
Ann. Inst. Statist. Math.
Vol. 56, No. 1, 193-204 (2004)
(~)2004 The Institute of Statistical Mathematics

A SEQUENTIAL SOFTWARE RELEASE POLICY

YEN-CHANG CHANG

Department of Business Administration, Van Nung Institute of Technology,
Chungli City, Taiwan, R.O.C.

(Received August 2, 2002; revised June 19, 2003)

Abst rac t . Most existing studies on software release policies use models based on
the non-homogeneous Poisson process. In this paper, we discuss a software release
policy based on a state space model. The state space model has a Gamma-Gamma
type invariant conditional distribution. A cost model that removes errors in software
systems and risk cost due to software failure is used. The optimal release time to
minimize the expected cost in every test-debugging stage is discussed.

Key words and phrases: Kalman filter, self-exciting point process, open-loop-feed-
back-optimal control problem, submartingale.

i . Introduction

An important problem in the software development process is deciding when to stop
testing and release the software. This decision problem is called the optimal software
release problem and has been studied widely. Okumoto and Goel (1980) addressed a
cost-optimal software release policy that minimizes the total expected software cost.
Yamada et al. (1984) considered the optimal software release problem using two cases:
when the scheduled software delivery time is constant and when it is a random vari-
able with an arbitrary distribution. Ross (1985) developed a model with an estimating
and stopping rule procedure. Yamada and Osaki (1985) introduced a cost-reliability-
optimal software release policy that minimizes the total expected cost and satisfies the
software reliability requirement. Dalal and Mallows (1988, 1990) proposed a stopping
rule based on Bayesian assumptions and suggested a graphical display for deciding when
to stop testing software. Randolph and Sahinoglu (1995) discussed the stopping rule of
a compound-Poisson model.

Many software cost models have been developed. Most of these software cost models
were based on non-homogeneous Poisson process (NHPP) models (see for more exam-
ples, Yamada et al. (1995), Kimura et al. (1999), Xie and Hong (1999), and Pham
(2000), Chapter 6). For a detailed discussion on the software release problem refer to
Singpurwalla and Wilson ((1999), Chapter 6).

As Singpurwalla and Wilson (1994) acutely pointed out, the state space models have
superior predictive failure data tracking abilities than many other models. Some state
space models that applied software reliability were proposed. Singpurwalla and Soyer
(1992) proposed a non-homogeneous autoregressive process, known as a Kalman filter,
to describe reliability growth. Chen and Singpurwalla (1994) suggested a non-Gaussian
Kalman filter software reliability application. This model has a Gamma-Gamma type
invariant conditional distribution. Chang and Leu (1998) proposed another Kalman

193

1 9 4 Y E N - C H A N G C H A N G

filter model with an exponential-Poisson type invariant conditional distribution software
reliability application.

Chert and Singpurwalla (1997) unified software reliability models using self-exciting
processes. All of the models based on NHPP or Kalman filters are subsumed by the
family of self-exciting processes.

In this paper we present a software cost model based on a state space model. For
the failure rate in every test-debugging stage to depend on the observation history, the
optimal software release problem must be approached as a sequential decision problem.
To avoid complexity, the optimal release time is treated as an open-loop-feedback-op-
timal (OLFO) control problem (Runggaldier (1993)). That is, the optimal release time
is chosen based on the current observation and process history and it is assumed that
no observations will be made in the future. In Section 2, the cost model based on
a non-Gaussian Kalman filter model is described. Unfortunately, the optimal release
time in every stage is not a closed form. However, the optimal release time can be
found numerically. In Section 3, it will be proven that, under some conditions, the total
testing time in the sequential decision method is finite with probability one. A numerical
example is provided in Section 4.

2. The cost model

2.1 A non-Gaussian Kalman filter model
The non-Gaussian Kalman filter model proposed by Chen and Singpurwalla (1994)

is used in our study. Accordingly, let Tn represent the time between the (n - 1)-th and
the n-th failure (n-th stage, say), 8 n the scale parameter of Tn, Dn = {T1,. . . ,T,~} the
collection of observations until n. The model assumptions and the results are shown
below.

The observation equation: (Tn IOn) ~ Gamma(wn, Sn).

