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Abst rac t .  Most existing studies on software release policies use models based on 
the non-homogeneous Poisson process. In this paper, we discuss a software release 
policy based on a state space model. The state space model has a Gamma-Gamma 
type invariant conditional distribution. A cost model that removes errors in software 
systems and risk cost due to software failure is used. The optimal release time to 
minimize the expected cost in every test-debugging stage is discussed. 
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i .  Introduction 

An important problem in the software development process is deciding when to stop 
testing and release the software. This decision problem is called the optimal software 
release problem and has been studied widely. Okumoto and Goel (1980) addressed a 
cost-optimal software release policy that  minimizes the total expected software cost. 
Yamada et al. (1984) considered the optimal software release problem using two cases: 
when the scheduled software delivery time is constant and when it is a random vari- 
able with an arbitrary distribution. Ross (1985) developed a model with an estimating 
and stopping rule procedure. Yamada and Osaki (1985) introduced a cost-reliability- 
optimal software release policy that minimizes the total expected cost and satisfies the 
software reliability requirement. Dalal and Mallows (1988, 1990) proposed a stopping 
rule based on Bayesian assumptions and suggested a graphical display for deciding when 
to stop testing software. Randolph and Sahinoglu (1995) discussed the stopping rule of 
a compound-Poisson model. 

Many software cost models have been developed. Most of these software cost models 
were based on non-homogeneous Poisson process (NHPP) models (see for more exam- 
ples, Yamada et al. (1995), Kimura et al. (1999), Xie and Hong (1999), and Pham 
(2000), Chapter 6). For a detailed discussion on the software release problem refer to 
Singpurwalla and Wilson ((1999), Chapter 6). 

As Singpurwalla and Wilson (1994) acutely pointed out, the state space models have 
superior predictive failure data tracking abilities than many other models. Some state 
space models that applied software reliability were proposed. Singpurwalla and Soyer 
(1992) proposed a non-homogeneous autoregressive process, known as a Kalman filter, 
to describe reliability growth. Chen and Singpurwalla (1994) suggested a non-Gaussian 
Kalman filter software reliability application. This model has a Gamma-Gamma type 
invariant conditional distribution. Chang and Leu (1998) proposed another Kalman 
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filter model with an exponential-Poisson type invariant conditional distribution software 
reliability application. 

Chert and Singpurwalla (1997) unified software reliability models using self-exciting 
processes. All of the models based on NHPP or Kalman filters are subsumed by the 
family of self-exciting processes. 

In this paper we present a software cost model based on a state space model. For 
the failure rate in every test-debugging stage to depend on the observation history, the 
optimal software release problem must be approached as a sequential decision problem. 
To avoid complexity, the optimal release time is treated as an open-loop-feedback-op- 
timal (OLFO) control problem (Runggaldier (1993)). That is, the optimal release time 
is chosen based on the current observation and process history and it is assumed that 
no observations will be made in the future. In Section 2, the cost model based on 
a non-Gaussian Kalman filter model is described. Unfortunately, the optimal release 
time in every stage is not a closed form. However, the optimal release time can be 
found numerically. In Section 3, it will be proven that, under some conditions, the total 
testing time in the sequential decision method is finite with probability one. A numerical 
example is provided in Section 4. 

2. The cost model 

2.1 A non-Gaussian Kalman filter model 
The non-Gaussian Kalman filter model proposed by Chen and Singpurwalla (1994) 

is used in our study. Accordingly, let Tn represent the time between the (n - 1)-th and 
the n-th failure (n-th stage, say), 8 n the scale parameter of Tn, Dn = {T1,. . .  ,T,~} the 
collection of observations until n. The model assumptions and the results are shown 
below. 

The observation equation: (Tn IOn) ~ Gamma(wn, Sn). 

The system equation: (CnSn/Sn-1 [ 8 n - l )  ~ Beta(an- l ,Vn-1) .  

The initial information: (80 I Do) ~ Gamma(ao + vo, u0), 
where Cn, Wn, Vn and an are assumed to be known and non-negative. Furthermore, they 
are required to satisfy the condition 

(7n--1 ~- OJn ~ an -I- ~)n, for n ---- 2, 3, . . . .  

(8n--1 I Dn-1) ~ Gamma(an_l  + Vn_l , Un-1 ). 

(Sn I D n - 1 )  "~ Gamma(hrn_ l ,  Cnl tn_l  ). 

(Tn/Cnun-1 I Dn-1) '~ Pearson Type VI 

(p = Wn, q = an- l ) ;  
(see Johnson and Kotz (1970), p. 51). 

