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Abstract .  A blockwise shrinkage is a popular procedure of adaptation that has 
allowed the statisticians to establish an impressive bouquet of asymptotic mathe- 
matical results and develop soffwares for solving practical problems. Traditionally 
risks of the estimates are studied via upper bounds that imply sufficient conditions 
for a blockwise shrinkage procedure to be minimax. This article suggests to analyze 
the estimates via exact (non-asymptotic) lower bounds established for a no-signal 
setting. The approach complements the familiar minimax, Bayesian and numerical 
analysis, it allows to find necessary conditions for a procedure to attain desired rates, 
and it sheds a new light on popular choices of blocks and thresholds recommended 
in the literature. Mathematical results are complemented by a numerical study. 

Key words and phrases: Adaptation, asymptotic, nonparametric, minimax, Stein 
shrinkage, oracle, regression, small sample. 

1. Introduction 

A blockwise shrinkage nonparametric estimation, suggested in the early 1980s for 
a data-driven nonparametric Fourier series estimation and then in the middle 1990s 
for wavelets, has shown to be well suited for many applied settings of nonparametric 
curve estimation including filtering, regression, density and spectral density estimation. 
The estimator is data-driven, rate minimax over vast classes of smooth and spatially 
inhomogeneous functions, it is also robust, superefficient, can "mimic" oracles, implies 
optimal plug-in estimation of functionals and solving ill-posed problems. On the top of 
this, a large variety of particular blocks and shrinkage procedures can imply all the above- 
mentioned statistical properties; see the discussion in Brown et al. (1997), Downie and 
Silverman (1998), Hall et al. (1998, 1999), Hiirdle et al. (1998), Cai (1999), Efromovich 
((1999), ch. 7), Cai and Silverman (2000), Nemirovski (2000), Cavalier and Tsybakov 
(2001), Abramovich et al. (2002), Wsybakov (2002), Zhang (2002), Chiken (2003), and 
DeCanditiis and Vidakovic (2004). 

To describe the method, let us consider a classical homoscedastic regression model 
with observations Yl = g( l / n )  + v1/2el, l = 1, 2 , . . . ,  n, where g is a bounded regression 
function estimated on [0, 1], e l , . . . ,  en are independent standard Gaussian random vari- 
ables and v is known. Under mild assumptions, this model is equivalent to a series model 
written in Fourier, wavelet or any other orthogonal basis domain. 
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In this article a periodized orthonormal wavelet basis on [0, 1] is considered. It is 
supposed that the basis is generated by a pair of compactly supported scaling function 
(father wavelet) r and wavelet function (mother wavelet) r (The reader interested 
in Fourier bases can use a single index instead of two wavelet indices--this will imply 
the corresponding Fourier results; see the discussion in Efromovich (2000).) For a j - th  
resolution scale s e t  C j , k ( X )  = 2J/2r - k), Cj,k(x) = 2J/2r - k), x E [0, 1]. Then 
the collection {r k = 1 , 2 , . . . ,  2J~ ~j,k, j >_ jo >_ 0, k = 1 , 2 , . . . ,  2 j } is an orthonormal 
basis on [0, 1] provided the primary resolution level j0 is large enough to ensure that the 
supports of the scale and wavelet functions at level J0 are not the whole of the unit 
interval. Then the regression function g, which by assumption is bounded on the unit 
interval, can be expanded into a wavelet series 

2 jo ~ 2 J 

(1.1) g ( x ) =  Ee;jo,kdPjo,k(x)+ E E Oj,kCj,k(x)' XE [0, 11, 
k = l  J=Jo k = l  

where njo,k = f l  g(x)r x and Oj,k = f3 g(x)•j,k(x)dx are scaling and wavelet 
coefficients, respectively. 

The statistical assumption is a traditional one: the sample size n is dyadic and 
for all jo <_ j < log2(n/ln(n)) and all k considered there exist statistics ~,k (empirical 
wavelet coefficients) and ~jo,k (empirical scaling coefficients) such that Oj,k = Oj,k + 
vl/2n-1/2~j,k and gjo,k = Njo ,k  -[- vl/2n-1/2?]jo,k where ( { ~ j , k } ,  {T/jo,k})  a r e  independent 
standard normal random variables. The interested reader can find more about wavelet 
bases and the assumptions in Johnstone (1998), Mallat (1999) and Vidakovic (1999). 

Let us now briefly review blockwise shrinkage estimates. Scaling coefficients are 
always estimated by empirical ones. Wavelet coefficients are estimated by using special 
blockwise shrinkage procedures. Consider a particular wavelet coefficient Oj,k and assume 
that it is estimated using a block {Sj,s, s E Tj,m} of empirical wavelet coefficients. In 
what follows it is always assumed that  k 6 Tj,m, each wavelet coefficient (index) belongs 
to a single block and only consecutive coefficients from the same scale are included into 
a block. Let us denote cardinality (size, length) of the block by Lj,m. Then all blockwise 
procedures, suggested so far in the literature, try to mimic the benchmark 

(1.2) 
-I 

n j ' m  ' ~ j , k -  O;,k = -1 2sET~ r~ 82,S 
Lj,m ~seT~,m 62,s + vn-1 

This benchmark is referred to as a blockwise shrinkage oracle because: it is based on 
both data and underlying wavelet coefficients; it always shrinks empirical coefficients; 
the shrinkage procedure is based on a block of estimated coefficients. Also note that  
(1.2) is a blockwise version of the ideal Wiener filter; see the discussion in Mallat (1999). 

