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A b s t r a c t .  We prove t h a t  uni form general ized order  s ta t i s t ics  are un imodal  for an 
a rb i t r a ry  choice of model  parameters .  The  result  is appl ied  to  es tabl ish op t imal  
lower and upper  bounds  on the  expec ta t ions  of general ized order  s ta t i s t ics  based on 
nonnegat ive samples in the  popu la t ion  mean  unit  of measurement .  The  bounds  are 
a t t a ined  by two-point  d is t r ibut ions .  
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1. Introduction and notation 

(1.1) 

where 

Let  U denote  a s tandard  uniform random variable, and let X have a dis tr ibut ion 
funct ion G. If X is nonnegative,  then  its mean  can be wr i t ten  as 

i 
a 1(1) 

# = E X  = [1 - G(x)]dx, 
J0 

G - l ( x )  = inf{y : G(y) > x}, x E (0, 1], G - l ( 0 )  = G - l ( 0 + ) .  

Note tha t  bo th  # and G - l ( 1 )  may  be infinite. Following Kamps  (1995), for given n C 
Af and positive parameters  7 1 , . . . , ? n ,  we define uniform generalized order  statist ics 
U 1 , . . . ,  Un which have the common densi ty  funct ion 

, .  ) (1.2) f U1 ..... u o ( u l , . . . , u n ) = k k 2  ? j -1 -1 

suppor ted  on the cone 0 _< ul  <_ . . -  _< un < 1 o f ~ .  It is shown in Cramer  and 
Kamps  (2003) tha t  the dis t r ibut ion of U1, U2, . . . ,  Un is identical wi th  tha t  of 1 - B.yl, 1 - 

n 
B-~IB~2 , . . . ,  1 - 1 ~ i = 1  B"yi, where B ~ ,  i = 1 , . . . ,  n, are independent  r andom variables 
with respective Beta  distr ibutions B(?i ,  1), i = 1 , . . . ,  n, i.e., power distr ibut ions wi th  
exponents  7i. This  explains the fact t ha t  0 _< U1 _< . . .  _< U~ < 1 almost surely. 
Another  consequence of the representa t ion  is tha t  the marginal  density function of the 
r - th  uniform generalized order s tat is t ic  can be wr i t ten  in terms of a par t icu lar  Meijer 's 
G-function, i.e., 

(1.3) f~(t) = fu~(t) = 7i G~: ~ 1 -  71 , . . . ,7~  t e l 0 , 1 )  
\~=1 / 7 1 - 1 , . . . , ? ~ - 1  ' 
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(see also Mathai ((1993), pp. 83-84)). Obviously, fr(t) is positive and continuous for 0 < 
t < 1. Subsequently, the marginal distribution function of the r-th uniform generalized 
order statistic is denoted by FT. 

Generalized order statistics based on some distribution function G and parameters 
71 , . . . ,  % > 0 were introduced by Kamps (1995) via the quantile transformation 

x r  = G - 1  (UT),  1 < r < n .  

Accordingly, the cumulative distribution flmction of XT is given by GT = F r o  G. If 
G ( 0 - )  = 0, then 

( 1 . 4 )  : [1 - F T ( a ( x ) ) ] d x  = 

In fact, the latter representation holds true for arbitrary G with a finite mean. 
In this paper, we establish sharp lower and upper bounds for the expectation of 

generalized order statistics (1.4) based on an arbitrary distribution function G with a 
nonnegative support and finite mean (1.1) in terms of the mean unit of measurement. 
This is an extension of results in Papadatos (1997), where ordinary order statistics 
of independent identically distributed samples were studied. Rychlik (1993) presented 
analogous bounds for arbitrary linear combinations of order statistics based on dependent 
identically distributed samples. Moriguti (1953), Nagaraja (1978), Raqab (1997), and 
Balakrishnan et al. (2001) derived sharp mean-variance bounds on the expectations of 
order statistics, record values, k-th record values, and progressively type II censored 
order statistics, respectively, under an additional assumption that G has a finite second 
moment. A comprehensive study of mean-variance bounds for order and record statistics 
from general and restricted populations is presented in Rychlik (2001). The problems 
of moments existence for order statistics and records were examined by Sen (1959), 
Nagaraja (1978), and Lin (1987). 