The posterior for On: (On IOn) ~ Gamma(an_l  + wn, Un), 

where Un ---- Cnun-1 + Tn. 
To _> 0 is chosen arbitrarily. It reflects the best assessment about the inter-failure times 
prior to observing any data. In the 1-step forecast for the above results the conditional 
density of T~ given the history of the process is 

r(o2n ~- an_l)t~'~-'[Cnun_l] an-1 
(2.1) f n ( t n )  - f ( t n  j D n - 1 )  = + Cnun_ ] " 

The Results 

The posterior of 8n--11 

The prior of 8n : 

The l-step forecast: 
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The conditional density can be found by computing directly. Thus, using (2.1), we 
can rewrite the l-step forecast as 

(2.2) (Tn/(Tn ~-CnUn_l) l Dn_l)  ,-~ Beta(wn, an- l ) .  

In a special case, if Wn is a positive integer, then the reliability function in the stage is: 

(2.3) R~(tn) =--- R(tn I O n - l )  

= (Cnun-1)an-1 [wi~=lP(an_l+i--1 ) t i-1 ] 
r ( a~_ l )  r ( i )  (tn q- Cnun-1)  ""-*+i-1 " 

The proofs for results (2.1) and (2.3) are shown in the Appendix. 

2.2 The cost model 
The following notations are defined: 
c1: testing cost per unit time; 
c2: cost to remove one fault during the test phase; 
Ca: cost due to software failure; 
T: software release time; 
T*: optimal release time in the n-th stage; 
x: mission time; 
NtotaZ: the number of failures during the test phase; 
Ttotal: total testing time. 
The expected software testing cost at the n-th stage is 

(2.4) On(t) --= Clt + c2Fn(t) + c3(Fn(t + x) - Fn(t)), 

where Fn(t) = 1 - Rn(t),  the conditional distribution function of Tn. It is natural to 
assume c~ < c3. The notation meaning can be heuristically explained as follows. At the 
beginning, the optimal release time t~ is chosen using prior information. That  is, t~ is 
found to minimize r If T1 > t~, then the software is released. If T1 < t~, the prior 
information is updated to  the second stage, and an additional optimal release time t~ is 
chosen. The choice will depend on T1. t~ is then found to minimize r If T2 > t~, 
the software is released. If T2 < t~, the prior information is updated to the third stage, 
and a third optimal release time t] is chosen, and so on . . . .  

The proposed algorithm for determining the optimal release time does not minimize 
the expected total test cost. It is designed to minimize the expected test cost in every 
stage and assume that no observations will be made in the future. The KMman filter 
model is a special case of an c~-memory self-exciting process. It is too complex to 
determine the optimal decision for minimizing the expected total cost. 

Note that, in every stage, the optimal release time t n minimizes the expected cost 
(2.4). Thus we have that 

clt  n + c2Fn(t*n) + c3(F(t n + x) - Fn(tn) ) = Cn(t*) _< r = c3Fn(x) <_ e3. 

It implies 

C3 (2.5) < - 
c1 
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Tha t  is, in every stage, the opt imal  release t ime is finite. The optimal release t ime in 
every stage can be determined by solving the equation 

(2.6) r : cl + c2f,~(t) + c3(fn(t  + x) - fn(t))  = O. 

Unfortunately,  in general, the r  roots do not have a closed form. Equat ion (2.6) is 
therefore solved numerically. 

When will testing stop? The tota l  testing t ime is 

m--1 
(2.7) T~o~ol : ~ T~ + 7~, 

0 if T~ < Tn, n __ m - 1 and Tm > T* ,  for m > 1, where ~-~-n=l Tn - O. The tota l  testing 
t ime may be infinite. In the next section, it will be proven that ,  under some conditions, 
the total  test ing t ime is finite wi th  probabili ty one under our model assumptions. 

3. The convergence of Ttotal 

We note tha t  if O'n_ 1 > 1, 

(3.1) E(Tn I D n - i )  - ~ n  O'n_ 1 -- 1 Cn ?tn- l " 

,~n 1)Cn+l > 1, for all n > 1, we have Thus, if o-n-1 > 1 and (~_-:L-i-=7-1 + 

(3.2) E ( C n + l U n  I O n - l )  = C n + l E (  Tn ~- Cn~tn-1 I O n - l )  

= Cn+l o'n-~-- 1 + 1 C~un-1 > C~un-1,  

almost surely (a.s.), for all n > 1. Tha t  is, Cn+lun is a submart ingale with respect to 
o.(D~), the o.-field of Dn. 