The system equation: (CnSn/Sn-1 [8 n - l) ~ Beta(an- l ,Vn-1) .

The initial information: (80 I Do) ~ Gamma(ao + vo, u0),
where Cn, Wn, Vn and an are assumed to be known and non-negative. Furthermore, they
are required to satisfy the condition

(7n--1 ~- OJn ~ an -I- ~)n, for n ---- 2, 3,

(8n--1 I Dn-1) ~ Gamma(an_l + Vn_l , Un-1).

(Sn I D n - 1) "~ Gamma(hrn_ l , Cnl tn_l).

(Tn/Cnun-1 I Dn-1) '~ Pearson Type VI

(p = Wn, q = an- l) ;
(see Johnson and Kotz (1970), p. 51).

The posterior for On: (On IOn) ~ Gamma(an_l + wn, Un),

where Un ---- Cnun-1 + Tn.
To _> 0 is chosen arbitrarily. It reflects the best assessment about the inter-failure times
prior to observing any data. In the 1-step forecast for the above results the conditional
density of T~ given the history of the process is

r(o2n ~- an_l)t~'~-'[Cnun_l] an-1
(2.1) f n (t n) - f (t n j D n - 1) = + Cnun_] "

The Results

The posterior of 8n--11

The prior of 8n :

The l-step forecast:

A SEQUENTIAL SOFTWARE RELEASE POLICY 195

The conditional density can be found by computing directly. Thus, using (2.1), we
can rewrite the l-step forecast as

(2.2) (Tn/(Tn ~-CnUn_l) l Dn_l) ,-~ Beta(wn, an- l) .

In a special case, if Wn is a positive integer, then the reliability function in the stage is:

(2.3) R~(tn) =--- R(tn I O n - l)

= (Cnun-1)an-1 [wi~=lP(an_l+i--1) t i-1]
r (a~_ l) r (i) (tn q- Cnun-1) ""-*+i-1 "

The proofs for results (2.1) and (2.3) are shown in the Appendix.

2.2 The cost model
The following notations are defined:
c1: testing cost per unit time;
c2: cost to remove one fault during the test phase;
Ca: cost due to software failure;
T: software release time;
T*: optimal release time in the n-th stage;
x: mission time;
NtotaZ: the number of failures during the test phase;
Ttotal: total testing time.
The expected software testing cost at the n-th stage is

(2.4) On(t) --= Clt + c2Fn(t) + c3(Fn(t + x) - Fn(t)),

where Fn(t) = 1 - Rn(t), the conditional distribution function of Tn. It is natural to
assume c~ < c3. The notation meaning can be heuristically explained as follows. At the
beginning, the optimal release time t~ is chosen using prior information. That is, t~ is
found to minimize r If T1 > t~, then the software is released. If T1 < t~, the prior
information is updated to the second stage, and an additional optimal release time t~ is
chosen. The choice will depend on T1. t~ is then found to minimize r If T2 > t~,
the software is released. If T2 < t~, the prior information is updated to the third stage,
and a third optimal release time t] is chosen, and so on

The proposed algorithm for determining the optimal release time does not minimize
the expected total test cost. It is designed to minimize the expected test cost in every
stage and assume that no observations will be made in the future. The KMman filter
model is a special case of an c~-memory self-exciting process. It is too complex to
determine the optimal decision for minimizing the expected total cost.

Note that, in every stage, the optimal release time t n minimizes the expected cost
(2.4). Thus we have that

clt n + c2Fn(t*n) + c3(F(t n + x) - Fn(tn)) = Cn(t*) _< r = c3Fn(x) <_ e3.

It implies

C3 (2.5) < -
c1

196 YEN-CHANG CHANG

Tha t is, in every stage, the opt imal release t ime is finite. The optimal release t ime in
every stage can be determined by solving the equation

(2.6) r : cl + c2f,~(t) + c3(fn(t + x) - fn(t)) = O.

Unfortunately, in general, the r roots do not have a closed form. Equat ion (2.6) is
therefore solved numerically.

When will testing stop? The tota l testing t ime is

m--1
(2.7) T~o~ol : ~ T~ + 7~,

0 if T~ < Tn, n __ m - 1 and Tm > T* , for m > 1, where ~-~-n=l Tn - O. The tota l testing
t ime may be infinite. In the next section, it will be proven that , under some conditions,
the total test ing t ime is finite wi th probabili ty one under our model assumptions.