It is easy to see that  the term ~ 02,s can be estimated by the unbiased statistic 

~(0~,~ - vn-1),  and this is the method used by all shrinkage estimates known in the 
literature. It is also well known that a shrinkage factor should be nonnegative because 
otherwise the estimate is inadmissible; see Lehmann and Casella (1998). 

Thus, instead of plugging in the unbiased estimate in (1.2), two blockwise shrinkage 
procedures with nonnegative shrimkage factors have been suggested in the nonparametric 
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literature. The former is 

vnl ( ) (1.3) Oj,k L j -~  E ~ c T j  m -2 
= ' Oj,~ > + Lj_ , l~scT j ,m_  2 Z Lj-lm ~ - 2  (1 , ' ~2m)Yn-10 j , k ,  

Oj,~ ~Tj,,~ 

2 and it is referred to as Efromovich-Pinsker (EP) blockwise shrinkage. Here )~j,m are some 
nonnegative constants that are referred to as thresholds. Then a particular EP estimate 
is defined by its set of blocks and thresholds {Tj,m, 2 )~j,m}. This adaptive procedure 
was originally suggested for Fourier bases in Efromovich and Pinsker (1984, 1986) and 
Efromovich (1985, 1986) for sharp minimax filtering and estimation of spectral density, 
probability density and regression function, respectively; for wavelets and multiwavelets 
it was explored in Efromovich (1999, 2000, 2001). Note that EP procedure combines a 
naive mimicking of (1.2) with the idea of hard thresholding. 

The latter blockwise shrinkage procedure is 

(1 .4)  
- @,~ # j ,m)vn  -1 = L :I - (1 + 

L-1 O~,s j,m ~s~Tj ,  m 

L-1 Z -2 (1 ) t~j,k. 3 , m  O~,s > -t- #j,m)Vn -1 x I  

Constants #j,m, that are not necessarily nonnegative, also referred to as thresholds. 
This shrinkage procedure combines a naive mimicking of (1.2) with the idea of soft 
thresholding. 

For Fourier bases this adaptive procedure was suggested in Efromovich and Pinsker 
(1996) where its sharp minimaxity was established for a heteroscedastic regression model 
with random or fixed design. For wavelet bases the procedure was pioneered by Donoho 
and Johnstone ((1995), p. 1216) who established its rate minimax optimality for the 
studied homoscedastic regression model. Other instrumental references are Brown et 
al. (1997), Cai (1999, 2002), Cai et al. (2000), Cai and Silverman (2000), Cavalier 
and Tsybakov (2001), Abramovich et al. (2002), Tsybakov (2002), Zhang (2002) and 
DeCanditiis and Vidakovic (2004). 

If #j,m = - 2 / L j , m ,  Lj ,m > 2 then in the parametric literature (see Lehmann and 
Casella (1998), ch. 5) the shrinkage (1.4) is called the (positive-part) James-Stein one, 
and the shrinkage with Pj,m >_ 0, Lj,m > 4 is called the Stein shrinkage. Moreover, the 
classical Stein shrinkage uses #j,m = 0, so to emphasize cases of the zero and positive 
thresholds, we may write Stein(0) and Stein(> 0). This terminology, motivated by the 
classical parametric theory, will be used in this article. 

For simplicity in exposition and because the studied estimates are different only in 
the estimation of wavelet coefficients, from now on we are considering only the problem 
of estimation of 

(1.5)  
oc 2 j 

j=Jo k=l  

We can do this because for any blockwise shrinkage estimate 1) and any fixed point of 



208 SAM EFROMOVICH 

interest Xo E [0, 1] we can write 

2Jo 
(1.6) E ( ~ ( x o )  - g(xo)) 2 = 2J~ -1 E r 1 7 6 1 7 6  - k )  q- E ( / ( x o )  - f (xo))  2, 

k=l 
and 

/01 /o (1.7) E (O(x) - g (x ) )2dx  = 2J~ -1 q- E ( / (X)  -- f ( x ) ) 2 d x ,  

2Jo 
where ] ( x )  = ~(x) - }--~k=l s 

As it has been mentioned, some of the blockwise shrinkage estimates can attain 
adaptive minimax rates under the global and/or  pointwise approaches. Function classes, 
typically considered in the literature, include parametric, analytic, Hhlder, Sobolev and 
Besov classes. Recall that an adaptive minimax rate R can be written as 

(1.8) R = ( ln ' r (n) /n)  e, 

where, depending on a function class and an approach used (pointwise or global), the 
parameters (%/3) satisfy V -> 0 and 0 </3  < 1. These rates indicate a required minimax 
accuracy of adaptive estimation which, of course, depends on an underlying function class 
(regression function). In particular, a good adaptive estimate should attain the rate (1.8) 
with parameters: (V = 0,/3 = 1) for classical parametric functions; (V = 1,/3 = 1) for 
analytic functions; (7 = 0,/3 < 1) for Hhlder functions under the global approach, and 
(7 = 1,/3 < 1) for Hhlder functions under the pointwise approach. The interested reader 
can find more about adaptive minimax rates in Hgrdle et al. (1998), Johnstone (1998) 
and Efromovich (1999). 

The aim of this article is to find necessary conditions for EP, James-Stein and Stein 
blockwise shrinkage estimates to attain those minimax rates. Our tool will be exact 
(not-asymptotic) lower bounds for mean squared and mean integrated squared errors of 
the estimates for the case of no-signal setting, that  is, f ( x )  = fo (x )  where f ( x )  - O. 
This function plays the pivotal role in the minimax literature (see Efromovich (1999), 
ch. 7) and it belongs to all(!) function classes considered in the literature, that  is, it is 
parametric, analytic, Hhlder, Sobolev, etc. As a result, if an adaptive procedure fails 
to perform well for this function, that procedure should raise eyebrows. Also, recall 
that this function is in the core of the universal threshold paradigm of Donoho and 
Johnstone. And the lower bound for f0 is automatically a minimax lower bound for any 
of the above-mentioned function classes. 