Under the assumptions in Subsection 2.1, if w~ is an integer, by (2.3), we have tha t  
the conditional reliability in every stage 

(Ca i rn - I )  an- '  [~-~ F(an-1  + i -  1) t i -1  (3.3) R~(t)  r(o.~_~) /z-,L~=~ r(i) (t + c~ ._~)~- - ,+  ~-' 
t o 

> (Cn 'an - l )  ~ C,n ~n_ 1)o.n_l ] - r ( o . n _ , )  [ r ~ ) ( t +  
= ( Cn~n-i ) ~-1 

t + CnZtn- 1 

Then 

( C__nun-1 I ~"-'  
(3.4) F n ( t  ) :-- 1 - - R n ( t  ) < 1 - ~ ~ - C n U n _ l  �9 

Thus, we have Lemma 3.1 as shown below: 

LEMMA 3.1. Under our model assumptions, i f  {wn} are integers, o-n = o. > 1, and 
c~un_l ~ is a submartingale with (aw-~l -~-l)Cn+l _> 1, f o r a l l n  > 1. For t  > 0 is given, ( t+C.u ._ l  J 

respect to o.(Dn-1) i.e., 1 - ( c ~ . _ 1  )~ is a superTnartingate with respect to a(Dn-1) .  ' t+C,~u~-i 
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The lemma and theorem proofs in this section were relegated to the Appendix. 
Using Lemma 3.1, we have 

LEMMA 3.2. I r A  E cr(D~_l), we have 

tjC----~n-1) IA] (1-- ( t  ClU~ J-P-U 0) E[ A, n > l .  

LEMMA 3.3. Under the assumptions in Lemma 3.1, we have, for all n > 1, 

(3.5) p(T1 ~ T~,.. Tn ~ T.) ~ ( 1 _  ~ Cluo ) a ) n  
' - k + 

The upper bound of E(Ntotal) and E(Ttotal) is found by using Lemma 3.3. 

THEOREM 3.1. Underthe assumptions of Lemma 3.1, E(Ntotal) <_ ( 1 + ~ ) ~ - 1  

and E(Ttotal) < [c3~/( Cluo )a. -- \cl//~ca/ct+Ctuo 

The model will be modified after each stage. The remained testing time and the 
number of failures after each stage are more important than the initial test stage. Note 
that, if D~ is given, the bounds of the expected remaining testing time E(Ttot~l,n [ Dn), 
and the expected number of failures after n-th stage E(Ntotal,n [Dn) ,  can be shown 
below. 

COROLLARY 3.1. 

and 

Under the assumptions in Lemma 3.1, i f  Dn is given, then 

c3 - 1, a.s. 

E(Ttot~l,n IDa) _< c3/cl a.s. 

c3/e 1 Jr Cn+lU n 

Remark. Some conditions are set in Lemma 3.1 such that ( c ~ _ 1  )o is a sub- t +C,~ u,,_ l 
martingale with respect to a ( D ~ - l ) .  This is a lower bound of the reliability function 
R,~(t). Using (2.5), we know that  the optimal release time in every stage is bounded. 
This implies 

(3.6) Rn(tn) ~ (c3/Cl) -[- Cn~tn_ 1 , a.s. 

Then Lemma 3.3 and Theorem 3.1 are proved. In general, other state space models 
could be considered in the software release problem. As in the above discussion the 
total testing time is proven finite with probability one when the following conditions are 
satisfied: 

(i) There exists a sequence of positive variables, {X1, X 2 , . . . ,  Xn , . . . } ,  such that 

R~(t*) > Xn, a.s. for all n > 1. 

(ii) X~ is a submartingale with respect to ~(Dn-1).  
These conditions imply that  there is growth in the lower bound for the reliability function. 
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4. A numerical example 

The  "system 40" da ta  of Musa (1979) is used to i l lustrate the workings of our  cost 
model.  In our s tudy cases below, all of the processes are s topped at  the 53rd stage. 
As the discussion in Chen and Singpurwalla (1994), we set an = 0-)n = ~ ) n  = 2 and 
Cn = C = 0.425. Thus  the model  satisfies the assumptions in L e m m a  3.1. Using (2.1) 
and (2.3), we have the condit ional  density of T~ 

(4.1) f n ( t )  - [t Jr G U n - l ]  4" 

The  dis t r ibut ion funct ion is 

(Cun_l)2(3t -]- Cltn_,) 
(4.2) Fn(t) = 1 - (t + Cun_ l )  3 

Using (2.6), the opt imal  release t ime can be found in every stage by solving the  following 
equat ion 

6t(CUn_l)  2 6(t 9. x ) (Cun-1 )  2 
(4.3) r = c 1 9. (c 2 - c3).  (t 9. GUn- l )  4 9. c3 (t n 9. x 9. Cltn_ l )  4 ~-- 0. 

