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A b s t r a c t .  In this paper, we consider M-estimators of the regression parameter 
in a spatial multiple linear regression model. We establish consistency and asymp- 
totic normality of the M-estimators when the data-sites are generated by a class of 
deterministic as well as a class of stochastic spatial sampling schemes. Under the 
deterministic sampling schemes, the data-sites are located on a regular grid but may 
have an infiU component. On the other hand, under the stochastic sampling schemes, 
locations of the data-sites are given by the realizations of a collection of independent 
random vectors and thus, are irregularly spaced. It is shown that scaling constants of 
different orders are needed for asymptotic normality under different spatial sampling 
schemes considered here. Further, in the stochastic case, the asymptotic covaxi- 
ance matrix is shown to depend on the spatial sampling density associated with the 
stochastic design. Results are established for M-estimators corresponding to cer- 
tain non-smooth score functions including Huber's e-function and the sign functions 
(corresponding to the sample quantiles). 

Key words and phrases: Central limit theorem, infill sampling, increasing-domain 
asymptotics, long range dependence, random field, strong mixing, stochastic design, 
spatial sampling design. 

1. Introduction 

Consider the multiple linear regression model 

(1.1) Y ( s i )  = f l 'wn(s i )  + Z(si);  

where fl E/Rp is the unknown parameter, Wn(') is a known non-random ~P-valued func- 
tion on ~d ,  Z(.) is a stationary strong mixing random field (r.f) with marginal cdf and 
pdf Go and go, respectively, and {Y(81), Y ( 8 2 ) , . . . }  are observed at the sampling sites 
{sl, s2,...}. Let r : N ~ ~ be a nondecreasing, right continuous function satisfying 

(1.2) E[r  = O. 
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Define/~,~ as a solution (in t E /R p) of the equation Mn(t )  = O, where 

(1.3) M~(t)  = E wn(s i )r  - w'~(si)t}, 

and the sum is over the total number of sampling sites {sl ,  s2 , . . .} .  (The sample size 
depends on the spatial sampling design generating the sampling sites {Sl, s2 , . . . }  and will 
be denoted by different symbols in the sequel. As a result, the range of summation in (1.3) 
is not indicated explicitly). In this paper, we derive the asymptotic distribution of/~n 
corresponding to both smooth (absolutely continuous) and nonsmooth (bounded) score 
function ~ under certain fixed and stochastic spatial sampling designs. In particular, 
in the smooth r case, the results of the paper yield asymptotic distributions of robust- 
estimators of/3, including the ones obtained through Huber 's  ~bk-function 

k if x > k  

(1.4) Ck(x) = x if Ix] < k 

- k  if x < - k ,  

k E (0, c~) under both random and nonrandom sampling designs. In the nonsmooth 
case, it covers the score functions that  yield estimates of quantiles of Z(-). 

Asymptotic properties of estimators based on spatial data can be carried out under 
more than one asymptotic framework, primarily due to the fact that points in space 
do not admit a natural ordering as does the (time-) points in one dimension. Indeed, 
there are two basic types of asymptotic frameworks that are commonly used in the 
context of a continuous parameter random field. When the minimum distance between 
the neighboring data-sites remain bounded away from zero as the sample size increases, 
one obtains the pure increasing domain asymptotic structure (cf. Cressie (1993)). In this 
case, the sampling region at the n-th stage R,~ (say) necessarily becomes unbounded as 
n ~ c~. On the other end, if the sampling region Rn remains confined in a bounded 
subset of ~ d  and an increasing number of data-sites are selected from it, then one obtains 
what is known as the infiU asymptotic structure. In this case, the minimum distance 
among the data-sites goes down to zero as n -~ co. In most studies on large sample 
properties of estimators based on spatial data, the pure increasing domain asymptotic 
structure with a grid based sampling design is used. However, a combination of the two 
asymptotic structures is also relevant for some applications (cf. Lahiri et al. (1999)). This 
is called a mixed asymptotic structure which has both an increasing domain component 
and an infill component. The increasing domain component is specified by the structure 
of the sampling region Rn which becomes unbounded as n -* c~. The infill component 
(defined in Section 2) allows one to fill in any given subregion of Rn with an increasing 
number of data-sites using a scaled down integer grid o n  .t~t~ d. See Section 2 for more 
details. 

For the nonrandom or fixed design case, we derive asymptotic distribution of the M- 
estimator/~n of (1.3) under the mixed asymptotic structure which has both an increasing 
domain component and an infill component. For the sake of completeness, here we also 
obtain the limit distribution of ( ~  - j3) under the pure increasing domain case. For 
both asymptotic structures, we denote the sample size by N~ (cf. Subsection 2.1). It is 
observed that for a nondegenerate limit distribution of ( ~  - / 3 )  under the fixed design 
with either of the two asymptotic structures, the right choice of the scaling constant is 
given by Dn (defined in Section 3) which is comparable to the square root of the volume 
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of Rn. For the pure increasing domain asymptotics, this volume is of the order of the 
total number of sampling sites Nn and the rate of convergence of ~ to /3  is the usual 
rate for strongly mixing observations. However, for the mixed asymptotic structure, the 
order of the volume of Rn is strictly less than the common choice Am, reflecting the fact 
that neighbouring observations are strongly dependent and hence the rate of convergence 
of the estimators is slower than the usual N n  1/2 rate. 

For the stochastic design case, we denote the sample size by n and suppose that 
the sampling sites Sl, .  �9 sn  are given by the realization of a set of independent random 
vectors taking values in Rn. This provides a more flexible framework for modelling 
irregularly spaced data-locations than the standard approach that uses a homogeneous 
Poisson process. As in the fixed design case, here also we assume that the sampling 
region Rn becomes unbounded as n ~ oc. As explained in Section 2 below, in the 
stochastic design case, the distinction between a pure increasing domain structure and a 
mixed asymptotic structure lies in the relative growth rates of the sample size n vis-a-vis 

the volume of the sampling region. Infill sampling occurs when the sample size n grows 
at a faster rate than the volume of R~. For a nondegenerate limit distribution of (/)~ - /3)  
under the stochastic design with both pure increasing domain and the mixed increasing 
domain sampling paradigm, the scaling factor is Dn (defined in Section 3) which depends 
on both the volume inflating factor An (defined in Section 2) and the density generating 
the stochastic design. For the pure increasing domain asymptotics, this volume is of 
the order of the total number of sampling sites n; however, under strict infilling, the 
order of volume is strictly less than n. Under appropriate regularity conditions, (/3,~ - 
/3) is asymptotically p-variate normal under both asymptotic paradigms. The limiting 
normal distributions have zero mean but  distinct convariance matrices that, among other 
things, depend on the spatial sampling density generating the points s l , . . . ,  Sn. Further, 
the results also show that the mixed increasing domain structure, with its partial infill 
component, leads to a "smaller" asymptotic covariance matrix than the pure increasing 
domain case under the stochastic design considered here. The results also allow us to 
determine the optimal spatial sampling design for estimating the parameter /3. See 
Section 4 for more details. 

The rest of the paper is organized as follows. In Section 2, we describe the spatial 
asymptotic framework and the spatial sampling designs. We state the main results of the 
paper under the nonrandom designs in Section 3 and those under the stochastic designs 
in Section 4. The proofs of the results are separately presented in Sections 5 and 6, 
respectively for the nonrandom and the stochastic design cases. 

2. The spatial asymptotic framework 

Let R0 be a subset of ( -1 /2 ,  1/2] d containing the origin and let R~ be an open set 
satisfying R 0 C Ro C R0, where for any set A C ~ d ,  ~ denotes its closure. We regard 
R0 as a 'prototype'  of the sampling region R,~. Let {An} be a sequence of positive real 
numbers such that /~n ~ CX:) as n --* oc. We assume that at the n-th stage, the sampling 
region Rn is obtained by 'inflating' the set R0 by a scaling factor An, i.e. 

(2.1) R~ = A~n0. 

