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A b s t r a c t .  We consider waiting time problems for a two-dimensional pattern in a 
sequence of i.i.d, random vectors each of whose entries is 0 or 1. We deal with a 
two-dimensional pattern with a general shape in the two-dimensional lattice which 
is generated by the above sequence of random vectors. A general method for obtain- 
ing the exact distribution of the waiting time for the first occurrence of the pattern 
in the sequence is presented. The method is an extension of the method of condi- 
tional probability generating functions and it is very suitable for computations with 
computer algebra systems as well as usual numerical computations. Computational 
results applied to computation of exact system reliability are also given. 
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1. Introduction 

This  paper  is concerned with the following waiting t ime problem for a two-dimen- 
sional pat tern .  Let  X~, i = 1, 2 , . . .  be a sequence of m-dimensional  i.i.d, r andom column 
vectors whose entries are {0, 1}-valued i.i.d, r andom variables. Here, we assume tha t  

P(X~,j = 1) = p ( =  1 - q), 

where Xij means the j - t h  element of X i .  Suppose we are given a two-dimensional  
pa t t e rn  D of l ' s  of a finite width  whose height is at most  m. 
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Example 1. 
shape, 

( i . I )  

We let m = 5 and let D be the following pattern of l 's  with a diamond 

1 

1 1 1  

1 1 1 1 1  

1 1 1  

1 

We are interested in the first occurrence of D in the sequence of X 1 ,  X 2 ,  . . . .  

following array is a realization of occurrence of D, 
The 

1011010111101011101001111110100101 

0111101001101100111110100110101111 

1010100011011011100001011011011111 

1101011110100101100110010110101110 

1011100101011110111101111010110110, 

which shows that  in this realization the pattern D has occurred for the first time in the 
34th trial. 

In this paper we derive the exact distribution of the waiting time for the first oc- 
currence of a two-dimensional pattern by using the method of conditional probability 
generating functions (p.g.f.'s). 

Our motivation for investigating such a complicated problem is provided by two- 
dimensional engineering consecutive systems. Salvia and Lasher (1990) introduced two- 
dimensional consecutive systems with an example of a group of connector pins for an 
electronic device which includes some redundancy in its design, such that the connec- 
tion is good unless a square of size 2 (4 pins) is defective. Though they restricted the 
discussion to square patterns in the paper, they noted that  it is desired to determine the 
probability of detecting patterns of an arbitrary shape. 

Our result can be applied to determine the exact reliability of the above two- 
dimensional consecutive system which operates unless the components corresponding 
to a given pattern of an arbitrary shape are defective, when the column size of the 
pattern is the same as that  of the system. 

When the column size of the pattern is less than the size of the system, we have to 
consider more general problem such as the sooner waiting time or the first waiting time 
problems, which will be treated in Section 3. In order to treat precisely a pattern D 
whose column size is less than m, we must determine its scanning rectangular window 
R which covers D. Generally, the width of R is the same as that  of D, but the height of 
R can be greater than or equal to that  of D. The scanning rectangular window R scans 
in the sequence of m-dimensional random column vectors and checks within the window 
whether the pattern occurs or not. If the height of R is less than m, R can move not 
only horizontally freely but also vertically by m -  (height of R) steps. For example, when 
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1 

m = 5 and D = 111, we can consider the following six scanning rectangular windows: 
1 

/r~ 1 

R 4  

* 1 .  

1 1 1  

�9 1 .  , 

11  

�9 1 

R 2  z 

/1~5 z 

. 1 .  

1 1 1  

. 1 .  

* 1 .  

1 1 1  

* 1 .  

, R 3  = 

, R 6  = 

* * * 

, 1 ,  , 

1 1 1  

* 1 .  

11  , 

. 1  

where �9 means "1" or "0" whichever occurs there. Of course, the meaning of occurrence 
of the pattern is determined by the selection of the scanning rectangular window. For 
example, when we select R1 for the scanning window, we think the pattern D occurs 
if and only if D occurs in the highest position (between the first and the third rows). 
However, when we select R6, we think the pattern D occurs if D occurs in any position, 
i.e., between the first and the third rows, between the second and the fourth rows, or 
between the third and the fifth rows. The follwing array is a realization of the first 
occurrence of the pattern for the scanning rectangular windows R2, R4, R5 and R6, 

1011011001001000101001001100100100110 

0100101001110010000110001010101111011 

1000000110011101111000000101001001111 

1110000010100001000001110001010101110 

1000110011010001001010111100110101000. 