By (1.4), it is clear that the bounds on the expectations of generalized order statis- 
tics depend on properties of the density functions given in (1.3). The crucial ones are 
unimodality and behavior at the boundaries of the support interval [0, 1]. These are 
established in Section 2. In Section 3 we derive sharp mean bounds on the general- 
ized order statistics based on nonnegative random variables. Applications of the results 
of Section 2 to mean-variance bounds on generalized order statistics are presented in 
Cramer et al. (2002). 

2. Unimodality of uniform generalized order statistics 

Since we consider the expectation of a single generalized order statistic which has a 
representation 

X r = G - I ( I - I - I B ' ~ )  ' i = 1  

we can assume without loss of generality that V1 _> "'" _> 7T > O. Suppose that  the 
parameters have 1 < g < r distinct values 51 > . . .  > 5e with respective multiplicities 
d l , . . . ,  de (g E {1 , . . , ,  r}). Precisely, we arrange the parameters in descending order 

211 . . . . .  "Ydl = 51 > --- 

> " [ d 1 + d 2 + ' " + d i - l + l  = "" " = " Y d l + d 2 + ' " + d l  ~-- ~ i  > " " " 

> ~ d l T d 2 + ' " + d e - l + l  . . . . .  " [ d l + d 2 + ' . ' + d e  = (~e" 



B O U N D S  F O R  G E N E R A L I Z E D  O R D E R  S T A T I S T I C S  1 8 5  

In the sequel, we use some relations satisfied by Meijer's G-functions tha t  can be found 
in Mathai  (1993) (see also Cramer  and Kamps (2003)). 

LEMMA 2.1. Le t  r >_ 2 and z E [0, 1). 

(i) Gl1:~ z '/1'/1-- 1 ] = z~l-1 

(ii) (,/r - "/1]~Jr,r Z ,/1 - 1 , . . .  , ' / r  - -  1 

(iii) 

r 
Gr-l ,O [ ' / 1 ,  �9 �9 �9 , " / r - - 1  

= r - - l , r - - 1  Z "/1 - -  1 , . . . , ' / r _ l  - -  1 
[_ 

~zz__r, ~ z ' / 1 - 1 , . . . , % - 1  

1 ( 7 % _  1 ) G ; i o  z 
Z ' / 1  -- 1 , . . . , 7 r  -- i 

] or lo [ 
- -  r - - l , r - 1  Z 72 -- 1 , . . .  ,Tr  -- 1 

or 1 o[  ]) 
- -  r - - l , r - - 1  Z 7 1  - -  1 , . . . ,  % - 1  - 1 

zo r[  ] r[z ] (iv) a r,O 71, - �9 �9 , '/r G r , O  71 + a , . . . ,  7r + a 
' 71--  1 , . . . , 7 r - -  1 ' 7 1 + a - -  1 , . . . , T r  + a _  1 

PROOF. (i) Mathai  ((1993), p. 130); (ii) Cramer  and Kamps (2003); (iii) Mathai  
((1993), p. 94, Proper ty  2.14) in connection with Mathai  ((1993), p. 70, Proper ty  2.2); 
(iv) Mathai  ((1993), p. 69, Proper ty  2.1). 

In Lemma  2.2, we determine limits of the density function (1.3) of the r - th  uniform 
generalized order statistic at the ends of the support  interval [0, 1). For U1 = 1 - B~I , 
we simply have 

(2.1) A ( t )  : 71(1 - t F  I -1 ,  o < t < 1, 

and the conclusions are trivial. 

LEMMA 2.2. Let  r > 2. 
(i) j r (0 )  = 0. 

(ii) / f v r  < 1 then limt--.l_ j r ( t )  = c~. 
(iii) / f T r  = 1 and % - 1  = 1 then l imt- . l_  j r ( t )  = c~. 
(iv) / f7~  = 1 and 7r-1 > 1 then l imt~ l_  j r ( t )  = I-Ii=lr-1 7, E (1, c~). 
(v) I fT~  > 1 then limt-~l_ j r ( t )  = jr(O) = O. 

PROOF. 