Since the origin is assumed to lie in R0, the shape of R~ remains the same for different 
values of n. Furthermore, this formulation allows the sampling region to have a wide 
range of shapes, encompassing common convex subsets of ~ d  such as spheres, ellipsoids, 
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polyhedrons, as well as certain nonconvex regions (in ~d) ,  such as star-shaped sets. 
(Recall that a set A c ~ d  is called star-shaped if for any x E A, the line segment 
joining x to the origin lies in A.) The latter class of sets may have fairly irregular 
boundaries. To avoid pathological cases, we shall always assume that for any sequence 
of real numbers {an} with an --~ 0 as n --+ oc, the number of cubes of the lattice 
an ~ d  that intersect both Ro and R~ is O((an) - (d - l ) )  as n ---+ oo. This assumption 
would ensure that the number of "boundary" sampling sites in the sampling region Rn 
is negligible compared to the total number of sampling sites. This condition holds for 
all regions R~ of practical interest. For example, if the boundary of Ro is delineated by 
a smooth function ~ : [0, 1] k --* ~ d  for some k < d, then this condition holds. Sherman 
and Carlstein (1994) consider a simiar class of regions in the plane (i.e. d = 2), with 
boundaries given by closed rectifiable curves of finite lengths. 

2.1 Fixed designs 
Let 51 , . . . ,  5d be a given set of d positive real numbers and let A be the d x d 

diagonal matrix with diagonal elements 51, . . . ,  5d. The fixed designs we consider in this 
paper are based on the transformed integer lattice 2g d, given by 

Z d = {Ai : i C 2gd}. 

Thus, the lattice Z d has an increment 5i in the i-th direction, 1 < i < d. For the 
fixed sampling design under the pure-increasing-domain structure, we assume that the 
random process Z ( s )  is observed at Nn number of sampling sites { S l , . . . ,  SN, } defined 
by 

(2.2) {81 , . . .  ,SN.  } : {8 C z d  : 8 C R n } .  

In this case, the points s l , . . . ,  SN, are separated by a distance 50 = min{51,. . .  ,bd} for 
all n and the sampling region Rn grows to ~ d  eventually. Note that  the sample size Nn 
under this case satisfies the relation 

(2.3) N n ,~ vol.(n-lno)/~dn 

where vol.(A) denotes the volume (i.e. the Lebesgue measure) of a set A in ~ d  and for 
any two sequences {rn} and {tn} of positive real numbers, we write rn ~ tn if rn / tn  --* 1 
as n ---~ (:x:). 

For the fixed sampling design under the 'mixed' paradigm, any given subregion of 
the sampling region R n is filled in with an increasing density of sampling sites. To 
that end, let {r/n} be a sequence of positive real numbers such that ~n J. 0 as n --* c~. 
We assume that the sampling sites { s l , . . . ,  SNn} under the fixed sampling design in 
the mixed-increasing-domain-structure case are given by the points on the scaled lattice 
r/nX~ d that lie in the sampling region Rn, i.e. 

(2.4) {81,. . - ,8N,~} = {8 E r/n z d  : S E R n }  

: R .  n ( nZd). 

The scaled lattice ?]nZ~ d becomes finer for larger values of n and thus fills in any 
given region of ~ d  (and hence, of Rn) with an increasing density. Indeed, the maximum 
distance between any two adjacent sampling sites is bounded by max{51,...,5~}~/n, 



M-ESTIMATION IN SPATIAL REGRESSION 229 

which goes to zero as n --* oc. The sample size Nn in this case satisfies the growth 
condition 

(2.5) Nn vol. -1 d -d ~ ( A  

which is of a larger order of magnitude than the volume of Rn, given by vol.(A-1R0)A d. 
This type of sampling designs may be useful for analysis of high resolution image data, 
e.g. remotely sensed satellite data on a fine scale. 

2.2 Stochastic designs 

For the stochastic design, let f ( x )  be a continuous, everywhere positive probability 
density function on R0, and let X1, X2, .  �9 �9 be iid random vectors with probability density 
f(x) ,  that  are independent of the r.f. {Z(s) : s �9 ~d}.  We assume that  the sampling 
sites s i , . .  �9 s~ lying in the sampling region R~ are obtained from a realization x l, .. �9 Xn 
of the random vectors X : , . . . ,  X ~ ,  by the relation 

si = AnXi, 1 < i < n.  

Since X l , . . . ,  x n  take values in Ro, s l , . . . ,  8n are distributed over the entire sampling 
region Rn _= AnR0. In analogy to nonparametric regression under stochastic designs, the 
results proved in this paper under stochastic designs are to be interpreted as valid with 
probability one under the joint probability distribution, say, P x  of the Xis  (i.e. almost 
surely, P x ) .  

In the stochastic design case, the distinction between the pure-increasing domain 
structure and the mixed-increasing domain structures is determined by the relative 
growth rates of the sample size n and the volume of the sampling region Rn.  When 
n ~ KA d for some 0 < K < cx~, the sample size is of the same order as in the pure- 
increasing-domain-fixed design case (cf. (2.2)), and it should be regarded as the pure- 
increasing-domain analog under the stochastic design. On the other hand, if n / A  d --~ cx~ 
as n --~ cxD (as in (2.5)), it corresponds to the 'mixed-increasing domain' case under the 
stochastic design. 

3. Results under fixed designs 

3.1 Notat ion  and conditions 
We begin by introducing some notations. Denote the transpose of a matrix B by B'. 

For x (Xl,. ,xk) '  �9 ~ k ,  k > 1, let l[xltl ~ IXlt+. + lxk[  and [tx[[ (x~+-- - 2,1/~ = .. _ �9 = .~Xk )  
respectively denote the g: and ge norms on ~k .  For any set A C ~ k ,  let vol.(A) denote 
the volume (i.e. the Lebesgue measure) of A and let [A[ denote the total number of 
elements in A. Let 11(.) denote the indicator function. For y �9 ~ ,  write y+ = max{y,0}. 
Let . T z (T )  = a ( Z ( s )  : s E T)  be the a-field generated by the variables {Z(s) : s �9 T}, 
T C ~d .  For any two subsets T1 and T2 of ~d ,  let 

d(T1,T2) = i n f { I f x  - 8111 : x �9 T1,  8 �9 r 2 } .  

Also, let T4(b) ~_ {U~_ID i : ~-~ik__l vol.(Di) < b, k > 1} be the collection of all finite 
disjoint unions of cubes D : , . . . ,  Dk in /R d, b > 0. Then, the strong-mixing coefficient 
for the r.f. Z(.) is defined as 

(3.1) c~(a; b) = sup{bz(T1,Tz): d(T1,T2) >_ a, T1,T2 C T4(b)}, 
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a > 0, b > 0, where a(T1,T2) = suP{IP(AAB)-P(A)P(B) I :  A �9 i~z(T1),B �9 5rz(T2)}, 
T1, T2 C Nd. Note that the supremum in the definition of a(a; b) is taken over sets T1, T2 
that are bounded. For d > 1, this is very important; some interesting results of Bradley 
(1989, 1993) (cf. Doukhan (1994)) show that a r.f. on ~d, d > 2 that satisfies a mixing 
condition of the form 

(3.2) l i m  sup{&(T1, T2) : T1, T2 C 1~ d, d(T1, T2) > a} = 0, 

with the supremum taken over possibly unbounded sets, necessarily belongs to the more 
restricted class of p-mixing r.f.s. As a result, to ensure that the main results of the paper 
are applicable to a larger class of r.f.s, we do not allow unbounded sets in the definition 
of the strong mixing condition here. 

For clarity of exposition, as in Lahiri (2003), we shall make the assumption that there 
exist a nonincreasing left continuous function c~1 (.) and a nondecreasing function gl (') 
such that lima--.~ c~1 (a) = 0 and l i m b ~  g~ (b) = c~, and the strong-mixing coefficient 
c~(a, b) in (3.1) satisfies the inequality 

(3.3) a(a, b) < ax (a)gl (b) a > 0, b > 0. 

Next, denote the autocovariance function of the transformed process r  by ~(.), 
i.e., a(s) = E~p(Z(x))~p(Z(x § s)) for all s, x �9 /R d. Let Xo = Er (whenever 
~p' is defined) and X1 = f go(x)~b(dx), where recall that go denotes the density function 
(with respect to the Lebesgue measure) of Z(0). Let DIn be a p • p matrix satisfying 

Nn 

DlnDtln = E ~On(Si)Wn(Si)" 
i=1 

d / 2 n  D~lwn(si).  Here, Dn would Next define D~ = ,m L,I~, C,~ = r/~aDn and vi = 
serve as the scaling matrix for ( /~  -r and C~ 1 as the scaling matrix for Mn(j3).  Also, 
l e t  frt n = sup{[lDnlcon(8)[[ : 8 �9 Rn} , n ~ 1. I n  addition to the assumption that r 
is monotone nondecreasing, right continuous with E[r = 0, we shall make the 
following assumptions for the 'smooth' and the 'nonsmooth' cases. 