In this case the pattern occurs between the second row and the fourth row. 
Over the last few decades, waiting time problems for occurrences of a pattern in 

a univariate random sequence have been investigated by many authors (e.g., Blom and 
Thorburn (1982), Fu (1996), Koutras (1997), and Uchida (1998)). In particular, the 
finite Markov chain imbedding technique studied by Fu and Koutras (1994) gave us 
possibilities of deriving some exact waiting time distributions even in some dependent 
random sequences (see also Balakrishnan and Koutras (2002)). However, the problem 
in the present paper is much more complicated than ever. Hence, since it is difficult 
to give an intuitive conditioning, we use the method of conditional p.g.f.'s with an idea 
of systematic conditioning, which leads an algorithm to generate a linear system of 
equations of conditional p.g.f.'s. By using computer algeba systems, we can derive the 
exact distributions by solving the system of linear equations of the conditional p.g.f.'s. 

2. Waiting time in the case that the height of the window is m 

When the height of the scanning rectangular window is equal to the column size of 
the random vectors, the window can not move vertically, and the waiting time problem 
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becomes relatively simple. First,  here we explain in this case our basic idea to derive 
the exact distr ibution of the waiting t ime for the first occurrence of a two-dimensional 
pa t te rn  D. 

Suppose we are given a two-dimensional pa t te rn  D and the scanning rectangular  
window R which covers D. Then, R -- Jr1 r2 .-.  re] is an m x g matr ix  of "1" or "*" 
elements. For example, we may suppose that  D is given by (1.1). Then, the scanning 
rectangular  window R becomes uniquely 

- * * 1  

* 1 1  

R =  1 1 1  

* 1 1  

* * 1  

1 .  

1 1  

1 .  

- - I t 1  r2 - - .  rs] .  

For each i = 1, 2 , . . .  ,~, let R(i) be the subrectangular  from the left 

R ( i )  = It1,  r 2 , . . . ,  

When  we t reat  the waiting t ime problem for the first occurrence of the two-dimensional 
pa t te rn  D, the s ta te  space for the finite Markov chain imbedding technique or the total i ty  
of conditions for the method  of condit ional p.g.f. 's can be const ructed by considering 
whether  each subrectangular  R(i) currently holds or not jus t  before the next  trial. In 
other  words, suppose that  we have jus t  observed the j - t h  trial. Then, in order to know the 
next "state" after obsering the next trial X j+l, we have to remember  whether  R(i) occurs 
in [ X j - i + l , . . .  , X j ]  or not for all i -- 1 , . . .  ,g. When  we dealt with the corresponding 
problem for a one-dimensional pa t te rn  we considered only what  is the longest subpa t t e rn  
occurred currently. This is because we can see whether  each shorter  subpa t t e rn  current ly 
occurs if a subpa t t e rn  occurs currently. However, for two-dimensional pat terns,  we 
can not expect  such a simple situation. Therefore, we denote by a {0, 1}-vector a = 
(al,  a2,..., at) of length g the current state,  where 

0 if R(i) does not occur currently 

ai = 1 if R(i) occurs currently. 

Of  course, a �9 {0, 1} e, however, all the element of {0, 1} ~ are not necessarily possible 
as current states.  Hence, we define by S(D, R) the set of possible a ' s  as a current  s ta te  
for the waiting t ime problem. S(D, R) depends on D and R. For example, if D is the 
pa t te rn  given by (1.1) and m = 5, then R is the unique window given above and 

5(0, R) = { 
(0,0,0,0,0), (1, 
(1,1, 0,1, 0), (1, 
(1,1,0,1,1), (1, 

O, O, O, 0), (1, 1, O, O, 0), (1, 1, 1, O, 0), } 

1, 1, 1,0), (1 ,0 ,0 ,0 ,  1), (1, 1, O, O, 1), . 

1, 1,0, 1), (1, 1, 1, 1, 1) 

Let SI(D,R) = {a �9 S(D,R) t at  = 1} and So(D,R) = S(D,R) \ SI(D,R). 
Before presenting a general result, we explain intuitively how to derive the  exact 

dis t r ibut ion of the waiting t ime for the first occurrence of a pa t te rn  with examples. 
Let D be the pa t te rn  given in Example  1 and ra = 5. For any a �9 So(D,R), 