( z 2 )  

(i) If 71 . . . . .  % (e.g., in the case of k-th record values), we have 

j r ( t )  - (r ~Z~-' )[ (1 - t) v1-1 [_ ln(1 - t)] r - l ,  
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which vanishes at 0. If V1 > 3'2, using Lemma 2.1(i) and (ii), we find 

(2.3) f2(t) -- ")'1"/2 [(1 - t) ~2-1 - (1 - t ) 'h-1] ,  
7 1  - -  3`2 

which is 0 at 0. For the case 71 > V~ with r > 3, the result follows by induction with 
respect  to r. It suffices to combine (1.3) with the recurrence relation of Lemma 2.1(ii). 

(iii) If ")'1 . . . . .  % = 1, then the s ta tement  immediate ly  follows from (2.2). 
Suppose that  V~ = %-1  = 1 and 3`1 > 1 such that  g _> 2 and de >_ 2. Due to Cramer  and 
Kamps  (2003), the density function (1.3) can be wri t ten as 

(2.4) 
e di  

f~ ( t )  = E E cij(1 - t ) ~ - I  ( -  ln(1 - t ))  d ' - j .  
i = 1  j = l  

I f l < i < g ,  t h e n h i >  1, and 

lim (1 - t) ~ ' - 1 [ -  ln(1 - t)] & - j  = O. 
t---+ 1 -- 

Hence, we only need to consider the summands  of (2.4) with i = g. Using ( - l n ( 1  - 
t))  1 - j  --~ O, t --, 1 - ,  for j > 2, we find from cn > 0 (cf. Cramer  and Kamps  (2003), 
Theorem 3.4) 

(2.5) t---+l-lim f~( t )  = t l~a_[-  ln(1 - t)] de-1 Ice1 + cej(-ln(1-t)) 
j = 2  

Y 

---,0 

---- + c o .  

(iv) We have g > 2 and de = 1. Proceeding as the the proof  of (iii), we combine 
(2.4) with (2.5), and obtain  

lim f r ( t )  = c e l .  
t - - , 1  - 

The final representat ion of the right-hand side follows from a result  of Cramer  and Kamps  
((2003), Theorem 3.4). 

(ii) By  (1.3) and Lemma 2.1(iv), for a = 1 - Vr > 0, we obta in  

(~_ i~1)  1 G~,0 [ l _ t  3`1 + a , . . . , 3 ` r  + a ] (2.6) f~(t) = 3`i (1 - t )  a - r ' r  v l + a - l , . . . , v r + a - 1  

=(H 1 
i=, (1 - t )  a (7i + a) 

C, r'0 [ t V l+a , - . - , v~+a  ] 
X w r ,  r 1 - -  [ 71 + a -  1 , . . . , %  + a -  1 J 

The lat ter  p roduct  is the density function of a uniform generalized order statist ic with 
parameters  "/1 + a _> --- > % + a = 1, which for t ~ 1 -  tends to  a positive, possibly 
infinite value, as we have proven in Off) and (iv). Since l i m t ~ l _ ( 1  - t) -a  = +co ,  the 
same holds for (2.6). 

(v) If 71 . . . . .  % > 1, we immediately conclude the claim from (2.2). For ")'1 > 
% > 1, the proof  is carried out  by induction. If r = 2, the result easily follows from (2.3). 
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Suppose now tha t  this holds for some r >_ 2 and arbi t rary parameters  ' ~ 1 , . - . ,  "~r > 1. 
Consider a uniform generalized order statistic with parameters  71 >_ ' "  > 7r+1 > 1 
such tha t  71 > 7~+1. In particular, the assertion is true for the density functions f~ 
and ]~ of the uniform generalized order statistics with parameters  71 _> "'" > 7~ > 1 
and 72 _> "'" _> 7~+1 > 1, respectively. Since 71 > 7~+1 we obtain from the recurrence 
relation of Lemma 2.1(ii) 

f +l(t) - 
7r-+-1 - -  71 

[Tr+lfr(t)  -- 71~(t)], 

which implies the final conclusion. 

THEOREM 2.1. The density function of each uniform generalized order statistic is 
unimodal. 

For r -- 1, the density function is strictly increasing, constant and strictly decreasing 
for 71 < 1, = 1 and > 1, respectively. 

For r > 2, we have the following. If  % < 1, then the density function is strictly 
increasing. Otherwise it is strictly unimodal with a mode in (0, 1). 