As we shall see, this intuitively clear approach of analyzing risks via the no-signal 
setting will produce a wealth of information about blockwise estimates. 

The content of the article is as follows. Lower bounds are presented in Section 2. 
Section 3 is devoted to a discussion of the results. Section 4 presents a numerical study. 
Proofs are deferred to the Appendix. 

2. Lower bounds 

Let us denote by ]* the blockwise shrinkage oracle, by ] the EP estimator, and 
b y / J s  and f s  estimators based on the James-Stein shrinkage and the Stein shrinkage, 
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respectively. For instance, 

log2 (n / ln(n)) 
(2.1) f(x) = ~ ~ ~ Oj,kCj,k(X), X C [0,11, 

J:Jo m kGTj,m 

where 0j,k are defined in (1.3), f* is defined by (2.1) with 0j,k replaced by @,k defined 

in (1.2), fJS is also defined by (2.1) with 0j,k replaced by Oj,k defined in (1.4) with 
#j,m = -2 /Lj ,m and the understanding that Lj,m > 2, etc. In (2.1) and in what follows 
Y]m is the summation over a set My such that the corresponding blocks {Tj,m, m e Mj } 
cover the entire j - th  scale; for example y~,~ Lj,m = 2J. 

In what follows C's denote generic positive constants, and a pointwise estimation is 
considered at a point Xo E [0, 1], and it is always assumed that the underlying wavelet 
component of an estimated regression function is fo(x) - 0, that is, we consider the 
no-signal setting. 

We begin with lower bounds for the EP estimate (2.1). 

THEOREM 2.1. The EP estimator f satisfies 

(2.2) z(f(xo) - ]*(xo)) 2 

-- E( f (xo)  - fo(xo)) 2 
log2(n/l,(n)) [ 2 1 

~m /~ j , rn ~_ 2 2 . > C n - l v  E [ 1 + A~, m (1 + Aj,m) L,,m 
J=jo 

• eJ ln(2)-[)~ 'm-ln( l+)~ 'm)]L~'m/2  E r  k). 

keTj,m 

1 
1/2 

Lj,m 

Remark 2.1. The pointwise lower bound (2.2) depends on sums of squared wavelet 
functions. Let us comment on how the statistician can evaluate them. Define a function 

2 j 

(2.3) ~I'(j, x) = E r - k), j > jo, 
k=l 

and let us describe some of its properties. First of all, for Haar basis this function 
is identically equal to 1 (note that this basis also makes the analysis of (2.2) trivial). 
Second, recall that we consider only wavelet functions with a compact support. Let s be 
the rounded up length of the support of a particular 4- Then at each scale j there are at 
most s number of wavelets r - k) whose support includes x (the interested reader 
can find more in Mallat (1999), p. 243). Third, it is easy to see that neither maximum 
nor minimum of ~(j ,  x) depends on j. Fom'th, the maximum is always finite. Can we 
say that the minimum is bounded below from zero? Figure 1 exhibits the function for 
several popular wavelets (recall that we are considering only periodized bases). As we 
see, in all these cases the function is separated from zero and the maximum/minimum 
ratio is reasonable. The author also checked that the same outcome held for all wavelets 
supported by S-PLUS wavelet package. Finally, note that maxk minx r - k) _> 
minx 9(j ,  x)/s.  
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D A U B L E T  W A V E L E T  d 1 2  

i] . . . . . . . . . . . . . . . . . . . . .  
o o  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  

C O I F L E T  W A V E L E T  c 1 2  

ii . . . . . . . . . . . . . . . . . . . . .  
0.0 0 . 2  0 4  o 6 0 . 8  1 . o  

S Y M M L E T  W A V E L E T  s 8  

iJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
o o  0 . 2  0 4  0 6  0 . 8  1 . o  

S Y M M L E T  W A V E L E T  S 1 6  

o.o  0 . 2  o 4 0 . 6  0 . S  1.0 

Fig. l. Function (P(3, x) for several popular wavelet functions. The dashed line exhibits the 
zero level. 

Remark 2.1 implies that it is reasonable to assume that a considered wavelet function 
g, satisfies minx ~( j ,  x) = c* > 0, j _> j0- From now on only such wavelet functions are 
considered. 

The last assumption together with Theorem 2.1 implies the following pointwise lower 
bound. 

COROLLARY 2.1. 
only identical block lengths and threshold levels are used. Then 

(2.4) E(](Xo)  - ]*(Xo)) 2 = E( ] ( xo )  - f0(x0)) 2 
log2(n / In(n)) F 2 A i 

> C n - l v  E [1 + 2 
j=jo )~J 

• ej ln(2)-[A~-ln(l+A~)lLj/2. 

2 2 Assume  that Lj,m - L j  a n d  ) l j ,  m - ,~j, that is, at each scale 

1 - - +  
2 2 (1 + A j)  L j  

1 
1/2 Lj 

(2.5) 

The pointwise result (2.2) also implies the following global lower bounds. 

COROLLARY 2.2. The E P  estimate ] satisfies 

E f./nl(/(x) - / * ( x ) ) 2 d x  

~01 = E (](x)  - fo (x) )2dx  
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log2 (n / ln(n)) 2 
/~j,rn 

> c n - l v  E E l_~_~2,rn 
J =Jo m 

• e - [ ~  m-l-(l+a~ r~)ILj m/2 

- - +  1 ] 1/2 
2 2 . L j ,m (1 + Aj,m) L3,m 

In particular, if Lj,m ~ Lj 
lengths and threshold levels are used, then 

/o /o (2.6) E (](x) - f*(x))2dx = E ( f (x)  - fo(x))2dx 

l~ A2__~j 2 
> C n - l v  E [1 + ~j + 

j= jo  
• e j ln(2)-[A2-1n(l+'k~)]LJ/2. 