CONDITIONS.  

(S.1) Let r be absolutely continuous with its almost everywhere derivative r  sat- 
isfying 

(a) limv-~0 E I ~ ' ( Z ( 0 )  - v )  - r  = 0.  

(b) Efr  < ~ and Xo : E r  r 0. 
(S.2) For some 5 �9 (0, ec) and ~- > d(2 + 5)/5, 
Ca) EIr 2+~ < oc; 
(b) a l (y )  < Ky -'~ for all y _> 1, for some constant K �9 (0, oc); 
(c) gl (y) = o(~ ('-d)/4d) as y - ~  ~ ;  

(d) Tn n2 ~. sup{lID;Xw,~(s)l[2: s e Rn} = o(;~(~ T-d)/ad-d) as n ~ oc. 
N,, (S.3) (a) The p x p matrix }--~i=l Wn(Si)W~(Si)' is nonsingular for all large n. 

(b) There exists a p x p matrix valued function Q such that for any hn ~ h in ~d ,  

li~m~ D1-1 [ i:s,,si+h,~ERn E Wn(Si)Wn(si + hn)'] (olnx)' = Q(h)" 
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In the nonsmooth case, we shall assume the following: 
(N.1) r is bounded and the error distribution Go(.) has a continuous density go 

such that 

X1 = / g o ( x ) r  7 ~ O. 

(N.2) For some 7- > 3 d ( 4 d -  1 ) / ( 4 d -  3) and K e (0, co), 

OL1 (y) ~ Ky  -~ for all y > 1. 

Some discussion about the conditions are in order. Note that the smoothness con- 
dition on r in (S.1) is stronger than assuming continuity but weaker than assuming that 

is differentiabile everywhere on ~ .  This weaker condition allows us to apply the main 
results of the paper to M-estimators corresponding to Huber's r function. Part  (a) of 
(S.1) holds if the almost everywhere derivative r  is bounded and continuous on a set Z 
for which G0{Z} = 1, where Go is the error distribution. In particular, this holds auto- 
matically for Huber's function r function for which r = l [ ( - k  _< x _< k). Part  (b) of 
(S.1) is a necessary condition, as the reciprocal of the quantity Er appears in the 
asymptotic covariance matrix of the M-estimator/~n. Condition (S.2) specifies a set of 
moment and mixing conditions. For deriving the asymptotic distribution of/~n, we make 
use of a Central Limit Theorem (CLT) result of Lahiri (2003), applied to a weighted sum 
of the variables r i = 1 , . . . , n .  As a result, the moment condition is assumed 
on the transformed variables r  rather than on the Z(s ) ' s  directly. Asymptotic 
normality of the M-estimator may hold even when Z(s)  does not have enough moments 
but r does. The mixing condition in part (b) is almost minimal as follows from 
the discussion in Lahiri (2003). Indeed, for d = 1, the requirement a l  (Y) = O(Y -~) as 
y --* cc for some ~- > (2 + 5)/5 is only slightly stronger than the more familiar condition 

(3O 

E 0~1 (n)5/(2+5) <[ (30 
n - ~ l  

used for proving the Central Limit Theorem for sums of stationary random variables in 
the time series case. Part  (c) of (S.2) allows the function gl (') to be unbounded. As 
explained earlier, this is important for spatial processes in dimensions d _> 2. And part 
(d) of (S.2) specifies the rate of decay for the scaled weight function wn(.). Note that 
when wn(-) -= w(.) for all n > 1 and the function IIw(-)ll 2 is Lebesgue integrable over 
~ d  with 

(3.4) W -- / w(s )w(s ) 'ds  nonsingular 

then it is easy to show that A~dDnD'n converges to a scaler multiple of W, and hence, 

condition (S.2)(d) holds if sup{lIw(s)ll : s E Rn} -- o(A (~-d)/4d) as n ---* co. Condition 
(S.3) is a version of the well-known Grenader condition (cf. Grenander (1954)) for the 
spatial stochastic design case. We refer the reader to Grenander (1954), Anderson (1971) 
and Lahiri (2003) for examples and further discussion of Condition (S.3). 

In the nonsmooth case, a different line of argument is needed to establish asymptotic 
normality of ~n" Here the score function ~ need not even be continuous and may have 
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jump discontinuity. Note that Condition (N.1) is satisfied by the 'sign'-score function 

1 if x > 0  

r  = 0 if x > 0 

- 1  if x < 0 ,  

if X1 ~ 0. Further, to establish the CLT in the nonsmooth case, we need a different 
condition on the rate of decay of the function al( . ) ,  which is specified in Condition 
(N.2). 

3.2 Main results 
Now we are ready to state the main result of this section for the smooth score 

function case. 

THEOREM 3.1. Under Conditions (S.1) (S.3), 

- 1 C - 1 M ,  D n ( ~ n  - ~)  = XO n n(]3) q- Op(1), 

and hence 

Thus, under the mixed increasing domain asymptotic structure, ~n is asymptotically 
normal for sampling regions of a wide variety of shapes and for rectangular grids with 
different spacings along different directions. When wn(-), n _> 1 are given by a single 
Lebesgue integrable function r (.) satisfying the nonsingularity condition (S.3), lion JR = 

o(A d/2) as n ~ cxD, and thus, the M-estimator/~n converges to/~ at the r a t e  Op(/~n d/2) 
as  n ----+ (:x). 

Note that under the mixed increasing domain asymptotic structure, the infilling 
factor ~/n ~ 0 as n ~ c~ and therefore, by (3.5), the sample size Nn grows at a faster 
rate than the volume of the sampling region Rn, given by vol.(R0)A d. As a consequence, 

the convergence rate Op(An d/2) of ~ under the mixed asymptotic structure is much 

slower than the usual rate Op(N~l/2) .  
A similar conclusion holds for the case of nonsmooth score functions. 

THEOREM 3.2. Suppose that Conditions (N.1), (N.2), (S.2) and (S.3) hold. Then 

Dn(~n - 3) = - x 1 1 C ~ l M n ( 3 )  + Op(1), 

and hence (3.5) holds with X 2 replaced by X~. 

For the sake of completeness, we also note down the asymptotic distribution of ~n 
in the pure increasing domain case. In this case ~/n ~ 1 for all n > 1 and the sample size 
Nn grows at the same rate as the volume of the sampling region Rn. In this case,/~n is 

1/2 �9 
a N~ -consistent estimator of/3, i.e./~n - j3 = Op(Nj l /2 ) ,  as follows from the following 
result. 
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THEOREM 3.3. (a) Suppose that conditions (S.1)-(S.3) hold with n,~ - -  1 for all 
n > 1. Then, 

(3.6) Dn(~n-  ~) --*d N (O,Xo2 EiE~, ~ a(Ai)Q(Ai))  . 

(b) Suppose that (N.1), (N.2), (S.2) and (S.3) hold. Then (3.6) holds with Xo 
replaced by X1. 

In the time series context, Koul (1977) obtained the asymptotic behavior of M- 
estimators in a regression model with stationary strongly mixing errors (weak depen- 
dence) whereas Yajima (1991), Beran (1991) and Koul (1992) discussed least squares and 
M-estimation in linear models with long range dependent errors (strong dependence). 
Under weak dependence, M-estimators are asymptotically normal with normalizing con- 
stant of the order of square-root of the sample size which can be viewed as a spacial 
case of our results in Theorem 3.3 under the pure increasing domain case on ~ : .  How- 
ever, under strong dependence, the rate of convergence of the estimators may typically 
be slower than square-root of the sample size. This shows that the mixed asymptotic 
structure leads to strong dependence in the observations and our result gives asymp- 
totic distribution of the M-estimator ~)n for a class of strongly dependent (time series as 
well as) spatial data. In the context of a spatial regression model with Gaussian errors, 
asymptotics of the maximum likelihood estimators of the regression and covariance pa- 
rameters was discussed by Mardia and Marshall (1984) under the pure increasing domain 
framework. In contrast, here we are concerned with the estimation of the regression pa- 
rameters only, but  under a wide variety of asymptotic frameworks and for a large class 
of (possibly nonsmooth) score functions. 