3. The convergence of Ttotal

We note tha t if O'n_ 1 > 1,

(3.1) E(Tn I D n - i) - ~ n O'n_ 1 -- 1 Cn ?tn- l "

,~n 1)Cn+l > 1, for all n > 1, we have Thus, if o-n-1 > 1 and (~_-:L-i-=7-1 +

(3.2) E (C n + l U n I O n - l) = C n + l E (Tn ~- Cn~tn-1 I O n - l)

= Cn+l o'n-~-- 1 + 1 C~un-1 > C~un-1,

almost surely (a.s.), for all n > 1. Tha t is, Cn+lun is a submart ingale with respect to
o.(D~), the o.-field of Dn.

Under the assumptions in Subsection 2.1, if w~ is an integer, by (2.3), we have tha t
the conditional reliability in every stage

(Ca i rn - I) an- ' [~-~ F(an-1 + i - 1) t i -1 (3.3) R~(t) r(o.~_~) /z-,L~=~ r(i) (t + c~ ._~)~- - ,+ ~-'
t o

> (Cn 'an - l) ~ C,n ~n_ 1)o.n_l] - r (o . n _ ,) [r ~) (t +
= (Cn~n-i) ~-1

t + CnZtn- 1

Then

(C__nun-1 I ~"-'
(3.4) F n (t) :-- 1 - - R n (t) < 1 - ~ ~ - C n U n _ l �9

Thus, we have Lemma 3.1 as shown below:

LEMMA 3.1. Under our model assumptions, i f {wn} are integers, o-n = o. > 1, and
c~un_l ~ is a submartingale with (aw-~l -~-l)Cn+l _> 1, f o r a l l n > 1. For t > 0 is given, (t+C.u ._ l J

respect to o.(Dn-1) i.e., 1 - (c ~ . _ 1)~ is a superTnartingate with respect to a(Dn-1) . ' t+C,~u~-i

A SEQUENTIAL SOFTWARE RELEASE POLICY 197

The lemma and theorem proofs in this section were relegated to the Appendix.
Using Lemma 3.1, we have

LEMMA 3.2. I r A E cr(D~_l), we have

tjC----~n-1) IA] (1-- (t ClU~ J-P-U 0) E[A, n > l .

LEMMA 3.3. Under the assumptions in Lemma 3.1, we have, for all n > 1,

(3.5) p(T1 ~ T~,.. Tn ~ T.) ~ (1 _ ~ Cluo) a) n
' - k +

The upper bound of E(Ntotal) and E(Ttotal) is found by using Lemma 3.3.

THEOREM 3.1. Underthe assumptions of Lemma 3.1, E(Ntotal) <_ (1 + ~) ~ - 1

and E(Ttotal) < [c3~/(Cluo)a. -- \cl//~ca/ct+Ctuo

The model will be modified after each stage. The remained testing time and the
number of failures after each stage are more important than the initial test stage. Note
that, if D~ is given, the bounds of the expected remaining testing time E(Ttot~l,n [Dn),
and the expected number of failures after n-th stage E(Ntotal,n [Dn) , can be shown
below.

COROLLARY 3.1.

and

Under the assumptions in Lemma 3.1, i f Dn is given, then

c3 - 1, a.s.

E(Ttot~l,n IDa) _< c3/cl a.s.

c3/e 1 Jr Cn+lU n

Remark. Some conditions are set in Lemma 3.1 such that (c ~ _ 1)o is a sub- t +C,~ u,,_ l
martingale with respect to a (D ~ - l) . This is a lower bound of the reliability function
R,~(t). Using (2.5), we know that the optimal release time in every stage is bounded.
This implies

(3.6) Rn(tn) ~ (c3/Cl) -[- Cn~tn_ 1 , a.s.

Then Lemma 3.3 and Theorem 3.1 are proved. In general, other state space models
could be considered in the software release problem. As in the above discussion the
total testing time is proven finite with probability one when the following conditions are
satisfied:

(i) There exists a sequence of positive variables, {X1, X 2 , . . . , Xn , . . . } , such that

R~(t*) > Xn, a.s. for all n > 1.