The  impact  of the cost coefficients and the mission t ime on the release t ime axe studied 
next.  Let  us s tudy  the following cases: 

Case 1: Cl = 0.1, c2 -- 10, c3 = 100000, and x = 30000. 
Case 2: cl = 0.1, c2 = 10, c3 -- 100000, and x = 3000. 
Case 3: cl = 0.1, c2 = 10, c3 -- 10000, and x = 30000. 
Case 4: cl = 0.1, c2 = 1, c3 = 100000, and x -- 30000. 
Case 5: cl = 0.01, c2 -- 10, c3 = 100000, and x --- 30000. 

In every stage, 10000 processes were genera ted  to predict  the future  behavior  of the 
model  and es t imate  the expected to ta l  cost. Note  that ,  using (2.2), the  n - th  inter-failure 
t ime can be genera ted  using the following equation: 

(4.4) Tn = Cun-1/~/(1 - ~), 

where/3 is genera ted  from Beta(2,  2). We set to = 320, for the value is chosen arbitrarily.  
The  opt imal  release t ime is listed after  the 1st stage. The  release t ime in every stage is 
shown in Table 1. Note tha t ,  only Case 5 will release the software between the  52nd and 
53rd failure. The  other  cases will release the software before the 7th failure. Th e  da ta  
between the 9th and 50th stages are skipped. Using Table 1, increasing the value of c3 
or x will result  in a longer test ing t ime in every stage. Decreasing the value of cl or c2 
will result  in a longer test ing t ime in every stage. 

The  expected to ta l  cost in every stage is shown in Table 2. The  expec ted  to ta l  cost 
in stage n is defined as follows: 

(4.5) ClE(T1 9 . . . .  9- Tn 9 - " "  9- Tn+K-1 + T*+K I Dn) + c2E(n + K - 1 I Dn) 

9. c3P(Tn+ K < Tn+ K < Tn+ K + x I Dn), 

where K k 1, a.s. T h a t  is, n + K is the last testing stage. Using Table  2, increasing 
the value of c3 or x will result  in a larger test ing cost. Because the cl and c2 are values 
smaller t han  c3, the impact  of these values is not significant. 
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Table  1. T h e  impac t  of the  cost  coefficients and  the  mission t ime on the  release t ime. 

199 

n Failure t ime  tn O p t i m a l  release t ime t n 

Case 1 Case  2 Case  3 Case  4 Case  5 

1 14390 

2 9000 46609.28 27825.87 18640.32 46611.29 97986.93 

3 2880 47660.24 28265.38 18998.40 47662.23 100221.18 

4 5700 36870.05 23449.16 39259.89 36871.49 77561.55 

5 21800 37586.09 23788.96 15123.73 37587.57 79049.09 

6 26800 61837.02 33457.90 - -  61840.20 131196.64 

7 113540 73079.30 36271.74 73083.66 157345.72 

8 112137 - -  - -  - -  266799.56 

51 31365 102848.67 

52 24313 158000.95 

53 298890 162542.11 

Table 2. T h e  impac t  of  t he  cost  coefficients and the  miss ion  t ime on the  expec ted  to ta l  cost .  

n Expec t ed  to ta l  cost  in every s tage  

Case  1 Case  2 Case  3 Case  4 Case  5 

1 

2 71374.99 38923.22 8511.42 71253.16 72144.20 

3 71800.46 39399.04 9476.45 71706.49 70955.31 

4 78139.22 44768.68 9895.51 77137.01 78218.44 

5 76937.30 44948.89 13070.71 77904.79 77808.99 

6 68883.84 29228.36 - -  68268.18 63327.52 

7 57517.27 21044.21 57462.46 56959.00 

8 - -  - -  - -  40519.03 

51 66897.98 

52 65881.27 

53 38453.57 
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Appendix 

PROOF OF (2.1). From the observation equation and the prior of 0,, for the results, 
we have 