suppose tha t  we observe currently a.  Then we denote by r  t) the condit ional p.g.f. 
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of the wait ing t ime for the  first occurrence of D from this t ime. Mathemat ical ly ,  we can 
define r  t) as follows: Let W be the  wait ing t ime and r  t) = E[t W- j  I A(j ,  a)], 
where the event A(j, a) is t ha t  W > j and at the j - t h  trial  the  current  s ta te  is a.  In 
the example,  since the  height  of the  window is m ( =  5), the occurrence of the  event  
A(j,  a) means  tha t  the indicator  of occurrence of R(i) in IX j - i+1 , . . . ,  Xj]  is a~ for 
i = 1 , . . . ,  2(= 5). Note tha t  the  above condit ional  expecta t ion  does not  depend  on j by 
vir tue of the  s ta t ionar i ty  of the  sequence X 1 , . . . ,  X n , .  �9 .. Therefore,  the no ta t ion  r  t) 
does not  include j .  Suppose tha t  we observe current ly  a = (0, 0, 0, 0, 0). Then ,  if we 
observe the  next  trial, the s tate  may change from (0, 0, 0, 0, 0) to (1, 0, 0, 0, 0). Otherwise,  
it may remain  as it is and  there are no possibilities to change to other  s tates  at  the  next  
trial. The  probabi l i ty  t ha t  the s tate  changes from (0, 0, 0, 0, 0) to  (1, 0, 0, 0, 0) is p, t ha t  
is, the  probabi l i ty  tha t  we observe ( . , . ,  1, *, . ) ' .  And,  with  probabi l i ty  q (=  1 - p), the  
s ta te  remains  unchanged.  Hence, we have the next  relation: 

r  = ptr (1, O, O, O, O); t ) + qtr (O, O, O, O, O); t ). 

Similarly, we see tha t  the s tate  (1,0, 0, 0, 0) changes (1, 1, 0, 0, 0) and  (0, 0, 0, 0, 0) by one 
step wi th  probabil i t ies p3 and q, respectively, and it remains  unchanged  wi th  probabi l i ty  
(p _ p3), because if we observe ( . ,  1, 1, 1, . ) '  in the next  trial, the  s ta te  changes f rom 
(1, 0, 0, 0, 0) to (1, 1, 0, 0, 0), and  if we observe ( , , . ,  0, *, . ) '  in the  next  trial, the s ta te  
changes from (1, 0, 0, 0, 0) to (0, 0, 0, 0, 0). Then,  we have 

(~((1, 0, 0, 0, 0); t) z p3 t (~( (1  ' 1, 0, 0, 0); t) + (p-p3)tr  O, O, O, 0); t) + qtr 0, 0, 0, 0); t). 

Similarly, considering next  step from every s tate  in So(D, R), we obta in  the  next  equa- 
tions: 

r 1, 0, 0, 0); t) = pbtr 1, 1, 0, 0); t) + (p3 _ pb)tr  ' 1, 0, 0, 0); t) 

+ (p - p3)tr  0, 0, 0, 0); t) + qtr 0, 0, 0, 0); t) 

r  1, 1,0, 0); t) = pbtr 1, 1, 1,0); t) + (p3 _ pb)tr  ' 1, 0, 1,0); t) 

+ (p - p3)tr 0, 0, 0, 0); t) + qtr 0, 0, 0, 0); t) 
r 1, 1, 1, 0); t) = pt + qtr 0, 0, 0, 0); t) 

r  0,1, 0); t) = pt + qtr 0, 0, 0, 0); t). 

By solving the  above sys tem of equat ions  of condit ional  p.g.f. 's, we have the  p.g.f, of the  
d is t r ibut ion  of the  wait ing t ime for D, where the uncondi t ional  p.g.f, is r  0, 0, 0, 0); t). 
By expanding  the  p.g.f, wi th  respect to t, we obtain the probabi l i ty  dis t r ibut ion.  

Example 2. L e t D =  1 

window R becomes 

1 
1 1 

1 1 
1 

1 and m = 5. T h e n  the  unique scanning rec tangular  

* * 1 . *  

. 1 . 1 ,  

R =  1 . * . 1  

. 1 . 1 .  

* * 1 . *  
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In this example, we see that 

and 

S ( D , R )  = 

(o,o,o,o,o),(o,o, 
(o, 1,o, o, o), (o, 1, 
0 ,o ,o ,o ,o) , (1 ,o ,  
(1, 0, 1, 0, 0), (1, 0, 
(1, 1,0,0, 0), (1, 1, 
(1, 1, 1,0,0), (1, 1, 

O, 1,0), (0,0, 1, O, 0), (0,0, 1, 1,0), 
O, 1, 0), (0, 1, 1, O, 0), (0, 1, 1, 1, 0), 
0,0, 1), (1,0,0, 1,0), (1, 0, 0, 1, 1), 
t ,0,  1), (1, O, 1, 1, 0), (1,0, 1, 1, 1), 
O, O, 1), (1, 1, O, 1, 0), (1, 1, 0, 1, 1), 
1, O, 1), (1, 1, 1, 1, 0), (1, 1, 1, 1, 1) 