PROOF. For r = 1, the assertions are easily concluded from formula (2.1). I f r  > 2 
and 7r -< 1, then, by Lemma 2.1(iii), we find 

d f r ( t ) = f ~ ( t ) - -  1- -~[(1--7r) fr ( t )+7~f~_l( t )]>O,  t E ( O ,  1), 

and so fr(t) is increasing, because bo th  density functions f~ and f~- I  are positive in (0, 1). 
If 71 = 72 > 1, we differentiate (2.2) with r = 2, and conclude tha t  

f (t) -- 77 (1  - t) 1-211 + (71 - 1)in(1 - t)l 

has the unique zero 

t = l - e x p (  711 ) _  1 

For 71 > 72 > 1, differentiating (2.3) yields 

(0,1). 

f~(t) - 7172 [(72 - 1)(1 - t) ~2-2 - (71 - -  1)(1 - t) "n-2] 
71 - 72 

with the unique solution 

(72 - i ~ I/(~-72) 
t = l -  \ ~ )  E(0 ,1 ) .  

Since f2(0) -- f2(1) = 0 in both  cases, the density function f2 is unimodal.  
Suppose now tha t  f r  is strictly unimodal  wi th  a mode z~ E (0, 1) and f~(t) # O, 

t # z~, for some r _> 2 and arbi t rary parameters  71 _> "'" _> 7r > 1. We show tha t  the 
same holds for f~+l with 71 _> "'" _> % >_ %+1 > 1. We use some arguments  from the 
proof of Lemma 2.7 in BMakrishnan et al. (2001). First  we define the  function 

(2.7) gr(t) = (1 - t)2-'r~f'~(t), t E (0, 1). 
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By Lemma 2.1(iii), we obtain 

1 
3 ' 1 , .  �9 �9 , 3 ' r  [ 

J 3'1 - 1 , . . . , 3 ' r  - 1 

- -  r - l , r - 1  1 - 

3'1 - 1 , . . . ,  3'r-1 - 1 

Differentiating the function, applying Lemma 2.1(iii) again and some calculations, yield 

(2.8) 9;(t) = 3'r(1 - t) m~ lg~- l ( t ) ,  t e (0, 1), 

where m~_l = 7~-1 - % - 1. 
Note tha t  by assumption f~(t) is positive for t < z~ and negative for t > zr. By 

(2.7) and (2.8), the same holds for g~(t) and g'~+l(t), respectively. Therefore, 9r+l is 
strictly increasing in (0, Zr) and strictly decreasing in (zr, 1). 

The function f~+l(t) is positive for t E (0,1), and tends to 0 at the ends of the 
interval (cf. Lemma 2.2(v)). This implies 

lim fr~+l(t) < 0 < lim fr  
t---~ 1 -  t - * 0 +  

By the definition of g~+x this means tha t  Co and Cl exist such tha t  gr+l(t)  > 0, t E (0, e0), 
and g~+l(t) < 0, t C (ex, 1). Since gr+x is strictly increasing up to z~ and then  strictly 
decreasing, it has exactly one zero Zr+l in the interval (0, 1). Moreover, zr < Zr+l. 
Since the zeros in (0, 1) of 9r+1 and f~+l coincide we find tha t  f~+l has exactly one 
zero in (0, 1), i.e., zr+l.  Hence, f r  is positive for 0 < t < zr+l and negative for 
Z~+l < t < 1. Consequently, f r+ l  has at most  one local extremum. From Lemma 2.2(v) 
we know tha t  f~+l (0) = f~+l(1) = 0 such tha t  f~+l has at least one local maximum in 
(0, 1). This proves the assertion. 

As a by-product  of the above proof, we deduce tha t  the sequence of modes z~ of 
density functions f~ is increasing if % > 1. 

3. Mean bounds 

Suppose tha t  X has a distr ibution function G such tha t  G ( 0 - )  -- 0 and a finite 
mean (1.1). Then,  by (1.4), we have 

(3.1) 

where 

G - 1 ( 1 )  

E X r  = H,.(G(x))[1 - G(x)]dx, 
dO 

g r  (u) - 1 - Fr 
1 - u  ' u E [0,1), 

is a positive, continuous function, bounded except for in a neighborhood of 1, and 

0 < l im H (u) = f (1) < 
u--*l  -- 



BOUNDS FOR GENERALIZED ORDER STATISTICS 189 

By (3.1) and (1.1), we have 

(3.2) A~# <_ EX~ < B~#, 

where 
A~ = in f{H~(u) :  u �9 [0,1)}, 

This yields the relation 

0 < A r _ < H r ( 0 ) = l < B r  <_+c~. 