2 2 and )~j,m - Aj, that is, at each scale only identical block 

1 1 
2 2 1/2 (1 + A j) Lj Lj 

Let us make three preliminary comments about the results obtained. First of all, 
the lower bounds are not asymptotic. Moreover, proofs presented in the Appendix allow 
the interested reader to evaluate the generic constants C's used in the bounds. Second, 
we got lower bounds on how well EP estimate can mimic the blockwise shrinkage oracle 
]*. Finally, for the case of identical block lengths and threshold levels at each scale, the 
pointwise and global lower bounds coincide up to a constant factor. 

Now let us present lower bounds for the James-Stein estimate. 

THEOREM 2.2. Assertions of Theorem 2.1 and Corollaries 2.1-2.2 hold for a block- 
2 wise estimator with the James-Stein shrinkage if one formally sets Aj, m - 0, that is, 

(2.7) E ( f j s ( x o )  - f*(xo)) 2 = E ( f j s ( x o )  - / 0 ( x 0 ) )  2 
log2(n/1.(n)) 

> E  22 L7,5 E r k), 
J=jo m kcTj,.~ 

and 

/o /o (2.8) E ( / j s ( x )  - f*(x))2dx = E ( / j s ( x )  - fo(x))2dx 

log 2 (n/ln('n)) 

E Lj,r n . > C n - l v  E -1/2 
j=jo m 

In particular, i f  Lj,m -- Lj (at each scale all blocks have the same length) then 

(2.9) min ( E ( f j s ( X o )  - ]* (Xo)) 2, E ( f j s ( x o )  - fo(xo)) 2, 

E ~ l ( f j s ( x ) - ] * ( x ) ) 2 d x ,  E ~ o ' ( f j s ( x  ) - fo(x))2dx)  

log2 (n / In(n)) 

> On-% ~ 2JLS 2 
j=jo 
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Note how simple the lower bounds arc. 
Now let us consider a Stein estimator. Recall that  in this case: threshold levels #j,m 

2 are nonnegative and they proxy the thresholds Aj, m used in the EP estimator. 

THEOREM 2.3. Stein(O) estimate satisfies (2.2) and (2.4)-(2.6) with A2,m =- O. For 
Stein(> O) estimate consider a nonnegative sequence 7j,m. Then 

(2.10) 

and 

(2.11) 

E ( f s ( x o )  - ] * ( x o ) )  2 

= E ( f s ( X o )  - f 0 ( x o ) )  2 
log2 (n / In(n)) 2 

m~ "Y~,m 1 > c n - l v  JE:jo (1 + 7j,-~ + #j,m) 2 Lj,ml/2 

X e jln2-['/~,''+t~z'~-ln(l+'/5,'~+t~z'~)lLj,'~/2 E ~)2(2Jx0 -- k) ,  

kET~,,,, 

fo 1 - ], fo E (fs(x) (x))2dx = E (fs(x) - fo(x))2dx 

log2 (n / In(n)) 2 
~/Lm r).12 > C n - ' v  E E (1 + 7j,m + #j ,m)2-, ,m 

j=jo m 
X e -[3'j,m-l-ttj, '~-ln(l+')'s m/2 

If additionally Pj,rn =-- Pj and Lj, m =- Lj then 

(2.12) min (E(fs(xo) - ]*(xo)) 2, E(fs(xo) - fo(x0)) 2, 

E fo l ( f s (x )  - ]*(x))2dx, E ~ol( fs(x)  - fo(x))2dx) 

,og2(n/In(n)) 2 

> C n - l v  E (1 ~- '~j -I- p j ) 2  Lj 1/2 
j=jo 

• e j In 2-[q'jTttj--ln(1-1-'~jWttj)]Lj/2. 

Remark 2.2. It follows from the proofs that all pointwise lower bounds, presented 
in this section, hold for a more general class of functions fo(x) whose wavelet coefficients 
0j,k = 0 for (j ,k) C {( j ,k ) :  r - k) ~ 0}. 

3. Discussion of results 

Lower bounds allow us to present necessary conditions for blockwise shrinkage esti- 
mates to be minimax over a wide variety of function classes that include, in particular, 
parametric, HSlder and Besov classes. Recall that the corresponding rates were high- 
lighted in Introduction. 
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3.1 James-Stein estimator 
Assume that  a statistician would like to use a James-Stein estimator ]Js. Then the 

statistician must to choose a set of blocks. There are mixed recommendations in the 
literature on how to do this. Donoho and Johnstone (1995) recommend dyadic blocks 
and show that  under the global approach they imply HSlder minimax rates. On the 
other hand, that  article also highlights a bad performance of the estimate in simulated 
examples. In numerical studies much smaller blocks are typically used and recommended. 
See a discussion in Cai et al. (2000) and DeCanditiis and Vidakovic (2004). 

Thus, it is of interest to understand how small blocks can be to give the typical 
rates of convergence highlighted in (1.8). Let us use Theorem 2.2 for finding the answer. 