(o,o,o,o,o), (o, 
(o, 1,o,o,o), (o, 

So(D, R) = (1, O, O, O, 0), (1, 

(1, 1,0,0,0), (1, 

0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 0, 1, 1,0), } 
1,0, 1,0), (0, 1, 1, 0, 0), (0, 1, 1, 1,0), 
0 ,0 ,1 ,0 ) , (1 ,0 ,1 ,0 ,0 ) , (1 ,0 ,1 ,1 ,0 ) ,  " 
1,0, 1, 0), (1, 1, 1, 0,0), (1, 1, 1, 1, 0) 

Similarly as Example 1, considering the next step for every a C So(D, R), we obtain the 
following system of equations of conditional p.g.f.'s: 

r o, o, o, o); t) = pt~((1,  o, o, o, o); t) + qt~((o, o, o, o, o); t), 
r  O, O, O, 0); t) = p3tr 1, O, O, 0); t) + p2qtr 1, O, O, 0); t) 

+ (p - p3)tr  0, 0, 0); t) + (q - p2q)tr O, 0, 0, 0); t), 
r  1, 0, 0, 0); t) = p5tr 1, 1, 0, 0); t) + (p4 _ p 5 ) t r  ' 1, 1, 0, 0); t) 

+ ( d  - p~)tr 0, 1, 0, 0); t) + (p2q _ p4q)tr 0, 1, 0, 0); t) 
+ (/)3 _ p5)tr ' 1, 0, 0, 0); t) + (p2q _ p4q)tr 1, 0, 0, 0); t) 
+ p(1 - p2)2tr 0, 0, 0, 0); t) + q(1 - p2)2tr 0, 0, 0, 0); t), 

4)((0, 1, O, O, 0); t) = pate((1,  O, 1, O, 0); t) + p2qtr O, 1, O, 0); t) 
+ (p -- p3)tr  0, 0, 0); t) + q(1 -- p2)tr 0, 0, 0, 0); t), 

r  1, 1, 0, 0); t) = p5tr 1, 1, 1, 0); t) + p4qtr 1, 1, 1, 0); t) 
+ p3(1 - p2)tr 1, 0, 1, 0); t) + p2q(1 - p2)tr 1, 0, 1, 0); t) 
+ p3(1 - p2)tr 0, 1,0,  0); t) + p2q(1 - p2)tr  0, 1, 0, 0); t) 
+ p(1 - p2)2tr 0, 0, 0, 0); t) + q(1 - p2)2tr 0, 0, 0, 0); t), 

p5tr O, 1, 1, 0); t) + p4qtr O, 1, 1,0); t) 
+ pa(1 - p2)tr O, O, 1, 0); t) + p2q(1 - p~)tr O, O, 1, 0); t) 
+ p3(1 - p2)tr o, 1, o, 0); t) + v2q(1 - p2)tr  o, 1, o, 0); t) 
+ p(1 - p2)2tr o, o, o, 0); t) + q(1 - p2)2tr o, o, o, 0); t), 

p3tr  o, 1, 0); t) + p2qtr 1, o, 1, 0); t) 
+ p(1 - p2)tr 0, 0, 0, 0); t) + q(1 - p2)tr 0, 0, 0, 0); t), 

p3tr O, O, 1, 0); t) + p2qtr O, O, 1, 0); t) 
+ p(1 - p2)tdp((1,O,O,O,O);t) + q(1 - p2)tr 

pt  + p4qtr 1, 1, 1, 0); t) + p2q(1 - p2)tr 1, O, 1, 0); t) 
+ p2q(1 - p2)tr O, 1, O, 0); t) + q(1 - p2)2tr 0, 0, 0, 0); t), 

pt + p4qtr 0, 1, 1, 0); t) + p2q(1 - p2)tr O, 0, 1, 0); t) 

r 1, 1, 0, 0); t) = 

r 1, 0, 0); t) = 

r o, 1, o, o);,)  = 

r  1, 1, 1,O); t )  = 

r  1, 1, 1, 0); t) ---- 
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05((1,0, 1, 1, 0); t) 

05((0, O, 1, 1, 0); t) 

r 1,0, 1, 0); t) 

05((0,1,0,1,0);0 
05((1,0, 0,1, 0); t) 
05((0, 0, 0,1,0);t) 

+ p2q(1 - p2)tr O, 1, O, 0); t) + q(1 - p2)2tr O, O, O, 0); t), 

= pt + p2qtr 1, O, 1, 0); t) + q(1 - p2)tr O, O, O, 0); t), 

= pt + p2qtr O, O, 1, 0); t) + q(1 - p2)tr O, O, 0, 0); t), 

= pt + p4qtr 1, 1, O, 0); t) + p2q(1 - p2)tr O, 1, 0, 0); t) 

+ p2q(1 - p2)tr 1, O, O, 0); t) + q(1 - p2)2tr O, 0, O, 0); t), 

= pt + p2qtr O, 1, O, 0); t) + q(1 - p2)t05((0, 0, O, 0, 0); t), 

= pt + p2qtr 1, O, O, 0); t) + q(1 - p2)tr O, O, 0, 0); t), 

= pt + qtr 0, 0, 0, 0); t). 