We now prove that  the bounds  (3.2) are sharp. 
Let X be a two-point  random variable such that  

B~ = sup{H~(u) :  u C [0,1)}. 

- ) = l - a ,  P ( X = 0 ) = a ,  P X -  1 a 

with the dis t r ibut ion function 

0, x < 0, 1 p 
~ r x ~ =  a, 0 < x <  - - a  

1, _< x.  

(3.3) 

Then X is nonnegative almost  surely, E X  = #, and 

a e [0, 1), 

G-x(1) 

E X r  = Hr(a)[1 - G(x)]dx -- Hr (a )# ,  
d o  

which leads to A~ <_ H,-(a) <_ B,. for all a 6 [0, 1). 
Note  that  a = 0 implies tha t  X is concentrated at #. If Ar = Hr (a )  for some 

a C [0, 1), then the lower bound  in (3.2) is a t ta ined by the two-point  dis tr ibut ion func- 
tion (3.3). The  analogous s ta tement  holds if Br = H~(a) for some a e [0, 1). 

If Ar < H~(a) for all a E [0, 1), the lower bound  is given by A~ = f~(1). This  yields 

(3.4) Vc > 0 3a~ C [0, 1) Vu E [a~, 1) HT(u) <_ f~(1) + e. 

Let X~ be a random variable with distr ibution function 

(3.5) 

0, x < 0 ,  

G~(x) = aE, 0 _ < x <  1 - a ~  

P 
1, x_> 1 - a s "  

Then Xc >_ O, EX~ = # and 

(3.6) ~0 
G21(1) 

E ( X s ) r  = g~(as ) [1  - G~(x)Jdx <_ [f~(1) + e l , .  

This  means tha t  the bound  A~ = f~(1) is a t ta ined in limit by sequences of two-point  
distr ibution functions (3.5) with e = en "~ 0. If  +oc  > B~ = f~(1) > Hr (a )  for all 
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a C [0, 1), we get the same conditions for at tainabi l i ty  of the upper bound,  as we repeat 
the above arguments,  replacing +e  by - e ,  and reversing the inequality signs in (3.4) 
and (3.6). 

If B~ = f~(1) = +c~, then for every arbitrarily large M > 0 there is aM < 1 such 
tha t  for all O~ M ~ U < 1, we have Hr(u) > M.  Taking a two-point random variable X M  
with distr ibution function 

(3.7) 

0, x < O, L 

GM(X) = aM, 0 < X < 1 U '  

P , 
1, x >  1----~M 

we have E X M  =/z ,  and 

~O 
GM 1(1) 

E(XM),-  = H~(aM)[1 -- GM(x)]dx > M . # .  

Summing up, we have proved tha t  if the global ex t remum (either lower or upper) of 
H~ is a t ta ined at some point a E [0, 1), then the respective bound is a t ta ined by (3.3). 
Otherwise it is a t ta ined in limit by sequences of distributions (3.5) and (3.7) with ~ -- 
e~ "N 0 and M = M~ 7 +c~, respectively. In any case, it suffices to take into account 
two-point distributions only. 

Note tha t  it is possible to take sequences of distr ibution functions different from 
(3.5) and (3.7). It is sufficient to consider any nonnegative random variables X~ with 
mean # and such tha t  P ( X n  = O) >_ aen (O~Mn, respectively). If H~(a) amounts  to either 
Ar or B~ for all a E A C [0, 1), and A contains more than  a single point,  then some 
distributions different from (3.3) a t ta in  the respective bound in (3.2). The necessary and 
sufficient condition is 

G(x) e H j I ( A ~ )  Yx e [0, G- l (1 ) ) .  

Now we specify the bounds (3.2) for the generalized order statistic Xr with arbi- 
trari ly chosen parameters  r >_ 1 and 3'1 _> "'" _> % > 0. 

THEOREM 3.1. Let X >_ 0 have a finite mean #. 
(i) I f  r = 1 and ~/1 = 1, then 

EX~  = It. 