(ii) X~ is a submartingale with respect to ~(Dn-1).
These conditions imply that there is growth in the lower bound for the reliability function.

198 YEN-CHANG CHANG

4. A numerical example

The "system 40" da ta of Musa (1979) is used to i l lustrate the workings of our cost
model. In our s tudy cases below, all of the processes are s topped at the 53rd stage.
As the discussion in Chen and Singpurwalla (1994), we set an = 0-)n = ~) n = 2 and
Cn = C = 0.425. Thus the model satisfies the assumptions in L e m m a 3.1. Using (2.1)
and (2.3), we have the condit ional density of T~

(4.1) f n (t) - [t Jr G U n - l] 4"

The dis t r ibut ion funct ion is

(Cun_l)2(3t -]- Cltn_,)
(4.2) Fn(t) = 1 - (t + Cun_ l) 3

Using (2.6), the opt imal release t ime can be found in every stage by solving the following
equat ion

6t(CUn_l) 2 6(t 9. x) (Cun-1) 2
(4.3) r = c 1 9. (c 2 - c3). (t 9. GUn- l) 4 9. c3 (t n 9. x 9. Cltn_ l) 4 ~-- 0.

The impact of the cost coefficients and the mission t ime on the release t ime axe studied
next. Let us s tudy the following cases:

Case 1: Cl = 0.1, c2 -- 10, c3 = 100000, and x = 30000.
Case 2: cl = 0.1, c2 = 10, c3 -- 100000, and x = 3000.
Case 3: cl = 0.1, c2 = 10, c3 -- 10000, and x = 30000.
Case 4: cl = 0.1, c2 = 1, c3 = 100000, and x -- 30000.
Case 5: cl = 0.01, c2 -- 10, c3 = 100000, and x --- 30000.

In every stage, 10000 processes were genera ted to predict the future behavior of the
model and es t imate the expected to ta l cost. Note that , using (2.2), the n - th inter-failure
t ime can be genera ted using the following equation:

(4.4) Tn = Cun-1/~/(1 - ~),

where/3 is genera ted from Beta(2, 2). We set to = 320, for the value is chosen arbitrarily.
The opt imal release t ime is listed after the 1st stage. The release t ime in every stage is
shown in Table 1. Note tha t , only Case 5 will release the software between the 52nd and
53rd failure. The other cases will release the software before the 7th failure. Th e da ta
between the 9th and 50th stages are skipped. Using Table 1, increasing the value of c3
or x will result in a longer test ing t ime in every stage. Decreasing the value of cl or c2
will result in a longer test ing t ime in every stage.

The expected to ta l cost in every stage is shown in Table 2. The expec ted to ta l cost
in stage n is defined as follows:

(4.5) ClE(T1 9 9- Tn 9 - " " 9- Tn+K-1 + T*+K I Dn) + c2E(n + K - 1 I Dn)

9. c3P(Tn+ K < Tn+ K < Tn+ K + x I Dn),

where K k 1, a.s. T h a t is, n + K is the last testing stage. Using Table 2, increasing
the value of c3 or x will result in a larger test ing cost. Because the cl and c2 are values
smaller t han c3, the impact of these values is not significant.

A S E Q U E N T I A L S O F T W A R E R E L E A S E P O L I C Y

Table 1. T h e impac t of the cost coefficients and the mission t ime on the release t ime.

199

n Failure t ime tn O p t i m a l release t ime t n

Case 1 Case 2 Case 3 Case 4 Case 5

1 14390

2 9000 46609.28 27825.87 18640.32 46611.29 97986.93

3 2880 47660.24 28265.38 18998.40 47662.23 100221.18

4 5700 36870.05 23449.16 39259.89 36871.49 77561.55

5 21800 37586.09 23788.96 15123.73 37587.57 79049.09

6 26800 61837.02 33457.90 - - 61840.20 131196.64

7 113540 73079.30 36271.74 73083.66 157345.72

8 112137 - - - - - - 266799.56

51 31365 102848.67

52 24313 158000.95

53 298890 162542.11

Table 2. T h e impac t of t he cost coefficients and the miss ion t ime on the expec ted to ta l cost .