4. Results under stochastic designs 

4.1 Notation and conditions 
We introduce some notation and conditions, in addition to those of Section 3. Recall 

that X1, X 2 , . . .  are lid random vectors with common density f (with respect to the 
Lebesgue measure on ~d) .  As in the nonstochastic case, define the p x p scaling matrices 
JDln, JDn, C n by 

- - ,  = / Wn()~nX)Wn()~nS) ' f (8)ds ,  DlnD1 n 

Dn = Ad/2Dln, and 

r = (nA~d)D~, n >_ 1. 

Also, let/~/ln = sup{ll/)i-lw~(s)ll : s �9 R~} and rhn --- A;d/22f/Iln = sup{lt/);lWn(S)ll : 
8 E Rn} .  

CONDITIONS. 

(C.1) There exists a p xp  matrix valued function Q: on Na such that for all h E ~ a  

1 [ /  ] 1 ,  Din Wn()~nx+h)wn()~nX)'f(x)2dx (D in ) - - -~Ql (h )  as n--*c~.  

(C.2) There exist 5 E (0, cxD) and T > d(2 + 5)/5 such that 



234 S.N. LAHIRI AND KANCHAN MUKHERJEE 

(a) EIr  2+a < co 
(b) oq( t )  = O( t  - r )  as t --+ co 
(c) gl  (t) ~- o( t  ( z -d ) /4d )  as t --* co.  

(C.3) .~/2 n = o(min{(logn)-2A(~-d)/n~,na}) for some a E [0, 1/8), where T is as in 
(c2). 

(C.4) The pdf f( .)  of X1 is continuous and everywhere positive on/~0- 

Condition (C. 1) is the analog of Condition (S.3), used in the nonrandom design case. 
Condition (C.2) is identical to conditional (S.2), except for the last part. Condition 
(C.3) specifies the growth rate of the "scaled" weight function wn(s), as in (S.2)(d). 
Condition (C.4) says that  every part of the sampling region Rn is "sampled" with positive 
probability under the given stochastic sampling scheme. This condition can be somewhat 
weakened at the expense of some additional regularity conditions on the weight function 
Wn('). See the discussion in Section 3 of Lahiri (2003) for more details. For 0 < Co _< co, 
let X0 = Er and with Hp denoting the identity matrix of order p, let 

(4.1) 

ColG(O)Hp + / a(x)Q1 (x)dx, 

a(X)Ql(x)dx,  

if Co E (0, co) 

i f  CO = o o .  

Then, we have the following result. 

THEOREM 4.1. Suppose that conditions (C.1)-(C.4) and (S.1) hold. 
(i) I f  n)~n d ~ Co e (0, co), then 

D n l ( ~ n  __ /3) _._+d N(0, Xo2E~,co). 

(ii) If  n/~n d --* co as n ---* co, then 

J~)n 1 (~n -- /3) __+d N(0 ,  XO2)-]~,c~). 

Thus, the M-estimators are asymptotically normal for both the pure increasing 
domain case (Co < co) and the mixed increasing domain case (Co -- co). Note that  
the limiting covariance matrix differ in the two cases depending on whether Co = co or 
not. Thus, if the sample size n grows at the rate n ~ vol.(Rn), then the asymptotic 
covariance has an additional variance term vol.(Ro)-la(O)lIp compared to the co -- co 
case. Since this additional term is a nonnegative definite matrix, it follows that  the 
co = co case allows for the most accurate estimation of/3 and its linear functions by 
/~n and the corresponding linear combinations of ~n, respectively. Thus, the mixed 
asymptotic structure leads to a more accurate estimation of the parameter/3 compared 
to the pure increasing domain case. Intuitively this may be explained by noting that  
in the mixed case, one has many more observations (n >> Ad) than the pure increasing 
domain case where n = o(Ad). Although the additional data values do not improve the 

rate of convergence of r to/3, it does reduce the asymptotic variability. 
A second notable feature of the results is that  the scaling matrix J0~ grows at a 

different rate than the square root of the sample size n under the mixed increasing domain 
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asymptotics,  due to the effect of infill sampling! Thus,  under  the present framework, 
the volume of the sampling region, not the sample size n serves as a common scaling 
constant  tha t  produces a nondegenerate limit distr ibution under  bo th  types of asymptot ic  
structures. 

The following result shows tha t  a similar conclusion holds for the nonsmooth case. 

THEOREM 4.2. Suppose that Conditions (C.1)-(C.4) and (N.1)-(N.2) hold. 
r oo, o be in (4.1) and let = 

(i) I f  n)~; d --, Co �9 (0, oo), then 

bn(#n  - #) N(0, xi- r, oo, o). 

(ii) I f  nA~ d ~ oc as n ~ oo, then 

Let 

b n ($ n  - #) N(0, oo,oo). 

5. Proofs for the fixed design case 

Let C = (0, 1] d. For a a-field .4 on a nonempty  set ~ and a function T : ~ ---* JRk 
(1 < k < oo), we write T C .4 if T is (.4, B(JRk)) -measureable, where /3(JR k) denotes 
the Borel a-field on JRk. For a function h : A --* JR, defined on a nonempty  set A, 
let ]]hiIoo -- sup(ih(a)] : a �9 A}. In particular, Iixi[o~ = max{lxiI : 1 < i < k} for 

_ x-~[ t] ka-la(kbo;36*d)l/b,  x -- ( X l , . . . , x k ) '  �9 JRk, 1 < k < oo. Let A(t ;a ,b)  -- l+z_ . ,k=l  
a~ b > 1, t �9 JR1, where [t] is the largest integer less than  or equal to t and recall tha t  
60 = min{61 , . . . ,  6d} and 6* = max{61 , . . . ,  6d}. Let K,  Ki ,  K( . )  denote generic constants 
in (0, oc) tha t  may depend on their arguments (if any) but  not on the variable n and 
on the probability element w of the underlying probabili ty space (~t, .~, P) .  Also, unless 
otherwise specified, limits in order symbols will be taken by let t ing n ~ 0% where the 
qualification 'as n --* ce' will be dropped for brevity. 

LEMMA 5.1. Let en( t )  C a ( Z ( t ) ) ,  t E Rn be a collection of centered Bernoulli 
variables with P[en(s)  -- -Trn(s)] = 1 - P[en(s)  = 1 - 7rn(S)] = 1 - lrn(S) for  some real 
number 7rn(s) E [0, Tr0n] for  all s E Rn, where 0 < 7ron < 1. Let Won(S) : Rn --~ JR be 
a nonrandom real-valued weight function and let Mon =- suP{iWon(S)] : s E R,~} < oo, 
n > 1. Also, let (qn}n>l C (0,1]. Then, for  any real numbers r > 1, s > 2 with 
! + 2  = 1 ,  
r 8 

(5.1) E [ i:i~n~R~ wOn( A i?~n)en( A i?~n) ] 

K d -4d 4 2/s < (d,/',, r) , nn M3,,:%n A(ton; 3d, r) 
+ K(d,A, 2d -4d 4 4/s 2 r))~n ~tn M~nlron A( ton;d ,r )  

for all n > 1, where tOn = d)~nlbo. 

PROOF. We proceed as in the proof of Lemma 6.1 of Lahiri  (2003). Note tha t  
Ai~n  C Rn if and only if irln E AnA-1R0. Set A-1R0  = R 1 and An R1 = R 1. Note tha t  
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the boundary of the set -R 1 satisfy the same regularity property as that  of Ro. Hence, 
instead of working with the data-sites Air]~ E Rn, we work with the indices i~n E R 1 
which lie on the square grid 2g d. Recall that  C denotes the unit cube in ~d .  Define 

In -- {i E ~ d :  [i + C] n R~ r r 

J~(i)  - {j E 2~d: ~/nj E [i + C] n R~}, and 

Y(i) = ~ Won(AiW)en(Airln), i E In. 
jE&(i) 

Then, {i + C  : i E I~} is a covering of the set R~ by unit cubes in ~ d  and Y(i) denotes 
the summation of wo~(s)e~(s) over all sampling sites s (lying on the grid Z d) that  lie 
in the rectangle A[i + C] e Rn. Hence, the left side of (5.1) is equal to E ( ~ E t .  g( i ) )4 .  
Expanding the fourth power, we get 

< K(d) 

(5.2) 

E E(Y(i))4 + E E(Y(i)3y(3) + E E(Y(i)UY(J)2 
iEIn iCj ir  

-I 

+ E EY(i)2Y(J)Y(k)+ E EY(i)Y(J)Y(k)Y(m)I 
iCjT~k i~j~kT~rn J 

=-- Qln  + Q2n + Q3n + Q4n + Qsn, say. 