To simplify the discussion, let us restrict our attention to blocks of the same length 
at each scale (Lj,~ =- Lj) and Lj < Lj+I. These are the typical blocks considered in the 
literature. Set Lj =: (2Jbj) 2/3, bj > 0. Then (2.9) yields 

(3.1) rain (E ( f j s (Xo ) -  fo(xo))2,E fol(fjs(x) - fo(x))2dx) 

log~ (n/ln(n)) 
~> c a - i v  E 521" 

j=jo 

This lower bound implies that the necessary condition for a James-Stein estimate to 
attain the parametric rate n -1 is ~ j  b} -1 < ec. This immediately implies that  Lj should 

increase faster than 2 (2/a)j. For attaining the analytic rate ln(n)n -1 the block lengths 
must be of order 2 (2/a)j. The blocks can be smaller a bit for Besov spaces where the rate 
is (ln'Y(n)/n) ~. However, the parameter t3 < 1 depends on the underlying Besov space 
which is unknown to the statistician and thus/3 is also unknown. This implies that  for 
any a > 0 the block lengths should satisfy 

log2 (n / In(n)) 
n a s  

j=jo 

As we see, the slower minimax Besov rates do not help a lot in decreasing the necessary 
block lengths unless the statistician knows an upper bound for ~. 

As it has been explained earlier, because the considered f0 belongs to all clas- 
sical function spaces, the conclusion made also holds for the corresponding minimax 
approaches. Indeed, it is easy to see that  

(3.2) sup E f [ 1  (f js(x) - f(x))2dx 
9C~ Jo 

/0 >_ E (fjs(x) - f(x))2dx whenever f E )r, 

and obviously a similar conclusion is valid for the pointwise approach. 
We may conclude that  using the classical James-Stein shrinkage, that  plays the 

prominent role in the parametric shrinkage theory, requires employment of at least ge- 
ometrically increasing blocks whenever the statistician wants to achieve the classical 
rates. This conclusion will be complemented by a numerical s tudy presented in the next 
section. 
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3.2 Stein(O) estimate 
According to Theorem 2.3, discussion of the necessity to employ geometrically 

increasing blocks for obtaining the classical rates is absolutely similar to the above- 
presented case for the James-Stein estimator. Thus let us make several complementing 
remarks. 

Tsybakov (2002) proved that Stein(0) estimator with a special set of geometrically 
increasing blocks implies a minimax estimation over a Sobolev class. This implies sharp- 
ness of the lower bound obtained. 

Also note that  if a statistician would like to use Stein(0) estimator with constant 
blocks, then to get the classical rates it is necessary to use blocks proportional to n~ ln(n). 

Finally, let us recall one more time that typically large blocks imply a poor perfor- 
mance for small datasets. On the other hand, these blocks dramatically simplify proofs 
of asymptotic results and make the asymptotic results more transparent. Thus, the 
statistician should be aware about  good and bad properties of a particular estimate and 
then use the estimate correspondingly. 

3.3 EP estimate 
It is clear from the previous discussion, Theorem 2.1 and Corollaries 2.1-2.2 that 

blocks should not be too small for attaining minimax rates. Thus, let us begin the 
discussion of EP estimate with the case of identical (over all scales) blocks and thresholds 
(Lj,m -- L, )~j,,~ - A) studied in Cai (1999) under the global approach. Corollary 2.2 
implies that the necessary condition for EP estimate to attain the parametric rate n -1 
is 

(3.3) [ A 2 ~  + (1 +~2)2L1 ]L_l/2e_[),2_,,(l+),~)lL/2<Cn_lln(n) 

Thus either ~2 or L should be large. For instance, if we consider the "limit" case 
n = 1 then we get the classical A 2 > 21n(n)[1 - o(1)]. This together with the familiar 
upper bound for the risk of the universal threshold estimator of Donoho and Johnstone 
(1994) implies sharpness of the lower bound. 

If 0 < cl < A2 < c2 < c~ then (3.3) yields 

(3.4) [~2 _ ln(1 + )~2)]L + ln(L) > 2 ln(n)[1 - ln(Cln(n))/ln(n)]. 

Thus the block length L is necessarily at least logarithmic and this coincides with the 
conclusion of Cai (2000) obtained from a minimax study. 

Let us continue the exploration of (3.4) and solve the equation [A2 _ ln(1 + )~2)]L = 
2 ln(n) for L being the rounded up ln(n). The solution is A,2 = 3.50524, which is ex- 
actly the famous Cai's optimal threshold p ,  for Stein(> 0) estimator with identical 
logarithmic blocks. This is an interesting outcome because Cai ((1999), p. 910) got this 
threshold level from solving a very special optimization problem motivated by ideas of 
Wahba (1990), Donoho and Johnstone (1994) and Donoho (1995). The methodology 
of the present article has absolutely no connection with the Cai (1999) approach, but  
interestingly enough it implies the same optimal threshold level. We shall continue the 
discussion of this "coincidence" in the next subsection. 

If the goal is to attain a Besov minimax rate n -~, 0 </3  < 1 (here we skip a possible 
logarithmic factor to simplify the discussion) instead of the parametric rate n -1 then 
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blocks and thresholds should satisfy 

(3.5) [)2 _ ln(1 + )`2)]L + ln(L) > 2/3In(n)[1 - ln(Cln(n))/ln(n)].  

Thus, if it is known that /3 < /30 < 1 then )` and/or  L can be slightly decreased. 
Unfortunately, typically/30 is unknown and thus even the slower Besov rates do not help 
a lot in the decreasing of the lower limit on block lengths and threshold levels. 

Another important set of blocks-thresholds used in applications is where blocks 
and thresholds are the same within each scale. In this case the necessary condition for 
obtaining the parametric rate n -1 is that  for some j* > j0 

(3.6) [)`2 _ ln(1 + )`~)]Lj + (1/2) ln(Lj)  > (j - j*)ln(4).  