In the above examples,  we searched for possible s tates  in the next  trial from every 
s tate  a E So(D, R) and calculated the  corresponding t ransi t ion probabilit ies.  However, 
it is not  necessarily easy to cons t ruc t  the  sys tem of equat ions  of condit ional  p.g.f. 's for 
every pa t t e rn  D by the above method .  

Here, we present  a general  m e t h o d  for cons t ruc t ing  the  sys tem of equat ions of 
condit ional  p.g.f. 's for an arbi trar i ly given pa t t e rn  D. Let Y ( m ) ( =  {0, 1} m) be the  
total i ty of m-dimensional  co lumn vectors whose entries are 0 or 1. For i = 1 , . . .  ,g, let 
ui  be the 0,1-vector ob ta ined  by subs t i tu t ing  0 for �9 of r i ,  where r i  is the co lumn vector 
of the scanning rectangular  window R. We define a mapp ing  fz) : So (D, R) x V(m) --. 
S(D, R) by fD(a,  e) = b (=  (bl, b2 , . . . ,  be)), where 

1 if e - u l  _> 0 
bl = 0 otherwise,  

and for i = 2 , . . . , g ,  
Y 

b i =  ~ 1  if e - u i > _ 0  and ai-1 = 1  

[ 0 otherwise.  

Then,  we obta in  the following theorem.  

THEOREM 2.1. For a given pattern D and its scanning rectangular window R, 
the conditional p.g.f. 's of the waiting time for the first occurrrence of the pattern D in 
the sequence of i.i.d. V(m)-valued random vectors satisfy the following system of linear 
equations: for  every a E S0(D, R),  

r  = E PN'(e)(1 - -P)m-Nl(e) tr  e) ; t ) ,  
eCV(rn) 

where Nl (e )  means the number of l ' s  in e, and for every a C S I (D ,R) ,  05(a;t) -- 1. 

PROOF. Suppose tha t  we are observing a E So(D, R) currently.  Then ,  if we 
observe e E V(rn) in the  next  trial, our  s ta te  changes f rom a to  f o ( a ,  e) e S(D,  R) by 
the definition of fD. Since the  probabi l i ty  tha t  we observe e is pg~(e)(1 -- p)m-gl(e) ,  
we obtain the above equat ion.  To be precise, since the  mapp ing  fD is not  necessarily 
one-to-one, for given a and e, the  t rans i t ion  probabi l i ty  from a to fD(a,  e) is given by 

_ 

e'eV(a,e) 
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where V(a, e) = {e' C V(m) I fD(a, e') = fD(a,e)} .  It is clear that the transition 
probability can be obtained naturally by simplifying the right hand side of the above 
equation. If a C SI(D, R), then at = 1 and hence this means that  the pattern has just 
occurred. Therefore, we have r  = 1 for every a E SI(D,R).  This completes the 
proof. 

Remark. Theorem 2.1 gives explicitly a general form of the system of equations of 
conditional p.g.f.'s of the waiting time for any given two-dimensional pattern D. Hence, 
by using this result we can also give an algorithm for constructing the system of equations 
of conditional p.g.f.'s in computer algebra systems. 

Actually, in complicated problems treated in the present paper, construction of the 
state set S(D, R) is one of difficult problems. However, we have to note that  the above 
mapping fD is useful for constructing the state set S(D, R). We briefly give here an 
algorithm to obtain the set S(D, R). First, we let Ao = {(0 , . . . ,  0)}. For i = 1, 2 , . . . ,  

e 
we construct recursively 

Ai = Ai-1 U (UaeA,_, U~V(m) {fD(a, e)}). 

Then, there exists a number i0 such that  Ao ~ A1 ~ - "  ~ Aio = Aio+l . . . .  , since 
the number of elements of Ai is finite (at most 2t). Thus, we can obtain S(D, R) = Aio 
systematicMly. 

In fact, we have treated Examples 1 and 2 by using the above systematic method. 
We can use the method for M1 two-dimensional patterns. However, the constructed set 
S(D, R) in this way is not necessarily minimal for every pattern. For example, one of 
the referees indicated that  in Example 1 the states (1, 1, 1, 1, 0) and (1, 1, 0, 1, 0) need 
not be distinguished. We can see the fact from the equality of the right hand sides of 
the last two equations of the conditionM p.g.f.'s. Though reduction of the state space 
may contribute to reduction of time for solving the corresponding system of equations, 
minimality of the state space is not necessarily needed for calculation. Since it seems 
difficult to construct minimal state space systematically for all two-dimensional patterns, 
we do not study the problem of constructing minimal state space in the present paper. 