Note that  for any i , j  E In, the maximum value of li - j l  is bounded above by An(511 + 
...+521) <_ dA~/5o - ton, and for any i , j  E In with i r j ,  the minimum distance (in the 
e~-norm) between the points of the rectangles A[i +C] and A[j +C] is 50(Hi -Jill - d ) + .  
Also, note that  for any real number a > 1, ElenCs)l ~ = 7rnCsDa(t -- 7rn(s)) + (1 -- 
7r~(s))%rn(s), so that  by Jensen's inequality, 

1 Wln(AtInj)en(A~]nJ) a (5.3) EIY(i)l~ <-IJn(i)laE IJn(i) I E 
jES~(i) 

- I d ~ i ) l  j e  ~ ( i )  

<_ 27ronIJn(i)laM~n 

for all i E f~. Hence, by (5.3) and the strong mixing property of {Z(s)  : s E ~d} ,  we 
have 

(5.4) Qln + Q2,~ + Q3~ 

<_ K(d,r) [2won ~ I&(i)lM4n 
L iEIn 

t o n  

2 

+ ~ I{(i,d) E In x I~ :  IIi - J i l l  = k}l~([(k - d)+]6o;6*d) 1/r 
k=l  
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x {(EIY(i)I2~) 2/~ + (E[Y(i)I3~)'/~(EIY(i)I~)~/~}] 
_1 

- 4 d M 4  --  2 - 4 d ~ 4  < K ( d ,  r)lI~l ]~OnVn on * ~On~n IVldn 
[ .  

I, k-~l t'ln On i, On $J 

< K(d, d -4d 4 2/s . _ r, 8o)~n~n M~)nron A(ton, d,r). 

Now, using the combinatorial arguments in the proof of Lemma 4.1 of Lahiri (1999) 
and the arguments leading to (6.4) and (6.5) of Lahiri (2003), we get 

ton 

(5.5) Q4n <_ K(d) E ] { ( i , j , k ) c t 3 " i ~ j ~ k ,  d l ( i , j , k ) = k } ]  
k=l  

x c~((k - 4)+50; 35"d) 1/~ 
X {(E[Y(i)2Y(j)Is)I/~(E(Y(k)I~) ~/~ 

+ (EIY(i)2y(k)I~)I/2(E[Y(j)Is) 1/8} 

to~ k2d-lc~ k -  <- K ( d , p ) ' l n '  [ k ~  1 ( ( d ) + 5 0 ; 3 5 * d )  1/r] {?lnndM4nTr2o/nS}, 

and writing ~-]~* and ~-~.** for summations  o v e r  I C I n  a with d 2 ( I )  >_ d 3 ( I )  a n d  d 2 ( I )  < 

d3(I) r e s p e c t i v e l y ,  we  get 

(5.6) Qh~ = E + E {  EY(i)Y(j)Y(k)Y(m)} 
ton k 

< K(4) ~ ~ I{I c 4 :  4~(I) = k, 4~(I) = ~}l 
k = l  8=1 

X OL((k *d 1/r -4d 4 2Is -d)+5o;35 ) {~n M3.'o~} 

+ K(d) ~ IEY(i)Y(j)I 
iCj 

to~ k--1 

+ } 2  Z I(I c 4 :  d~(I) = ~,d~(I) = ktl 
k=l  s = l  

"1 

d *d 1/r -4d 4 2/s I • ~ ( ( k  - )+~o; 35 ) {~,~ M~,n~On } 
J 

<_ N(a)vn M~n~on (2k )~e - l l I~ l~ ( (k  - a)+~o;a~*~) 1/~ 

+ K ( d )  IInl~kd-la((k--d)+eO;'k=l ) 'tn "~'On"On ] 
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Hence, the lemma follows from (5.2), (5.4), (5.5) and (5.6). 

LEMMA 5.2. Let g : fit ~ ~ be a Borel measurable function satisfying 
EIg(Z(O)) I < oc and Eg(Z(O)) = O. Let aln,. . . ,aN~n E Kt be constants satisfying 

N Ei ' -~  lain[ = O(1) and ~d~-~N_~la2 n = o(1) as n ~ co. If f t d - la l ( t )d t  < oc, then 
EN~ aing(Z(si)) ~ 0 in probability. 

PROOF. For 1 < i < Nn, define 

Wi = g(Z(si)), Wli = Wil[([Wil <_ tin) and W2~ = Wi - Wn,  

where t in --~ cc as n --~ oc at a suitable rate, to be specified later. Since 
E(-:la~nW2~] <- E ~ I  la~nlEIWII~(IWll > tln) = O(1), it r e m a i n s  to  s h o w  t h a t  
N,~ Ei=l ainWli = Op(1). Using E(Wli) = -E(W2i),  

(5.7) ainWli ~_ E [ainlElWllll([W1] > tln) ---- o(1). 
Li=l i=l 

To calculate the variance, let Jn = {si - sj : 1 <_ i , j  <_ Nn} and for h C Jn,  let 
Jn(h) = {( i , j )  : 1 _< i , j  <_ Nn, si - sj = h}. Then,  

(5.8) V a r ( ~ a i ~ W l i ) =  E [ ~ j  ainajnCov(Wli,Wlj)] 
\ i = 1  hEJn L(i,j)e ~(h) 

~- E a~n 4(~([[h[[1;1)(2tl~)2 
hcJn k \ i = 1  / 

-d 2 (t2n) yd- lcq(y )dy"  gl (1 )  < K ~ a~. 
L i=1 

= o(1),  

if we set tl~ [~/n d N 2 -1/4 = ai~ ] . Now, 5.2 ~-~-i'-~ Lemma follows from (5.7) and (5.8). 

PROOF OF THEOREM 3.1. For clarity of exposition, we explicitly indicate and 
separate out  the main steps in the proof of Theorem 3.1. 

Step (I): Uniform one-step asymptotic approximation for Mn(u) .  First  in (5.12) 
below we obtain a one-step Taylor-type expansion of the M-score Mn(u)  uniformly over 
every compact  intervals {llull < b}, b > 0. Towards that ,  for u E ~ P  let I = In(u) = 
{i :  1 < i < Nn, v~u >_ 0} and J = Jn(u) = { 1 , . . . ,  Nn} \ I .  Then,  using the smoothness 
of ~,  we have 

C n l { M n ( ~  + D n l u )  - M n ( f ~ ) }  

Nn 
= C n  1 ~ w n ( 8 ~ ) [ r  - v ~ )  - r  

i=1 
[Z(s,)  Z ' 

= - C n l  E ~l)n(Si) r  q- Cn 1 E Wn(Si) r  
iEI J Z(si)-v~u iCJ J Z(si) 
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f = -C~1 E wn(si) r + t)dt 
iEI v~u 

p 
~0 rill 

JI- C n  1 E 'U)n(8i) ~ J ( Z ( 8 i )  + t )d t .  
iEJ 

Fix any b �9 (0, oc) arbitrarily. Writing ti = sup{Iv~ul : Ilull < b}, bounding the limits 
of the integral by -t i  and ti and then taking expectation, we get 

c~ 1 No I 
(5.9) E sup {Mn(/3 + D~lu) - Mn03)} + C~ -1 ~ w~(si)(v~u)r 

Ilull_<b i=1 

f _< ~ IICglwn(s~)ll EIr  ) + t) - r 
iEI ti s + ~ Ilcglw~(sdlI EIr + t) - r 

iEJ 

However, 

Nn Nn 
(5.10) E Ilc~lw'~(sdv~ll ~- ~_, IIcgl~,~(sdllllv~ll 

i=1 i=1 

= 77.. .d  tr viv =tr.gp.( )=p.  
\ i : 1  / 

Hence right hand side of (5.9) is o(1). Next we use Lemma 5.2 to show that  

Cg 1 ~ w~(si)v~{r - Er  = Op(1). 
i=1 

Note that  

(5.11) 
n 

2d V d 2 IlC~lw,(si)v'i[] 2 _< 77n E l] ill 4 <- p r / ,m , .  
i=1 i=1 

Hence, using (5.10) and (5.11) and applying Lemma 5.2 componentwise, we have 

sup ICnl~wn(si)(v:u){~'(Z(si))-E~'(Z(O))}l  
llull <-b i=1 

b Cn I ~ Wn(Si)V~{~J(Z(si)) -- E~J(Z(0))} Op(1), 
i=1 

and consequently for any given b E (0, cxD), 

(5.12) sup IIc~'{Mn(~ + D~lu) - Mn(/3)} + Er = Op(1). 
II ult < b  
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Step (II): D~l-consisteney of~ n. Now we show the existence of a tight sequence 
of solutions of (1.3). Towards that, for any M, r />  0, 

(5.13) P[llDn(3n -/3)]1 >- M] 
<- P[HDn(~n -/3)]1 >- M, HC~I Mn(/3 + Dnl Dn(~n -/3))11 -< r]] 

+ P[I]C;1Mn(/3 + DnlDn(~n -/3))H -> ~1] 

_<P[i]vll_ >Minf IIC~M,~(/3+ D~Iv)II <~J + P[IIC~IM,~(Zn)II _ 

= (I) + (II), say. 