Interestingly, for the "limit" case Lj - 1 the equality in (3.7) implies the familiar min- 
imax estimates suggested by Delyon and Juditsky (1996) and Juditsky (1997), see also 
the discussion in Vidakovic (1999). 

3.4 Stein(> O) estimate 
All the conclusions, made for EP estimate, hold here as well. At least from the lower 

bounds point of view, the estimates perform similarly. Thus, let us instead of repeating 
the above-formulated conclusions make several new remarks. 

If, similarly to Cai (1999), we restrict our attention to identical blocks Lj,m - L := 
L(n) and a constant threshold level # > 1 then the inequality 

n "72 
(3.7) ln(n)L1/2 (1 + # + "7)2 exp{-["7 + # - ln(1 + "7 + #)]L/2} < C 

is the necessary condition for attaining the parametric rate n -1 under the pointwise and 
global approaches. Plainly 

(3.8) ["7 + # - ln(1 + "7 + p)]n > 2 ln(n) 

implies (3.7) and [ " 7 + # - I n ( 1  + " 7 + # ) ] L  < 2 I n ( n ) ( 1 -  Co), co > 0 does not. In 
particular, consider the Cai's choice L = ln(n). If we set, for instance, "7 = In - l (n ) ,  then 
this together with the equality in (3.8) yields the Cai's optimal threshold/z.  = 3.50523. 

The lower bound approach implies that #.  is simply the minimal identical threshold 
level preserving the parametric rate of convergence for identical logarithmic blocks and 
no-signal setting. Similarly to the previous subsections, we can also conclude that # .  
has the same meaning for the other classical function classes. Thus, the Cai's optimality, 
based on the Wahba approach, is equivalent to the minimal threshold level that preserves 
the classical rates for the case of no-signal. 

Now let us consider a different set of thresholds suggested by Cavalier and Tsybakov 
(2001). The authors were interested in the study of blocks and estimates that  imply the 
parametric rate of convergence. They used an oracle inequality (that is, an upper bound 
that includes, as an additive term, mean integrated squared error of an oracle) to get a 
sufficient condition for attaining this rate. In particular, they recommended thresholds 

(3.9) #~,m = C* [ln(Lj,m)/Lj,,~] 1/2. 

The interested reader is referred to that interesting article for details; in particular, 
Remark 2 and the discussion on p. 253 of the article are of a special interest. 
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The recommendation (3.9) is based on the analysis of a specific sum with terms 
including exponential factors e x p { - L j , m p ~ , , J 4 ( 1  + t~j,m)}. Let us show that the sum in 
our lower bound has similar exponential factors. Keeping in mind that these factors are 
the main "players" in the analysis of blocks and thresholds, the lower bound supports 
the Cavalier-Tsybakov oracle inequality. 

Recall that the lower bound is 

E ( f s (x )  - fo(x))2dx 

l~ - 2 r l /2  
~m "'[J'mZaj'rn c n - l v  E (1 ~- ~j,rn "[- IJ, j,m) 2 

j=O 

• exp{-[Vj,m + #j,m - ln(1 + 7j,m + #j,m)]Lj,m/2}.  

To analyze the exponential factors, we use the elementary inequality - z  + ln(1 + 
z) + z2/2 > O, z > 0 which is easily verified by the fact that at z = 0 the left side is zero 
and its derivative is positive for the considered z. This yields that 

exp{-[Vj,m + #j,m - ln(1 + Vj,,n + #j,m)]Lj,m/2} > exp{-(Vj,m + pj ,m)2Lj ,m/4}.  

Set Vj,m = O(1)Itj,m where o(1) --~ 0 as n --+ cx~. Then comparison of the last 
exponential term with the Cavalier-Tsybakov exponential factor establishes the wished 
similarity. 

Finally, let us present an example of how the lower bounds may help the statistician 
to analyze a familiar conjecture. Cavalier and Tsybakov ((2001), p. 269) conjecture 
that  because the recommended threshold levels (3.9) are typically small, the difference 
between Stein(0) and Stein(> 0) estimates is not very strong. Sure enough, Tsybakov 
(2002) proved that Stein(0) estimate can be asymptotically minimax. On the other hand, 
as we have seen, Stein(0) is dramatically less flexible in terms of a possible pool of blocks 
necessary for a minimax estimation. 

4. Numerical study 

Let us complement the discussion of Section 3 by a numerical study of the James- 
Stein estimate. 

It has been explained in Subsection 3.1 that this estimate requires employing of very 
large blocks for attaining the classical asymptotic minimax rates. Is this conclusion cru- 
cial for relatively small datasets considered in the literature? What  will be if we employ 
traditionally recommended identical blocks of small sizes? To answer these questions, 
consider a numerical experiment shown in Fig. 2. Here the S-PLUS supported regression 
function "GAUSS", that has perfect "no-signal" tails and a smooth bell-shaped part, 
is restored by James-Stein estimates with identical blocks of lengths L = 3, 4, 8 and, 
for comparison, by the default universal soft threshold estimate supported by S-PLUS. 
In this and all other experiments, default S-PLUS parameters (including periodized 
wavelets) are used. The wavelet function is Symmlet-8. The signal-to-noise ratio is 
denoted as "snr" and it together with the sample size n is exhibited in the titles. 