n Expec t ed to ta l cost in every s tage

Case 1 Case 2 Case 3 Case 4 Case 5

1

2 71374.99 38923.22 8511.42 71253.16 72144.20

3 71800.46 39399.04 9476.45 71706.49 70955.31

4 78139.22 44768.68 9895.51 77137.01 78218.44

5 76937.30 44948.89 13070.71 77904.79 77808.99

6 68883.84 29228.36 - - 68268.18 63327.52

7 57517.27 21044.21 57462.46 56959.00

8 - - - - - - 40519.03

51 66897.98

52 65881.27

53 38453.57

Acknowledgements

The author would like to thank the Referees for their valuable comments. This
�9 research was supported by the National Science Council of ROC Grant NSC 90-2118-M-

238-001.

Appendix

PROOF OF (2.1). From the observation equation and the prior of 0,, for the results,
we have

~ - 1 ~nexp(_O,~tn)
gn(tn IOn) = tn On and r(~n)

200 YEN-CHANG CHANG

IV u '~ an-1 l e x p (- C n u , ~ - l O .)
7rn(On I Dn-1) = , ~ ~-~, . ['(a~-l)

where gn(tn I On) is the density of (Tn I On) and 7rn(On I D ~ - I) is the prior density of 0n.
Thus, we have

/0 f~(t~) = f(t~ I D~-t) = gn(t~ I On). 7rn(O~ { D~_t)dO~

F(wn + an_l) t~- l[Cnun-1] ~
r(~n)r(~._l)[tn + C.~n-1] ~"+~"-~

Remark. The random variable X has a be ta prime distribution, a s tandard form
of Pearson type VI distribution, if its density is

h(x) = r (p + q)x p-t
r (p) r (q) [z + lip+q"

Now let Yn = T,~ the density of (Yn I Dn-1) is
Cnl tn_l '

~ - 1 F(w,~ + an- l ,yn
h(y~ { D~_~) = r(~n)r(~n_~)[~n + i] ~ o + ~ o - ,

Thus, (Yn I On- l) = (Tn/Cnun-1 I O n - l) has a be ta prime distr ibution with p = wn,
q = O-n_ 1 .

PROOF OF (2.3). If 03 n = 1, the result is trivial. Thus, we consider wn >_ 2. By
(2.1),

Rn(tn) = f~(t)dt = r(wn + an_,)[Cnun_l] ~ t ~ - 1
r(wn)F(~n-1) It + Cnun_ll 0~+~-1 dt.

t.Jn --1
We can use integration by parts to find f t~ (t+C~u~_~)~+~-x dt.

Let y(t) = t ~ - 1 and z'(t) = (t + Cnun_l) -(~n+~-D, we have

J(t~ tw~-I
(t ~- Cnun_l) wnTan-1 dt

(~ + o ~ _ , - 1)(t + C n ~ _ ~) ~ + ~ - - 1 - ' ,~

f ~ (~n - 1)t ~~
-~- (02 n -~ O'n_ 1 -- 1)(t + CnUn_l) w'~+a'~-l-1 dt

tw~ -1

(Wn + an-1 - 1)(tn + Cnun_l) ~n+a~-'-I

+ wn - 1 ft~ ~ t w~-2
(Mn -}- an-1 - - 1 (t -~- C n U • _ I) c o n + a n - l - 1 dt.

Now, using integration by parts Wn - 1 times,

j~t~ ~ t ~ " - I
(t + Cnun_t) ~-+~.-(dt

A S E Q U E N T I A L S O F T W A R E R E L E A S E P O L I C Y

tw~ - 1

(02 n -~- O 'n - 1 - - 1) (t n + CnU~_l) ~ .+~-1-1
i

~ tn ~ - ~ I] j = 2 (~ - J + 1)

+ ~=~ (t,, + C,,~,n-,)~+~-'-~ l l}=,(~n + ~,,,-I- j)"

Then we have

Rn(tn) = F(wn + O'n--1)[C?~Un--l] an-1 f t ~ tW"--i
r (~ ,) r (~ , _ ,) (t + C,~u,~_,) ~ - + ~ - - , dt

(Cnun-,) an-1 [~--~ F(an-1 + i - 1) t~-'
r(c~n-1) //--~Li=l r(i) (t~ + CnUn_l) an-l+i-1