3. Waiting time in the case that the height of the window is less than m 

In this section we treat the case that  the height of R is less than m. Let h be the 
height of R. Then, the scanning rectangular window R can take (m - h + 1) possible 

1 
vertical positions. For example, we may suppose t ha t  m -- 5, D = 111, and 

1 !1, 
R - -  11  

1 .  

In this case, R can take three possible vertical positions, since the height of R is three. 
In Section 2, we represented every state by an g-dimensional 0, 1-vector a E {0, 1} ~. 
However, in this general case, we represent every state by a list of ( m - h + l )  g-dimensional 
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O, 1-vectors (al, a2,..., a ,~ -h+ l ) ,  where aj = ( a j , ] , . . . ,  aj,e) shows the current  s ta te  in 
the sequence of h-dimensional column vectors which consist of the j - th ,  ( j  + 1)-th, . . . ,  
and (j + h - 1)-th rows. Though  we can see tha t  ( a l ,  a 2 , . . . ,  am-h+,) C {0, 1} ~(m-h+l), 
every element of {0, 1} e(m-h+l) is not necessarily possible as a current  state.  Let  S(D, R) 
denote  the set of all ( a l , . . . ,  am-h+ l ) -vec to r s  tha t  can be observed as a current  state.  
S(D, R) depends on D and R. For the above example,  we see tha t  

S(D, R) = 

((1, 1, 0), (1, O, 0), (1, 1, 0)), ((0, O, 0), (0, O, 0), (0, O, 0)), 
((1, 1, 0), (1, 1, 1), (1, O, 0)), ((0, O, 0), (0, O, 0), (1, O, 0)), 
((0, O, 0), (1, O, 0), (0, O, 0)), ((0, O, 0), (1, O, 0), (1, O, 0)), 
((1, O, 0), (0, O, 0), (0, O, 0)), ((1, O, 1), (1, O, 0), (0, O, 0)), 
((1, O, 0), (0, O, 0), (1, O, 0)), ((1, O, 0), (1, O, 0), (0, O, 0)), 
((1, O, 1), (0, O, 0), (0, O, 0)), ((1, O, 1), (1, 1, 1), (1, 1, 0)), 
((1, O, 0), (1, O, 0), (1, O, 0)), ((0, O, 0), (1, O, 0), (1, O, 1)), 
((0, O, 0), (1, O, 0), (1, 1, 1)), ((1, O, 1), (1, O, 1), (0, O, 0)), 
((0, O, 0), (0, O, 0), (1, O, 1)), ((1, O, 1), (0, O, 0), (1, O, 0)), 
((1, O, 1), (0, O, 0), (1, O, 1)), ((1, O, 1), (1, 1, 0), (1, O, 1)), 
((1, 1,0), (1, O, 1), (0, O, 0)), ((1, O, 1), (1, 1,0), (1, 1, 1)), 
((1, O, 1), (1, 1, 1), (1, O, 0)), ((1, O, 0), (1, 1, 1), (1, O, 1)), 
((0, O, 0), (1, O, 0), (1, 1, 0)), ((1, O, 1), (1, 1, 1), (1, O, 1)), 
((1, O, 1), (1, 1, 1), (1, 1, 1)), ((1, 1, 1), (1, O, 0), (0, O, 0)), 
((1, 1, 1), (1, 1, 1), (1, 1, 0)), ((1, 1, 1), (1, 1, 1), (1, O, 0)), 
((1, 1, 1), (1, 1, 0), (1, O, 1)), ((1, 1, 1), (1, 1, 0), (1, 1, 1)), 
((1, O, 0), (1, O, 0), (1, 1, 0)), ((1, 1, 1), (1, O, 1), (0, O, 0)), " 
((0, O, 0), (1, O, 1), (1, O, 1)), ((0, O, 0), (1, O, 1), (1, 1, 1)), 
((1, 1, 0), (1, 1, 1), (1, 1, 1)), ((1, 1, 0), (1, 1, 1), (1, O, 1)), 
((1, 1, 0), (1, 1, 0), (1, O, 0)), ((1, 1, 1), (1, 1, 1), (1, 1, 1)), 
((1, O, 0), (1, 1, 0), (1, O, 0)), ((1, 1, 1), (1, 1, 1), (1, O, 1)), 
((1, O, 0), (1, 1, 1), (1, 1, 1)), ((1, O, 0), (1, 1,0), (1, 1, 0)), 
((1, 1, 0), (1, 1, 0), (1, 1, 0)), ((1, 1, 1), (1, 1, 0), (1, 1, 0)), 
((1, 1, 0), (1, 1, 1), (1, 1, 0)), ((1, 1, 0), (1, O, 0), (0, O, 0)), 
((1, 1, 0), (1, O, 0), (1, O, 0)), ((1, O, 1), (1, 1,0), (1, O, 0)), 
((1, O, 1), (1, 1, 0), (1, 1, 0)), ((1, 1, 1), (1, 1, 0), (1, O, 0)), 
((1, O, 0), (0, O, 0), (1, O, 1)), ((1, O, 0), (1, 1,0), (1, O, 1)), 
((1, O, 0), (1, 1, 0), (1, 1, 1)), ((1, 1, 0), (1, 1, 0), (1, 1, 1)), 
((1, 1, 0), (1, 1, 0), (1, O, 1)), ((0, O, 0), (1, O, 1), (0, O, 0)), 
((0, 0, 0), (1,0,1), (1, 0, 0)), ((0, 0, 0), (1, 0,1), (1,1,0)), 
((1, 0, 0), (1, o, 1), (0, 0, 0)), ((1, 0, 0), (1,1,1), (1, 0, 0)), 
((1, o, 0), (1,1,1), (1,1, 0)) 
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Let $1 (D, R) = {((a1,1, . . . ,  a l , e ) , . . . ,  (am-h+,,1, . . . ,  am-h+l,t)) E S(D,  R) I aj,e = 1 for 
some j}  and So(D, R) = S(D,  R) \ S I (D,  R). Then, we obtain 