~ - 1  ~nexp(_O,~tn) 
gn(tn IOn) = tn On and r(~n) 
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IV u '~ an-1 l e x p ( - C n u , ~ - l O . )  
7rn(On I Dn-1) = , ~ ~-~, . ['(a~-l) 

where gn(tn I On) is the density of (Tn I On) and 7rn(On I D ~ - I )  is the prior density of 0n. 
Thus, we have 

/0 f~(t~) = f( t~ I D~-t)  = gn(t~ I On). 7rn(O~ { D~_t)dO~ 

F(wn + an_l) t~- l[Cnun-1]  ~ 
r(~n)r(~._l)[tn + C.~n-1] ~"+~"-~ 

Remark. The random variable X has a be ta  prime distribution, a s tandard  form 
of Pearson type VI distribution, if its density is 

h(x) = r ( p  + q)x p-t  
r (p ) r (q ) [ z  + lip+q" 

Now let Yn = T,~ the density of (Yn I Dn-1)  is 
Cnl tn_l  ' 

~ - 1  F(w,~ + an- l ,yn  
h(y~ { D~_~) = r(~n)r(~n_~)[~n + i ] ~ o + ~ o - ,  

Thus, (Yn I On- l )  = (Tn/Cnun-1 I O n - l )  has a be ta  prime distr ibution with p = wn, 
q = O-n_ 1 . 

PROOF OF (2.3). If 03 n = 1, the result is trivial. Thus,  we consider wn >_ 2. By 
(2.1), 

Rn(tn) = f~(t)dt = r(wn + an_,)[Cnun_l] ~ t ~ - 1  
r(wn)F(~n-1) It + Cnun_ll 0~+~-1 dt. 

t.Jn --1 
We can use integration by parts to find f t~ (t+C~u~_~)~+~-x dt. 

Let y(t) = t ~ - 1  and z'(t) = (t + Cnun_l) -(~n+~-D, we have 

J(t~ tw~-I 
(t ~- Cnun_l )  wnTan-1 dt 

( ~  + o ~ _ ,  - 1)(t  + C n ~ _ ~ ) ~ + ~ - - 1  - '  ,~ 

f ~  (~n - 1)t ~~ 
-~- (02 n -~ O'n_ 1 -- 1)(t + CnUn_l) w'~+a'~-l-1 dt 

tw~ -1 

(Wn + an-1 - 1)(tn + Cnun_l) ~n+a~-'-I 

+ wn - 1 ft~ ~ t w~-2 
(Mn -}- an-1 - -  1 (t -~- C n U • _ I )  c o n + a n - l - 1  dt. 

Now, using integration by parts  Wn - 1 times, 

j~t~ ~ t ~ " - I  
(t + Cnun_t) ~-+~.-(dt  
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tw~ - 1 

(02 n -~- O 'n -  1 - -  1 ) ( t n  + CnU~_l) ~ .+~-1-1  
i 

~ tn ~ - ~  I ] j = 2 ( ~  - J + 1) 

+ ~=~ (t,, + C,,~,n-,)~+~-'-~ l l}=,(~n + ~,,,-I- j)" 

Then we have 

Rn(tn) = F(wn + O'n--1)[C?~Un--l] an-1 f t ~  tW"--i 
r ( ~ , ) r ( ~ , _ , )  (t + C,~u,~_,) ~ - + ~ - - ,  dt 

(Cnun-,) an-1 [~--~ F(an-1 + i - 1 )  t~-' 
r(c~n-1) //--~Li=l r( i )  (t~ + CnUn_l) an-l+i-1 
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P R O O F  OF L E M M A  3 .1 .  Now if t > 0 is fixed, for n _> 1, 

Cn+lUn ) 
E t -}- CnwlU n ] D~-I 

Cn+llt n 
= E t + Cn+lU n 

= E t(Cn+lUn - Cnun-1) 
(t + c , ~ + ~ ) ( t  + c~u~_~ 

= E t(Cn+,un - C~u~_~) + 
(t + Cn+lUn)(t + Cnun-] 

> E t(Cn+lUn - CnUn_l) + 
- (t -]- Cn+lltn)(t -~- Cnltn_ 1 

E (t(Cn+lUn -- Cnun-1)-  

k 
t (C~+lu~- C~u~_l) + 

= E (t -~- CnWlUn)(t -~- Cnun_ 1 

Cn un-1 
t ~- Cnun_ 1 

Cn U n-- 1 
t + C~un-1 I D~-, / 

I Dn-1)  

t(Cn+lUn -- Cnun_1)- 
(t + Cn+lUn)(t + Cnun-1) 

I D a - l )  

D~-I)  

I Dn-1) 

1 
t E((Cn+lUn - Cnun-1)-  I Dn- , ) ,  

c ~ + l u ,  is also a by (3.2), E ( ( C n + I ~ n  - C ~ n - 1 ) -  I D n - 1 )  = 0, a.s. Thus,  we have ~+c~176 
submartingale with respect to a ( D n ) .  Moreover, the function 9 ( z )  = z ~ is an increasing 
convex function for z > 0 when ~ > 1. Then u~ing Jensen'~ inequality, (~+~:1§ is a 
submartingale with respect to a(Dn). 