201

P R O O F OF L E M M A 3 .1 . Now if t > 0 is fixed, for n _> 1,

Cn+lUn)
E t -}- CnwlU n] D~-I

Cn+llt n
= E t + Cn+lU n

= E t(Cn+lUn - Cnun-1)
(t + c , ~ + ~) (t + c~u~_~

= E t(Cn+,un - C~u~_~) +
(t + Cn+lUn)(t + Cnun-]

> E t(Cn+lUn - CnUn_l) +
- (t -]- Cn+lltn)(t -~- Cnltn_ 1

E (t(Cn+lUn -- Cnun-1)-

k
t (C~+lu~- C~u~_l) +

= E (t -~- CnWlUn)(t -~- Cnun_ 1

Cn un-1
t ~- Cnun_ 1

Cn U n-- 1
t + C~un-1 I D~-, /

I Dn-1)

t(Cn+lUn -- Cnun_1)-
(t + Cn+lUn)(t + Cnun-1)

I D a - l)

D~-I)

I Dn-1)

1
t E((Cn+lUn - Cnun-1)- I Dn- ,) ,

c ~ + l u , is also a by (3.2), E ((C n + I ~ n - C ~ n - 1) - I D n - 1) = 0, a.s. Thus, we have ~+c~176
submartingale with respect to a (D n) . Moreover, the function 9 (z) = z ~ is an increasing
convex function for z > 0 when ~ > 1. Then u~ing Jensen'~ inequality, (~+~:1§ is a
submartingale with respect to a(Dn).

PROOF OF LEMMA 3.2. Note that if n = 1, it is trivially. Now for n > 2,

= O, a . s .

202 Y E N - C H A N G C H A N G

Then we have

E l (l - (t Cnun-1 + C n u n - ,]] "~a'~IA] < E l (l - - (t _ ~ ~ _ 2) a) IA].

By induction, we have the result.

PROOF OF LEMMA 3.3. Note that, u0 is given in our model. Using (3.4), n = 1
holds. Thus, we consider n > 2 below.

(~3/~,) + C,~o))

P(T, < T ; , . . . , T~ < T;) = E[I[TI <TE T~ <T*]]

E[E[I[T~<T; T.~<T;] I Dn--1]]
E[E[I[T~<T;] I D~-I]I[T~<T(..... T~_~ <T~_,]]

= E[Fn(Tn)I[T,<T; T n - 1 < ~ T ~ 1]]

] <_ E Fn I[T~<T(..... T,~_t<T;_~I / (by (2.5))

- E [(1 - R n (~)) I [T , _] - - <TI* , ' " ,T '~- 1 <T~* 11

[((Cnun-1)a)]
<_ E 1 - (c3/cl) + C~u~-i I[TI<T; T~_~<T:_I]

(by (3.4), set t = c3/cl)

-- (C3/C1) -Jr- C l u 0)] E[I[T'<T; T n _ I < T ~ _ ,]]

(using Lemma 3.2)

< T~, . . . ,T,~-I < T;_I) .

By induction, we have the result.

P R O O F OF T H E O R E M 3.1. Let A1 = {T1 > T~}, An = {T1 < T;,...,Tn-1 <
T*_I,Tn > T~},* n > 2, note that the sets {An} are disjoint. Thus, we have Ui=n~176 Ai =
{2"1 < T{ , . . . , T~ < T~ }, for n > 2. Then

N~o~o~ : ~ [(n- 1)Sm<~. ~ - ,<~_l ,n>~*l]
n=2

o o

= ~ (n- 1)IA.
n=2

= ~ Iu2,,.~,
n~2

o o

= ~_.I[TI<T E T~<T:,I"
n ~ l

o o

E(Ntotal) = ~-~nP(Tt < Tr , . . . ,Tn < Tn,Tn+l > 72+1)
r ~ l

A SEQUENTIAL SOFTWARE RELEASE POLICY 203

= P(T1 < < T ;)
n= l

- - n=l (c3/c-~T Cluo J / (using Lemma 3.3)