Using the polar representation of v = rO and the Cauchy-Schwarz inequality we have, 

inf [[Cnl Mn(/3 + Only)I[ 
HvH_>M 

= inf ][CnlMn(/3 + DnlOr)[[ 
II0Jl=l,r>M 

> inf -OtCnlMn(/3 + DnlOr) 
{[O}]=l,r_>M 

---- inf -O'C~IMn(/3 + DnlOM) 
{leil=l 

= inf {-O'[Cn'Mn(/3 + DglOM) - Cn'M,(/3) + E{r 
II011=1 

- O'CglMn(/3)} 
+ E{r 

where the second equality follows since using (1.3), 

_O,Cnl Mn(/3 + DnlrO) = ~d E ( _ O ,  vi)~){Y(Si ) _ (O' vi)r} 

is monotonically nondecreasing in r. The first term in the last equality is %(1) by (5.12) 
and the second term is Op(1) by Theorem 4.2 of Lahiri (2003). Therefore (I) can be 
made very small by choosing sufficiently large M. Also, (II) can be made small by the 
definition of the M-estimator in (1.3) and thus Dn(~n - / 3 )  = Op(1). 

Step (III): Asymptotic distribution ofDn(3n-/3). Now substituting u = Dn( / )n -  
/3) in (5.12) (which is possible because of uniform convergence on compact sets and 

Dn(~n - / 3 )  = Op(1)), we obtain 

Dn(~n -/3) = Xo'CglMn(/3) + Op(1). 

Hence using the Cramer-Wold device and Theorem 4.2 and Proposition 4.2(ii) of Lahiri 
(2003) with n(.) _= K and cq (y) = y-~', one can show that for any a E /R  p with a r 0, 

Hence, Theorem 3.1 now follows from (5.14). 

-1 

a(s) [a'Q(s) a]ds) . 

PROOF OF THEOREM 3.2. Note that Steps (II) and (III) in the proof of Theorem 
3.1 are valid even for a nonsmooth r Hence, it is enough to establish an analog of Step 
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(I), i.e., the uniform one-step asymptot ic  approximation for Mn(13). For i = i,..., N=, 
let (i(x; v) = Ii(Z(s~) <_ x + W'n(si)D~lv) - l l(Z(si)  <_ x), x e ~:t, v E IRP. Then, it is 
easy to check tha t  for any u G ~ P ,  

(5.15) 

?~d f ~= Vi~i(X; v)~)(dx) = - C n l { M n ( #  + D u l y )  - M n ( ~ ) }  

Nn 

~i--1 
Therefore, in analogy to (5.12), it is enough to show tha t  for any b E / N ,  

An(b) -= sup vi{~i(x; v) - 
ve[-b,b]p 

= Op(1) as n --~ ec. 

E~i(x; v)}] ~p(dx) (5.16) 

To tha t  end, we proceed in two steps. In the first step, we obtain a bound on An(b) 
on a discretized version of the supremum (leading to (5.19) below) and in the second 
step, we use Lemma 5.1 to show tha t  each of the three terms in the resulting bound is 
negligible. Let {{Yln} C (0, 1) be a sequence of real numbers such tha t  Cl,~ ~ 0 as n ~ cr 
and -1 el~ E tV for all n > 1. The exact rate at which {eln} goes to zero will be specified 
later. Next, let T~ = {iel~ : i E ZP, i q n  C [--5,5]P}. Then I T ~ I -  the size of T~ is equal 
to {(25 + 1 ) / qn}  p. Write any v c [-5, b] p as v = t + u where t is the nearest member 
of v which is in Tn. The supremum in (5.16) will be taken in two stages; at  the first 
stage, the maximum over the members {t} of Tn is taken and at the second stage the 
supremum over the members {u} in the balls of radius eln with center at members of 
Tn is taken. Write e2n = sup{Hull :  u e [0, (~ln] p} = v/-Ps . At the second stage, we 
will invoke the monotonici ty of the indicator functions involving ~i(x; t + u) and their 
expectations to replace the supremum over {u} in the balls of radius s by s Then 

(5.17) An(b) < maxte~_, q d / [ ~ v ~ { < i ( x ; t ) - - E r  r  

+ max sup A3n(t; U)?~n,d tcT,~ uq[0,el,dv 

where 

Li=I 

Nn ] r 
- t )  - t ) }  

i=1 

Note tha t  for any u,  t E ~P ,  with I = I (u)  = {1 < i < Nn : v~u > 0} and J = I c, we 
have 
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N n  I "  
< Ilvill / ~(x + v~t - Ilvillllull < Z(si) <_ x + v~t + IIv~l]llull)r 

i = l  J 

--Aln(t;llull), say. 

Similarly, for any t,  u E JR p, 

L~=I v i { E r  t + u )  - 

N n  I "  
< IIv~ll / P(x + v~t - IlviHIlull < Z(O) < x + v~t + Ilvilll]ull)r 

i = 1  J 

-- A2u(t;  [lull), say. 

Therefore,  by the  monotonic i ty  of Akn(t; "), k = 1, 2 in the  second a rgument ,  

(5.18) sup A3n(t, u) 5 Aln( t ;  ~2n) -[- A2n(t;  e2n) 
uc[o,el~]p 

~_ [Aln(t; ~2n) -- A2n(t; e2n)l + 2A2n(t; ~2n) 

for all t C ~ P .  
Combin ing  (5.17) and (5.18) we have 

+ max lAin(t; ~2n) -- A2n(t;  e2n)l~ d 
tET,~ 

+ 2 max A2,~(t; c2~)rl~ 
tETn 

=-- I1~ + I2n + I3~, say 

Since Go has a bounded  cont inuous densi ty go, for any ~ > 0, 

(5.20) sup IGo(a + E) - G o ( a -  c)l _< 2cllgoll~. 
a E t r /  

Hence, by (5.11) and (5.20), from (5.19) we have 

(5.21) I3n ~_ ~d ~ .  [iVi H/(211villC2n)llg0[ioo~b(dx ) <_ K(p, ~)0)(ln 
i = l  J 

where r =- f r 
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Note tha t  by applying Lemma 5.1 with r = (4d - 1 ) / ( 4 d -  3) > 1, for any collection 
of Borel sets {Bi~ : 1 < i < n, x C Kt} and for any nonrandom weights W l , , . . . ,  wnn E ~ ,  
we get 

(5.22) ~ ~o 1/" ~ ~,~{~(z(~,) c ~i,x) - P(z(0) ~ B,,~)>(~x) ~ 
J 

i 1 "~--- 

~'~i=1 B i , x )  } 4 _< r [ J . . _ ~  <n{~(Z(~) e B,,~)- P(Z(0) ~ ~(~) 

f r ~d - 4 d  - 4  2Is  2 2d - 4 d  - 4  4Is  /(1~)O 1 jL~I~A~ Wo~r~ + a2~A~ ~ WO~n ]~(dx) 

~ - 4 d - 4  --d 2 / s  ~2d 4/s~ 
Ik27~ n WOn AnTr n 71- A n 7~ n ], 

where @0n = max{l@~[ : ~ < i < n}, ~ = max{P(Z(0 )  �9 Bi,~) : i = 1 , . . .  , n , x  �9 ~:t}, 
O~ln = L~i:l~-~t~ ]g3d-lo:(k~O;3~.d)l/r and a2n = A.~i=lx-~t~ k d - l o t ( k ~ O ; ~ * d )  l / r -  Here, the factor 
s is defined by the equation 1/r  + 2 / s  = 1 and, by our choice of r and the condit ion on 
T, O~ln-~- ~2n : O ( 1 )  as  n I+  CO. 