((1, 1,0), (1,0, 0), (1, 1,0)), ((0, 0, 0), (0, 0, 0), (0, 0, 0)), 
((0, O, 0), (0, O, 0), (1, O, 0)), ((0, O, 0), (1, O, 0), (0, O, 0)), 
((0, 0, 0), (1, 0, 0), (1, 0, 0)), ((1,0, 0), (0, 0, 0), (0, 0, 0)), 
((1, 0, 0), (0, 0, 0), (1, 0, 0)), ((1,0: 0), (1, 0, 0), (0, 0, 0)), 

So(D,R)  = ((1,0,0) , (1,0,0) , (1,0,0)) , ( (0,0,0) , (1,0,0) , (1,1,0)) ,  . 

((1, O, 0), (1, O, 0), (1, 1,0)), ((1, 1, 0), (1, 1, 0), (1, O, 0)), 
((1, O, 0), (1, 1, 0), (1, O, 0)), ((1, O, 0), (1, 1, 0), (1, 1, 0)), 
((1, 1, 0), (1, 1, 0), (1, 1, 0)), ((1, 1, 0), (1, O, 0), (0, O, 0)), 
((1, 1, 0), (1,0, 0), (1, 0, 0)) 

For each e = ( c l , . . . , em) '  and for i = 1 , 2 , . . . , m  - h + 1, we define e(i) - 
( e / , e ~ + l , . . . , e i + h - 1 )  t C V(h). Similarly as in Section 2 we define a mapping f D  : 

S0(D, R ) x Y ( m )  --+ S(D,  R) by f D((al , .  . . , am-h+1),  e) = (51, b2 , . . . ,  bin-h+1), where 
for j = 1 , . . . ,  m - h + 1, bj -- (bj ,1, . . . ,  bj,g) is defined as 

1 if e(j)  - u l  >_0 

bj,1 = 0 otherwise, 

and for i -- 2 , . . . , 6 ,  

1 if e ( j ) - u i > O  and a j , i - l = l  
b j# = 0 otherwise. 

Then, similarly as in the proof of Theorem 2.1, we obtain the result. 

THEOREM 3.1. For a given pattern D and its scanning rectangular window R, 
the conditional p.g.f. 's of the waiting time for the first occurrrence of the pattern D in 
the sequence of i.i.d. V(m)-valued random vectors satisfy the following system of linear 
equations: for every ( a l , . . . ,  am-h+1) E So( D , R ), 

r am-h+l);t) = E PN'(e)(1 -- P)m-Nl(e)tr D((al'''''  am-h+1)' e);t), 
eCV(m) 

where NI(e) means the number of l's in e, and for every ( a l , . . . ,  am-h+1) E S l ( D , R ) ,  
r  am-h+l);t) = 1. 

In this case, we can also obtain S(D, R) systematically by using the mapping f D  

similarly as the previous section. 

4. Computational results 

Since Theorems 2.1 and 3.1 give general forms of the systems of equations of con- 
ditional p.g.f.'s of the waiting time for any given two-dimensional pat tern  and scanning 
rectangular window, we can interpret these results as algorithms for constructing the 
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conditional p.g.f.'s. Practically, we can obtain the p.g.f.'s of the waiting time problems 
by using computer algebra systems. 