PROOF OF LEMMA 3.2. Note that if n = 1, it is trivially. Now for n > 2, 

= O, a . s .  
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Then we have 

E l ( l - ( t  Cnun-1 + C n u n - , ]  ] "~a'~IA] < E l ( l - -  ( t  _ ~ ~ _ 2 )  a )  IA]. 

By induction, we have the result. 

PROOF OF LEMMA 3.3. Note that, u0 is given in our model. Using (3.4), n = 1 
holds. Thus, we consider n > 2 below. 

(~3/~,) + C,~o) ) 

P(T,  < T ; , . . . ,  T~ < T;)  = E[I[TI <TE ..... T~ <T*]] 

E[E[I[T~<T; ..... T.~<T;] I Dn--1]] 
E[E[I[T~<T;] I D~-I]I[T~<T( ..... T~_~ <T~_,]] 

= E[Fn(Tn)I[T,<T; ..... T n -  1 < ~ T ~  1] ] 

] <_ E Fn I[T~<T( ..... T,~_t<T;_~I / (by (2.5)) 

- E [ ( 1 - R n ( ~ ) ) I [ T ,  _ ] - -  <TI* , ' " ,T '~-  1 <T~* 11 

[ ( (  Cnun-1 )a) ] 
<_ E 1 - (c3/cl) + C~u~-i I[TI<T; ..... T~_~<T:_I] 

(by (3.4), set t = c3/cl) 

--  (C3/C1) -Jr- C l u 0 )  ] E[I[T'<T; ..... T n _ I < T ~ _ , ] ]  

(using Lemma 3.2) 

< T~, . . .  ,T,~-I < T;_I) .  

By induction, we have the result. 

P R O O F  OF  T H E O R E M  3.1. Let A1 = {T1 > T~}, An = {T1 < T;,...,Tn-1 < 
T*_I,Tn > T~},* n > 2, note that the sets {An} are disjoint. Thus, we have Ui=n~176 Ai = 
{2"1 < T{ , . . . ,  T~ < T~ }, for n > 2. Then 

N~o~o~ : ~ [ (n-  1)Sm<~. ..... ~ - ,<~_l ,n>~*l ]  
n=2 

o o  

= ~ (n-  1)IA. 
n=2 

= ~ Iu2,,.~, 
n~2 

o o  

= ~_.I[TI<T E ..... T~<T:,I" 
n ~ l  

o o  

E(Ntotal) = ~-~nP(Tt < Tr , . . .  ,Tn < Tn,Tn+l > 72+1) 
r ~  l 
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=  P(T1 < < T ; )  
n= l  

- -  n=l (c3/c-~T Cluo J / (using Lemma 3.3) 

( c1 0 ) 
[ C1 tto_ ~ = 1 +  - 1 .  = o- Cl ~ l U 0  

k (C3/Cl) -'r- Cl~t0 / 

By (2.7), we have 

E(Ttotat) = E (T{ IiTI>T;} + 

( 
<_ E T~ I[TI > T N + 

t 
c3 

< F_, -~II[TI>T{] + 

= E I[TI>T;  ] + 

= ca E I[T~>TN + 
el 

= c311+ P(T1 < T~) + 
Cl 

< c3 /c l  

\calcl + Cluo) 

n=2 k \ "=1 

E T* Ilr~<T; ..... T,~_~<~_~,T,~>T,~] 
n=2 i=1 

E Cll I[TI<Tr ..... T'~-I<T~-I'T'~>T~I 
n=2 i=1 

oo [ c3 �9 / 

n~=2[n-~lZ[Tl<Tl ..... Tn i <T~_ l,Tn >Tn*]] 
/ 

E [nI[T~ <T: ..... T._I <T~ 1 ,T">T*I] 
n=2 

�9 " + P(T1 < T { , . . . , T n  < Tn) + ' " ]  

(using Lemma 3.3). 
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