Hence, by (5.19), (5.21) and (5.22), for any e > 0, there exists n~ �9 PC- such tha t  for 
all n > ne, 

A4~ = P(A~(b) > 3e) 

<- P ( h n  > ~) + P(I2n > c) 
< [~nl ~.  - 4 _ _ 4 r . d  2 / s  A 2 d ~ 4 / s l  K - 4  4 r . d  2/s --2d 4Is ,  
-- " 1k3~ " l l t n [ A n " l n  -~ n " l n  J -[- I : rn l  ' 4~  m n t a n ~ 2 ~  + a n  r 2 n  1, 

where ~1~ = sup{IE~i (x ; t ) l  : i = 1 , . . . , n , x  e 1R, t e T~}, r2~ = s u p { P ( x +  v ~ t -  
[[vi[le2~ < Z(0)  < x + v ~ t +  [[vi][e2~): i = 1 , . . . , n , x  e ~ , t  e T~}. Note tha t  by (5.20), 
~ln <_ 2max{I[vi[[" tIt[[ : i = 1 , . . .  ,n ,  t E ~}[[g0[[~ -< 2[[go[[oo(bv~)rnn and similarly, 
~2n _~ 21[g01[~e2n "ran. Hence, by the condition on mn,  

A4~ <_ K h e - a { ( 2 b +  p 2 d 2 2 / s  [ 2--8 ,2  4/sl 1)/qn} [ ( m n ~ ) ' ~ ' ~  + ~ ' ~  m~ 
K6e -4 . .-Pb~f ~, (r-d)/2r f ~ (r-d)/4r-d12/s~l 

= o ( 1 ) ,  

if we choose e l ,  ~ [A(~-d)/4"(2+2/~)-2d/~] 1/2p, say. Note tha t  by our choice of r,  the 

exponent ~ d ) ( 2  + 5) -- ~4 < }(3 -- }) -- d(1 - }) = 0. This completes the proof of 
(5.16). The rest follows as in the proof of Theorem 3.1 with the analogous use of (5.13) 
and (5.14). 

Note. A less stringent condition on r obtains if we choose r and s to ensure z~d(2+  

5) ~4 = 0. I t  is easy to check tha t  this leads to the requirement tha t  T > 3dr1 for 
r l  = [ 4 r d -  (T -- d)]/[nwd - 3(r  - d)], in place of T > 3 d ( 4 d -  1)/(4d - 3). The new bound 
is bet ter  when r is close to d, i.e., when 5 is large. 

Also, condition (N.1) can be slightly weakened by assuming tha t  t -~ f F ( x + t ) r  
is Lipschitz continuous. 

PROOF OF THEOREM 3.3. Follows by straight forward modification of the steps 
in the proofs of Theorems 3.1 and 3.2. We omit the details. 
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6. Proofs for the stochastic design case 

Suppose that {Z(s) : s E j~d} and {Xn}n>_l are defined on a probability space 
(f~,Sr, P). Let X denote the a-field generated by X 1 , X 2 , . . . .  Also, let P I x ,  E.tx 
and Var.lx denote the conditional probability, expectation and variance, given X. The 
(marginal) joint distribution of X1, X 2 , . . .  on (~a)c~ is denoted by Px,  and the corre- 
sponding expectation by E x .  Let ~ be the a-field generated by X and {Z(s) : s E ~d}.  
For g-measurable random vectors To and { T,}n_>l, we shall say that 

Tn ~ To in P.IX probability a.s. (Px)  

if for every e > 0, 

P.Ix([lTn - T0[I > ~) --~ 0 as n --* cc a.s. (Px).  

Also, write/]in = max{logn, hand} -Ud, n >_ 2. 

LEMMA 6.1. Let A be a Borel subsets of Ro and let p -  fA f (X )dx .  
(i) For every 0 < c < 1, there exists a constant C(e) > 1, depending only on e, 

such that for any n > 1 and/3 > 0 satisfying np < C(c)~, 

(ii) For any 0 < e < 1, ~ > O, n >_ 1 with/3 < nplog(1 + e), 

P x ( ~ l l ( X i E A ) > n p + / ~ ) i = l  <-exp(-(l-e)/~2/[2np])" 

PROOF OF LEMMA 6.1. This is Lemma 5.1 of Lahiri (2003). 

LEMMA 6.2. Let g : R --~ 
E[g(Z(O))[ < oc and Eg(Z(O)) = O. 
measurable random variables satisfying 

(6.1) ~ [ain(X)l = O(1) 
i=1 

and 

(6.2) 

be a Borel measurable function satisfying 
Also, let ai,~ = ain(X) ,  i = 1 , . . . , n  be X -  

a . s .  

n 

m x(logn, AU}. F_a AX) a.s. 
i = l  

Then, ~i~=l a in(X)g(Z(s i ) )  ~ 0 in Px-probability, a.s. (Px) .  

PROOF. Define the variables Wi, Wli, W2i, 1 < i < n as in the proof of Lemma 5.2, 
where tin --~ cx~ as n ~ oo is to be specified. Then as in (5.7), 

(6.3)  E ainEx ( W l i )  -[- Ex alnW2i 
i = l  i=1 
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Next, let Jl~ = {i C 2g d " i + C A R n  ~ 0}. Then, by Lemma 6.1, with ~n = 
K 1 max{ logn ,  n ~  d} for some suitable K1 C (0, oo), 

n = l  j = l  

n = l  

Hence, there exists a set A with P ( A )  = 1 such that for every w C A, there is a 
no = no (cz) >_ 1 such that 

(6.4) max~__~]l(A,~Xj C [ i+C])  ~/~n for all n > n o ( w ) .  
iEJ,~ j = l  

Next, for j E Jln,  let Y~( j )  denote the sum of all a i ~ ( X ) W l i  such that si E [j + C], 
i.e., Yn( j )  = ~-~,i~=1 a~n(X)Wl i ] I ( s i  C [j + C]). Then for w C A and for all n > no(w),  
Yn( j )  is the sum of atmost fin variables. W.l.g, suppose that ~-~1 lain(X)[ = O(1) and 

n 
/3n ~i=1 [a~(X)l  = o(1) on A. Hence, as in the proof of Lemma 5.2, for w E A and for 

>_ *~0(~), 

=- Z Cov 
j c J l n  kCJl,~ 

<_ 4 (llj-klL1;l/ La  (x)lJl(s  Ij+c]) 
j E J l n  kCJln  

_< 16 E c~(llhlll;1) ~- '~ la in(X) t l l ( s i  E (j  +C]) 
h E ~  d j E  in i=1 

by the Cauchy-Schwarz inequality. Hence, by (6.2), setting 
{~n [~i~__ 1 ain (X) 2] }-1/4, the lemma is proved. 

t, n 

t l n  

LEMMA 6.3. For each n >_ 1, let en(S) E (Z(s)}, s E Rn be a collection of  centered 
Bernoulli  variables with P ( e n ( s )  = -Ten(S)) = 1 - P ( e n ( s )  = 1 - 7rn(S)) -- 1 - 7rn(S), 
where 7rn(s) C [0, 7toni for  all s E Rn for  some 7ton E (0, 1]. Let {Won(S) : s ~ Rn} be 
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nonrandom weights with supper" Iw0~(s)] = MOn < oo for all n >_ 1. Then, there exists 
a random variable N �9 X such that for  almost all realizations of X1,  X 2 , . . . ,  

4 ) (6.5) E.Ix EWon(S i )en(S i )  
\ i=1 

dA~ 1 --< K ( d ,  ~176 ~0n"0n"2/s [k~0(k + 1)3d-loL(Jg;3)l/r 

2 Fd~ + ] 
+ K ( d , o )  x2d -4da/r4 4/s Lk~= ~ 1 ) d - l a ( k ; 1 ) l / r  

~  'lln ~"0n"0n (k 

for all n >_ N,  where si = AnXi ,  1 <_ i < n, 771 - d  z max{logn,  nA~d}, and where 
r �9 (1, c~) and s �9 (2, c~) are real numbers satisfying ~ + 2 = 1. 

and 

PROOF. As in the proof of Lemma 511, we define the sets 

i n = { i  E 2~d : i + C n R  n r 0 } ,  

Jn(i) = {j  : l <_j < n, s j  E (i +C) n R n } ,  l o i n .  