(c1 0)
[C1 tto_ ~ = 1 + - 1 . = o- Cl ~ l U 0

k (C3/Cl) -'r- Cl~t0 /

By (2.7), we have

E(Ttotat) = E (T{ IiTI>T;} +

(
<_ E T~ I[TI > T N +

t
c3

< F_, -~II[TI>T{] +

= E I[TI>T;] +

= ca E I[T~>TN +
el

= c311+ P(T1 < T~) +
Cl

< c3 /c l

\calcl + Cluo)

n=2 k \ "=1

E T* Ilr~<T; T,~_~<~_~,T,~>T,~]
n=2 i=1

E Cll I[TI<Tr T'~-I<T~-I'T'~>T~I
n=2 i=1

oo [c3 �9 /

n~=2[n-~lZ[Tl<Tl Tn i <T~_ l,Tn >Tn*]]
/

E [nI[T~ <T: T._I <T~ 1 ,T">T*I]
n=2

�9 " + P(T1 < T { , . . . , T n < Tn) + ' "]

(using Lemma 3.3).

REFERENCES

Chang, Y. C. and Leu, L. Y. (1998). A state space model for software reliability, Annals of the Institute
of Statistical Mathematics, 50, 789-799.

Chen, Y. and Singpurwalla, N. D. (1994). A non-Gaussian Kalman filter model for tracking software
reliability, Statistica Sinica, 4, 535-548.

Chen, Y. and Singpurwalla, N. D. (1997). Unification of software reliability models by self-exciting point
processes, Advances in Applied Probability, 29, 337-352.

Dalal, S. R. and Mallows, C. L. (1988). When should one stop testing software?, Journal of the American
Statistical Association, 83, 872-879.

Dalal, S. R. and Mallows, C. L. (1990). Some graphical aids for deciding when to stop testing software,
IEEE Journal on Selected Areas in Communications, 8, 167-175.

Johnson, N. and Kotz, S. (1970). Continuous Univariate Distributions-P, Houghton Mifflin Company,
New York.

Nimura, M., Toyota, T. and Yamada, S. (1999). Economic anMysis of software release problems with
warranty cost and reliability requirement, Reliability Engineering and System Safety, 66, 49-55.

Musa, J. D. (1979). Software Reliability Data, IEEE Computer Society Repository, New York.

204 YEN-CHANG CHANG

Okumoto, K. and Goel, A. L. (1980). Optimum release time for software systems based on reliability
and cost criteria, Journal of Systems and Software, 1, 315-318.

Pham, H. (2000). Software Reliability, Springer, Singapore.
Randolph, P. and Sahinoglu, M. (1995). A stopping rule for a compound Poisson random variable,

Applied Stochastic Models and Data Analysis, 11, 135-143.
Ross, S. M. (1985). Software reliability: The stopping rule problem, IEEE Transactions on Software

Engineering, SE-11, 1472-1476.
Runggaldier, W. J. (1993). Concepts of optimality in stochastic control, Reliability and Decision Making

(eds. R. E. Barlow, C. A. Clarotti and F. Spizzichino), 101-114, Elservier Applied Science, London.
Singpurwalla, N. D. and Soyer, R. (1992). Non-Homogeneous autoregressive processes for tracking

(software) reliability growth, and their Bayesian analysis, Journal of the Royal Statistical Society
Series B-Statistical Methodology, 54, 145-156.

Singpurwalla, N. D. and Wilson, S. P. (1994). Software reliability modeling, International Statistical
Review, 62,289-317.

Singpurwalla, N. D. and Wilson, S. P. (1999). Statistical Methods in Software Engineering--Reliability
and Risk, Springer, New York.

Xie, M. and Hong, G. Y. (1999). Software release time determination based on unbounded NHPP
model, Computers and Industrial Engineering, 37, 165-168.

Yamada, S. and Osaki, S. (1985). Cost-reliability optimal release policies for software systems, IEEE
Transactions on Reliability, R-34, 422-424.

Yamada, S., Narhisa, H. and Osaki, S. (1984). Optimum release policies for a software system with a
scheduled software delivery time, International Yournal of Systems Science, 15, 905-914.

Yamada, S., Ichimori, T. and Nishiwaki, M. (1995). Optimal allocation policies for testing-resource
based on a software reliability growth model, Mathematical and Computer Modelling, 22, 259--301.