We see that  the result of this particular simulation supports the theory: James-Stein 
shrinkage performs better  with larger blocks. Note that the universal thresholding, which 
satisfies (3.9), implies a dramatically better  estimation. On the other hand, even this 
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GAUSS n = 5 1 2  GAUSS n = 1 0 2 4  

o o 

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 

NOISY GAUSS s n r = 3  NOISY GAUSS snr= 3 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

JAMES-STEIN ESTIMATE L=  3 JAMES-STEIN ESTIMATE L=  3 

0.0 0.2 0,4 0.6 0.8 1.0 

JAMES-STEIN ESTIMATE L = 4 

0.0 0.2 0.4 0.6 0.8 1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

JAMES-STEIN ESTIMATE L=  4 

0.0 0.2 0.4 0.6 0.8 1.0 

JAMES-STEIN ESTIMATE L=  8 JAMES-STEIN ESTIMATE L=  8 

: __,/L_ 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0,2 0.4 0.6 0.8 1.0 

UNIVERSAL SOFT THRESHOLDING UNIVERSAL SOFT THRESHOLDING 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 2. Performance of the  James-Ste in  es t imate  wi th  different identical  blocks of length  L. 

estimate cannot perfectly restore the flat tails. This fact explains why estimation of the 
zero (or any constant) function is not a trivial problem and why the no-signal function 
f0 is of the special interest. 

The conclusion made is drawn from the single experiment. What  will be if this sim- 
ulation is repeated 300 times? The results are summarized in Table 1 where simulations 
for two other sample sizes are also presented. The "ARMISE" row shows average ratios 
of the square root of MISE of a James-Stein estimate to the corresponding value of the 
universal estimate. The "ARMSEI" raw shows average ratios of the absolute deviation 
of a James-Stein estimate from the underlying function at point xl = .3 (the peak of 
"GAUSS") to the corresponding value of the universal estimate. The "ARMSE2" raw 
shows average ratios calculated at point x2 = .5 (the flat part of "GAUSS"). 

As we see, the intensive numerical study supports the conclusions made from the 
analysis of Fig. 2. Table 1 also sheds additional light on the James-Stein shrinkage 
estimate. First of all, the necessity of using large blocks becomes more urgent as the 
sample size increases. Secondly, for the smaller samples the relative quality of estimation 
(James-Stein versus the universal soft thresholding) at the point x2 = .5, where the 
"GAUSS" function is flat, is worse than at the peak point xl = .3. Returning to Fig. 2, 
we may note that  this property could be forecasted. 
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Table 1. Summary  of results of numericM experiments  based on Fig. 2. 

n 256 256 256 512 512 512 1024 1024 1024 2048 2048 2048 

L 3 4 8 3 4 8 3 4 8 3 4 8 

I ARMISE 1 ~  2.27 1.52 2.81 2.23 1.41 

AARRMsS~: H ~ . 9 4  {! 5"11 I 3"93 ' 2"12 n 

5. Conclusion 

This article suggests to complement the traditional minimax and Bayesian analysis 
of blockwise shrinkage estimates by exploring exact (not-asymptotic) lower bounds for 
risks calculated for the case of a no-signal setting. Because this case is included in all clas- 
sical minimax settings, the lower bounds also imply necessary conditions for an estimate 
to be minimax. Moreover, if a procedure fails to perform well for the no-signal setting, 
this procedure should raise eyebrows. Interestingly, this simple and intuitively appealing 
theoretical tool yields a wealth of information about blockwise threshold procedures. 
In particular, it proves that  Stein(0) and James-Stein estimates require geometrically 
increasing blocks to at tain classical minimax rates, it sheds a new light on the famous 
Cai (1999)'s optimal threshold level for logarithmic blocks, and it supports several fa- 
miliar oracle inequalities (upper bounds). Due to the not-asymptotic nature of the lower 
bounds, the suggested approach also complements methods of the numerical analysis. 
The developed methodology can be recommended for the analysis of a wide spectrum of 
adaptive nonparametric procedures. 

Appendix: Proofs 

PROOF OF THEOREM 2.1. For the considered f0 (or f0 defined in Remark 2.2) we 
can write 

E ( ] ( X o )  - ]*(Xo)) = E(](Xo) - /0(x0))  2 

2 

(3~ .  , ~  ~--~'seT,,~ (SC~2,s - 1 )  
= n- ' vE  ~ Y'].eT,,,~ g2,s 

kET~,m 

x I ~,~ > (1 + aa,m)La,m Ca,k(zO)~,k 

Because ~j,k are independent and symmetrically distributed about zero, 

(A.1) U(/(xo)- :*(*o)) 

kcTj,m 

[Y]~c:%,., (~2,. _ 1)]2 

, j ~ $ 1  
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x I ~y,~ > (1 + ,kj,m)Lj,m r . 
~sETj,m 

The fact that ~5,~ are independent and identically distributed implies that  for k E 
Tj,m 

(A.2) E .... - -72- -3  I 2 (1 + Aj,m)Lj,m (j,k 
8 r n  

_~ [ E ~ ,  ~ (~,~ - 1 )7  
= L j ,mE . . . . . .  - - - y  I ~2,~ > (1 q- ,,~2,m)Lj,m . 

, \seTj,m 

Let us estimate the right side of (A.2). Note that Y'~keTj,~ ~,~ has central ehi-squared 

distribution with Lj,m degrees of freedom. Denote by X~, a central chi-squared random 
variable with L degrees of freedom and write 

E{(X2L -- L)2(X2L)-II(x2 L > (1 + A2)L)} 

= E{[X~L -- 2L + L2/X2L]I(x2 L > (1 + ,k2)L)}. 

Recall that X~ has the density 

1 n/2--1 --y/2 
pr (y ) -  2L/2p(L/2)y e , y > 0 ,  

denote a := (1 + ,~2)L and write using integration by parts 

(A.3) E{XU(X~ > a)} 

(A.4) 

fa ~ = ypL(y)dy 

/5 = [2L/2r(L/2)] -1 yr/%-y/2dy 

= [2L/2r(L/2)]-l [2aL/%-a/2 + 2(LI2) ]i~yr/2- 'e-Y/2dy] 

aL/2e-a/2 
= 2LI2_1F(L/2) + LP(X2L > a). 