E x a m p l e  3. (Continuation of Example 1.) By solving the linear system of equa- 
tions given in Example 1, we obtain 

r 
p13  t 5 

1 - t + p5t  - p5t2 + pSt2 - pSt3 + p11t3 - p]lt4 + p12t4 - p12t5 + p13t5" 

By extracting the coefficient of t i for i = 1, 2 , . . .  in the power series expansion of 
the above p.g.f., we can obtain exact probability value P ( W  = i) as a function of p. 
Because the formulas are very long, we give here only Fig. 1, which shows the waiting 
time distribution with p = 0.85. 

E x a m p l e  4. (Continuation of Example 2.) By solving the linear system of equa- 
tions given in Example 2, we obtain the p.g.f. r 0, 0, 0, 0); t). However, since the 
formula of r 0, 0, 0, 0); t) is a little long, we refrain from giving here the whole for- 
mula. Actually, it is a ratio between two polynomials: The numerator is a polynomial 
with 82 terms. When we regard it as a polynomial with respect to t, its degree is 16 and 
the leading coefficient is 

p56 _ 7p55  _~ 21p54 _ 3 5 p 5 3  + 3 5 p 5 2  _ 21p51 + 7p50 _ p49 .  

The denominator with 166 terms is a polynomial with respect to t with degree 16 and 
with leading coefficient 

p56 _ 8p55 + 28p54 _ 56p53 + 70p52 _ 56p51 + 28p50 _ 8pa9 + p48. 

Though the formula of the p.g.f, is relatively long, there is no problem for the 
power series expansion of the p.g.f. Since the probability function of the waiting time 
distribution as a function of p is too long to write here, we also give here only Fig. 2, 
which shows the waiting time distribution with p --- 0.8. 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0 

[ I I 

"p = 0.85" - -  
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Fig.  1. T h e  d i s t r i b u t i o n  o f  t h e  w a i t i n g  t i m e  of  E x a m p l e  3 w i t h  p ---- 0.85. 
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Fig.  2. T h e  d i s t r i b u t i o n  of  t h e  w a i t i n g  t i m e  of E x a m p l e  4 w i t h  p --- 0,8. 

Example 5. Let us consider the example given in Section 3, i.e., the example that 
1 

the height of R is less than m with m = 5, D -- 111, and 
1 

. 1 .  

R--  1 1 1  

* 1 .  

By using Theorem 3.1, we can construct the system of linear equations of conditional 
p.g.f.'s. Further, we can obtain its solution r 0, 0), (0, 0, 0), (0, 0, 0)); t) by using 
computer algebra systems. However, since the formula of r 0, 0), (0, 0, 0), (0, 0, 0)); t) 
is rather long, we also refrain from giving here the whole formula. Actually, it is a ratio 
between two polynomials: The numerator is a polynomial with 104 terms. When we 
regard it as a polynomial with respect to t, its degree is 12 and the leading coefficient is 

p43 _ 10p42 + 45p41 _ 119p4O + 203p39 _ 231p3S + 175p37 _ 85p36 ..~ 24p35 _ 3p34. 

The denominator with 134 terms is a polynomial with respect to t with degree 12 and 
with leading coefficient 

p43 _ 10p42 + 45p41 _ 120p40 + 210p39 _ 252p3s + 210p37 _ 120p36 + 45p35 _ 10p34 + p33. 

Though the formula of the p.g.f, is long, the power series expansion of the p.g.f, can be 
performed successfully. However, since the long formula of the probability function of 
the waiting time distribution as a function of p may not be suitable for giving here, we 
give only Fig. 3, which shows the waiting time distribution with p -- 0.6. 

As direct applications of this example, let us consider the following two-dimensional 
lattice system of 5 x n components. Suppose that components of the system fails indepen- 
dently with probability p and the system fails if and only if there is at least one pattern 

1 
D -- 111 of failed components. In particular, we consider the next three systems, Sys- 

1 
tern 1, System 2 and System 3 for n = 10, 20 and 30, respectively. We denote by W the 
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Fig. 3. The distr ibution of the waiting t ime of Example  5 with p = 0.6. 
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I I ~ " J/~"Systeml" - -  
/ : J "System2" 

e r a 3 "  

0.2 0.4 0.6 0.8 

p (component failure probability) 

Fig. 4. System failure probabilities of the three 2-dimensional consecutive systems. 

waiting time for the pattern. Then, since the probability P(W <_ n) is the system failure 
probability, it is easily calculated from the p.g.f, of W, r 0, 0), (0, 0, 0), (0, 0, 0)); t). 
By summimg the coefficients of t i for i = 0, 1 , . . . ,  n in the power series expansion of 
the above p.g.f., we obtain the exact system failure probabilities of the systems. Since 
the exact formulae are very long, we give only Fig. 4, which shows the system failure 
probabilities as functions of component failure probability for the three systems. 
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