Also, let 17(i) = ~-~deJn(i)won(sj)en(Sj) denote the sum over all Won(sj)en(sj) such 

that  the sampling site sj  C (i + C) n Rn, i C [n. Then, it follows that  the left side 
of (6.5) is equal to E.ix(~-]id., Y ( i ) )  a. Note that  Yn(i) is measurable with respect to 
(r({Z(s) : s E i + C}), i �9 in and the min imum distance (in the gl-norm) between the 
points in i + C  a n d j + C ,  i , j  �9 in C 2~ d is ( I i i - j I I l - d ) + .  Although the number 
of e,~(s)-variables entering in the sum Yn(i) may be different, by (6.4), it follows that  
there exists a random X-measurable variable N such that  for almost all realizations of 
X l ,  X2,  . . . , 

n 

(6.6) m ~ x E I i ( A n X j c ( i + C )  NRn)<_~n  for all n > N ,  
icIn j= l  

where fin = Klr]l -d  for some nonrandom K1 E (0, cx)). 
Hence, as in the derivation of (5.3), for almost all realizations of X1,  X 2 , . . . ,  

(6.7) E IxIY(i)[ a ~ 2~onlJn(i)laM~n ~ k@~aM~nTron 

uniformly in i E -Tn, whenever n _> N. Now the proof of the lemma may be completed 
by retracing the arguments in the proof of Lemma 5.1. We omit the routine details. 

PROOF OF THEOREM 4.1. The main steps in the proof of Theorem 4.1 is similar 
to those of Theorem 3.1, and hence we only point out the necessary modifications. Using 
the arguments in the proof of (5.9), for any given b E (0, c~), we have 

(6.8) E'lx { Ilull_<bsup d n l { M n ( ~  + s u) - Mn(f l )}  
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/ t o i  
< IIdgl~.(~) l l  E. l~l~'(z(o)  + v) - r  

i=1 J -- toi 
n 

<_ Kxb E Ildglw.(sdllll~ll~., 
i=1 

where toi = s u p { l ~ u l  : Ilull ~ b} and 7n = sup{EI~'(Z(O)+y)-~'(Z(O))I: lYl <- b'~on} 
and rho~ = ma~{ll~ll  : 1 < i < ~}. 

Note that  with probability 1, 

(6.9) I1~111 ~< ~n d12 sup IIZ~I~o,~(S)II ~_ ~ d l 2 ~ / Z l n .  
,qcR~ 

Hence, by (C.3), there exists a (nonrandom) no E fV such that  for all n > no, 

(6.10) Px((n-1)~d)[liJlll 2 < n - 3 / 4 )  = 1. 

By (6.10) and Hoeffding's inequality (cf. Theorem 2, Hoeffding (1963)), for any 
c > O ,  

Px  ~ - 1 # ~ { 1 1 ~ i l l  2 -  ~xI l~ l l  2} > 
i=1 

<_ 2 exp(-2e2/[n(n-3/a)2])  

= 2exp(-2e2n 1/2) for all n >_ no. 

Hence, by the Borel-Cantelli Lemma, 

n 

n - l #  ~ ( l [ ~ l l  2 - Exl l~l l  2) = o(1) 
i=1 

Note that  

n 
--1 d 2 ,x~ ~ Ex I1~11 

i=1 

a.S.  

= /~d t r ( E x  ~ 1 ~ )  

= t r ( D l l [ E x w n ( ) ~ n X 1 ) ~ n ( ) ~ n X l ) ' ] ( D l n l )  ')  

= tr(Lrp) = p. 

Hence, it follows that 

(6.11) 
n 

n - l ) ,  a X-" 

i=1 

Next, using (C.3) and (6.9)-(6.11), we have 

(6.12) 
n 

( logn V n,~Zd) ~-" - 4 -1 d 2 

i=1 

a.s. (Px). 
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O(logn) n -3/4 ~ 2 -1 d �9  llv lt (n 
/=1 

n 

0 ( 1 ) .  )tnd~/1?n E II ~'~112(n-1)~) 
i=1 

= o(1) a.s. (Px). 

if nA~d = O(logn) 

if logn = O(n)~n d) 

Hence using (6.11), (6.12) and Lemma 6.2 as in the proof of (5.11), one can show 
that for any b E (0, cr 

(6.13) Sup Cn 1 
II~ll_<b 

~ 0  

~On(Si)ViU{~t(Z(si) ) - E~J(Z(8))} 
i : 1  

in Pix-probabil i ty,  a.s. (Px). 

Now using steps analogous to (5�9149 as in the proof of Theorem 3.1 above and 
using Theorem 3.2 and Proposition 3.1 of Lahiri (2003), one can show that for almost 
all realizations of X1, X 2 , . . . ,  

a , ~ n l M n ( ~ )  ____+d N(O, a'~oc,co a) 

for every a E Ktp with Hall = 1 and hence the result follows�9 

PROOF OF THEOREM 4�9149 Like the proof of Theorem 4�9 here we outline the 
necessary modifications to the proof of Theorem 3.2 for the stochastic design case�9 For 
i = 1 , � 9  x E ~ ,  a C (0, oc) and t , u  E ~P,  define 

 i(x; =  (z(si) _ x + -  (z(si) < x); 
n 

Aln(t;  a) = E I i v i [ I / l I ( x  + ~'it - II/)iI]a < Z(si)  <_ x + i)~t + [I~i]Ia)r 
i=1 

A2n(t; a) = E.]xAin(t; a). 

Then, as in (5�9 it is easy to check that 

n 

C n  1 [Mn(/3 + / 9 ~ '  u) - Mn(/3)] = - ( n  -1Adn)E  O i / ~ i  (x; u)r 
i= l  

U C ~ P .  

Let {s be a sequence of positive real numbers such that  ~ln $ 0 as n ~ oc 
and -1 Qn E JTV. The exact rate at which eln decays will be specified later�9 Next, set 
c2n = v~el~ and define T~ as in the proof of Theorem 3.2�9 Then, repeating the arguments 
used in (5.16)-(5�9 one can show that for any given b C (0, cr 

(6.14) ~kn(b) ~ uE[--b,blvSUp C~I{M,~(J3 ~- l~)nlU) -- M~(/3)} 
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+ (n- lA~)  max [Al~(t; c2n) - A2~(t; e2.)[ 
tET. 

+ 2 ( n - ~ ) m a x  ~ ( t ;  ~n) 

-~ i ~ . + i ~ . + i 3 ~ ,  say. 

By (5.20) and (6,11), it follows that 

(6.15) [3n --~ 2(n - lAd)  ~ ]]{~i[I/(2[[iJi] le2n)]]go[]~(d x) 
i=1 

= O(~ln) a.s. (Px). 

Next,  for any collection of Borel sets {Bi,x : 1 < i < n, x C ~ }  and any nonrandom 
weight function w0~(.) : Rn --~ ~ ,  by Lemma 6.3 and arguments in the proof of (5.22), 
there exist a constant K2 E (0, c~) and a X-measurable random variable N such that 
a.s. (Px) ,  for all n > N ,  

4 

K ~-4dM.4 f~d 2/s ~2d~4/s] 
~-- 2'111n On[Z~nJ~On Jr-"'n "On J, 

where ZrOn = s u p { P . i x ( Z ( 0  ) �9 Bi,x) : 1 < i < n , x  E ~ }  and s is determined by the 
1 2 (4d - 1) / (4d - 3). relation ~ + ~ = 1 with r = 

Next note that by (5.20), s u p { P ( Z ( 0 )  C Ix - tIv~l l l l t l l ,x  + ll~illlltll]) : x  �9 ~ , t  �9 
T~, i  = 1 , . . . , n }  < K(b,  pIIgo]I~)max{llijil t : 1 < i < n}  -- #on, say. Now setting 
2YI21~ - A;dM~n and using (C.3), (6.16) and arguments leading to (5.23), one can show 
that a.s. (Px) ,  

~4 r~d ~ 2/s 2d=4/s] P.IX(hn(b) > 3e) ~ KalJnle-4max{(n- lAd) l l i j i l l  : 1 < i < n)  lZnTrOn + A  n "On ] 

_ ~  - ~4~4~4 [~d~2/s  ~2d~.4/sl 
_ < Q~(log,oj  "Unt"n"~ln + "'~ ml~  l 

K5 -po{A(~--d)/2~- ~-- ~ I n k  n [~(n~'-d)/4~'-d] 2Is) 

= o(1), 

if we set s '~ ()~(n~r-d)/2~r[)~(n~'-d)/4"r-d]2/s) 1/(2p), say. 

The rest follows as in the proof of Theorem 3.1 with the anologous use of (5.13) and 
(5.14). 
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