  ll2J~IE(1, a) /~1) .  

By  (4.1), (4.2) and recall that  Ul 2 = 212 ~ f ~  1 and 2F ' (0)  = 2, we come to the result that  

u~M1E(1,ct)M1 = l~2~1E(1,c~)2~. 

Finally, compared to L2-estimates,  L l -es t imator  is asymptot ical ly  more efficient at  
the double exponential  error distribution, the  logistic error distribution. Let us briefly 
explain this conclusion. For convenience again suppose v*, w* C $1, by Theorems 2.2 
and 3.2 we see that  

(4.3) 

and 

(4.4) 

n~-~c~/2L-r~/2(n)(O (1) - 0o) ----+ M I (  

n~2~'/2L-'~/2(n)(O (2) - 0o) --* ~ .  

Moreover, from Theorems 2.1 and 3.1, we know that  

2 2 

(4.5) Var(~) = IT2 ~ /  o~), Var(~) UT1 
= 71.  

Example 4.1. Suppose we have the logistic error distr ibution,  i.e. F(x )  = (1 + 
e-X) -1. Clearly this dis tr ibut ion satisfies the  Assumpt ion  ( e l )  and F ' (0 )  = 1/4 (so we 

have M1 = 2M1), G(x) = F - i ( t i ( x ) )  - -m~l_~(~) ) .  Therefore 

and 

/0 Ul = E{sign(G(rh))rh} = 2 x r  = r 0 

~o ~~ ti(x) x r  l l  = E{G071)r]1} = 2 In 1 - t i (x)  

/J /J = 2 ln( t i (x ) )xr  = 2 r  
( x )  o o  

1 /j a - Ce_a2 > - e -X2/ t i (x )dx  > / t i (a)  
7"C 7r  

> 2u~ > O, 

where a, C (a > C) are negative constants  such that  a-Ce-a2 / t i (a )  > . This means 

that  ~-1 = ~-2 = 1 and ll 2 > 4Ul 2. Then by (4.1) (4.5), we conclude that  for logistic error 
distr ibution the asymptot ic  covariance of n~2~/2L -'-2/2 (n)(~(2) _ 00) is much larger than 
the asymptot ic  covariance of n~-l'~/2L-~l/2(n)(O (1) - 0 0 ) .  This implies tha t  Ll -es t imator  
is more efficient than L2-est imator  at logistic error dis t r ibut ion in constrained nonlinear 
regression with long-range dependence.  

Example 4.2. Assume the d.f. F of the errors has a density function f ( x )  = �89 
This double exponential  dis tr ibut ion satisfies the Assumpt ion  (C1) and F ' (0 )  -- 1/2 (we 
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have M1 = M1), 

Hence 

and 

G ( x )  = [ - ln(2~5(-x)) ,  x > 0, 

( x < o. 

/o ~1 ~-- E{s ign (G( rh ) ) rh}  = 2 x(~(x )dx  = • 0 

f ll = E{G(rI1)f]I} = 2 l n ( 2 ~ ( x ) ) x r  
( x )  f /_0 

o o  o o  

a C _a 2 
1 / ( ~ ( x ) d x  > e / (~(a)  > ~ e_X 2 a -  

J c -- 2T~ 

Ul > O, 

where a, C (a > C) are the  same as t ha t  in E x a m p l e  4.1. T h e n  by (4.1)-(4.5),  we 
know tha t  L l - e s t i m a t o r  is more  efficient t h a n  L2-es t ima to r  at  double  exponent ia l  error  
d is t r ibut ion  in cons t ra ined nonlinear  regression wi th  long-range dependence.  
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