Similarly 

Lp(X2L > a) = L[2L/2I'(L/2)] -1 

x I2aL/2-1e-a/2 + 2 ( L / 2 -  l) f ~ y - l y L / 2 - a e - Y / 2 d y ]  

= LaL/2-1e-a/2  [2L/2-,F(L/2)]-I 
+ (L 2 - 2L)E{(X2L) - I I (x  2 > a)}. 

These two relations imply 

E{[X2L -- 2L + L2/X2L]I(x2 L > a)} 

= aL/2e-a/2[2L/2-1F(L/2)]-I(1  -- L /a )  + 2LE{(X2L)-II(X2L > a)}. 
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Note that  1 - L/a = A 2 / ( 1  +/~2), and then integration by parts yields 

(A.5) 2LE{(X2L)-II(x2 i > a)} _> 4L[2L/2F(L/2)]-XaL/2-2e-a/2. 

(A.6) 

Combining the results we get 

E{(](x0)  -/(xo)) 2} 

> n- 'v  E E (1 + )~2.,,m,)L,.~/2LL,.m/2e--(I+~.,~)L~.~/2 

j m Lj'm2Lzm/2-1p(Lj,m/2) 

A~,m 2 
- - +  2 2 • 1 + A2,m (1 + "~j,m) Lj,m E ~b2, k(x~ 

kcTj.,-,, 

According to Robbins (1955), 

F(L/2) 
(A.7) 0 < cl < (L/2)L/2_U2e_L/2 < c2 < co. 

Then a simple calculation implies 

(I+.~2)L/2LL/2e--(I+A2)L/2[)~ 2 2 ] 
L2L/2-1F(L/2) ~ + (1 +-~2)2L 

> C[A~(1 + )~)-1 + (1 + A2)-2L-1][L-1/2e(L/2)On(1+X2)-~2)]. 

This together with (A.6) and r = 2Jr - s) proves Theorem 2.1. 

PROOF OF COROLLARY 2 . 1 .  Note that  under the assumption about the wavelet 
fimction we have 

E E  
m k E T j , m  

r - k) = qJ(j, x0) > min kO(j, x) = c* > 0. 
X 

Using this relation together with (2.2) implies 

E ( ] ( X o )  - f o ( x o ) )  2 
log2 (n / In(n)) 

> Cnl lv  E 
j=jo 

/I 2 1 
2 2 + (1 + )~j) Lj 

1 ln(2)--[~--ln(l+)~2)]Lj/2 E E ~22(2Jx0 - -  k) 
X r ~ i - 7 ~  e 3 

Lj m kCT~.,~ 
l~ (n/In(n)) 2 

> Crt-lv E ~J 1 l___~_e j ln(2)_lA~_ln(l+s 
a/2 j=jo ~ + (1+  A2)2Lj Lj 

Corollary 2.1 is verified. 

PROOF OF COROLLARY 2.2. Note that  the generic constant C in (2.2) does not 
depend on Xo. Then verification of the lower bounds is based on taking integrals on the 
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right and left sides of (2.2) and using the fact that  2J/2r - k) are elements of an 
orthonormal basis on [0, 1]. This yields (2.5). Then there are 2J wavelet coefficients at 
the j - th  scale, this together with (2.2) yields (2.6). Corollary 2.2 is proved. 

PROOF OF THEOREM 2.2. For the underlying regression function fo(X) the James- 
Stein shrinkage does not decrease mean squared error of EP shrinkage with the zero 
threshold A2 = 0. Indeed, in this case {( )}2 {( )}2 

E (~ + (2/L)vn-1 0 > E (~ 
(~+vn-1  + - O + v n _ l  + 

where I~ := L -1 EsET 42-vn-1 and T is a particular block. This together with Theorem 
2.1 yields the verified assertion. 

PROOF OF THEOREM 2.3. Similarly to (A.1)-(A.2) we can write 

E(]s(Xo) -/0(x0)) 2 In(n/In(n)) { 
=n- iv E E L ~  1 z  

j =jo m 

[X~.m - (1 + Ixj,m)Lj,m] 2 
~2L s m 

(1 + Ixj,m)L~,~) x I(xrj,,,,2 > 
J 

E 2 Cj,k(XO). 
kcTj,,,, 

For a nonnegative 7 using (A.5) and (A.7) implies 

L- i  E { [X2L - (I + #)L]2 } X~ I(X2 > (1 + #)g)  

{ (7L)2" '  2 } 
> L - I E  --~-L xtX L > ( l + 3 , + t x )  L ) 

> C~/2 L 2 L/2 [(1 + ~/+ Ix)L]L/2-2e-(I+~"+~)L/2 
-- 2L/2LL/2-1/2e-L/2 
-- C ~/2L-1/2 

(1_t_.7_ t_ Ix)2 e-["/+tt-ln(l+3'+~)]L/2 

Combining the results we get that  for any sequence "~j,m ~-- 0 

E(IS(Xo) --/0(X0)) 2 
In(n/In(n)) 2 --1/2 

"Tj,mLj,rn >-cn-lv E 
J=Jo rn 

x e j ln(2)--["lj,..+#j,,~--ln(l+9"j,m+ttj,m)]Lj,m/2 E 
k~Tj,.. 

r  - k) .  

This inequality verifies (2.10). The proof of (2.11) and (2.12) is identical to the 
above-presented proof of Corollaries 2.1-2.2. Theorem 2.3 is verified. 
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