(ii) I f  r = 1 and 71 > 1 then 

0 <_ E X r  < #. 

The lower bound is attained in limit by the sequences of the form (3.5) with e "x~ O. The 
upper bound is attained by the degenerate distribution concentrated at p. 

(iii) I f r  > 2 and % = 1 < %-1 ,  then 
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The former inequality becomes equality for X concentrated at #. The latter one holds in 
limit for (3.5). 

(iv) I f  either 7r < 1 with r > 1 or 7r = 3'~-1 = 1 with r > 2, then 

# <_ EX~ < +c~. 

The conditions of attainability of the bounds coincide with those of the previous case, 
with (3.5) replaced by (3.7). 

(v) I f  v~ > 1 with r > 2, then 

o < <_ A(a)  

for a unique a E (0, 1) satisfying 

(3.8) 1 - F~(a) = ( i  - a)fr(a).  

The lower bound is attained by sequences of (3.5) with ~ "~ O. The upper bound is 
attained by (3.3) with a defined in (3.8). 

PROOF. It SUffices to determine the bounds only. The conditions of at tainabi l i ty  
can be deduced from the arguments preceding the theorem. The  first s ta tement  is trivial, 
because for 71 = 1 the distributions of X and X~ are identical. 

(ii) If 71 > 1, then, Hi (u )  = (1 - u) ~1-1 is strictly decreasing with B1 =/-/1(0) = 1 
and A1 = f l  (1) = 0. 

If either (iii) or (iv) hold, then f r  is strictly decreasing by Theorem 2.1 wi th  f r  (0) < 
1 < f~(1) < +oc,  and so Fr is strictly convex. Therefore, H~ is strictly increasing, 
and Ar = Hr(0) = 1 < Br = h ( 1 ) .  Under conditions (iii), we use Lemma 2.2(iv) for 
evaluating the upper bound. Otherwise it is infinite. 

(v) By Theorem 2.1, the distr ibution function F~ is first strictly convex and then 
strictly concave. Relation f~(0) = 0 implies tha t  F~(x) < x in a neighborhood of 0, and 
furthermore Br > Hr(0) = 1. Moreover, there is a unique point a less t han  the mode Zr 
of fr such tha t  the line with slope Hr(a)  is tangent  to the graph of Ft .  This leads to the 
maximal  slope H~ (a). We have Br = Hr (a), and the condition is 

1 - Fr(a)  _ F~(a) = fr(a) 
H~(a) - 1 - a 

so tha t  Br = fr(a).  The lower bound is here A~ -- f~(1) -- 0. This ends the proof. 

The bounds of Papadatos  (1997) for ordinary order statistics can be deduced from 
Theorem 3.1 (ii), (iii), and (v) in the cases of the sample minima, maxima and nonextreme 
order statistics, respectively. Similar conclusions hold for progressive type II censored 
order statistics. Suppose tha t  r > 2. Then we have V1 > "'" > Vr-1 > 3'r _> 1 where 
~'r = 1 holds if r -- n and no items are wi thdrawn from the experiment after the last 
failure. In tha t  case we obtain the bound  

~t ~ EXn ~ (n~Ii\i=l ' ~ - z  1) " 

Otherwise, case (v) holds and equation (3.8) is a polynomial  equation in a which corre- 
sponds to tha t  one in Balakrishnan et al. ((2001), eq. (12)). 
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For record values, we apply evaluations of Theorem 3.1(iv). The infinite upper 
bound is not a surprise here, because Naragaja (1978) constructed distributions with 
finite means such that the expectations of respective records are infinite. For k-th records, 
we refer to Theorem 3.1(v). 

It is evident that the bounds of this section can be extended to arbitrary linear 
combinations of generalized order statistics. Then we have 

n ~oG-I(1) ~ 
E E crXr = crH~(G(x))[1 - G(x)]dx, 

r= l  r ~ l  

and look for the extrema of the function 

n n 

E c~Hr(u) E c~l - Fr(u) = - - - -  , u e [ 0 , 1 ) .  i - - u  
r= l  r = l  

The solutions strongly depend on the choice of the coefficients c~, 1 < r < n. In fact, 
we can also evaluate combinations of generalized order statistics coming from different 
models, e.g., ordinary order statistics, progressive type II censored order statistics, and 
record values. 
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