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Abstract. Let {Z;,t > 1} be a sequence of trials taking values in a given set
A = {0,1,2,...,m}, where we regard the value 0 as failure and the remaining m
values as successes. Let £ be a (single or compound) pattern. In this paper, we
provide a unified approach for the study of two joint distributions, i.e., the joint
distribution of the number X, of occurrences of £, the numbers of successes and
failures in n trials and the joint distribution of the waiting time T} until the r-th
occurrence of £, the numbers of successes and failures appeared at that time. We
also investigate some distributions as by-products of the two joint distributions. Our
methodology is based on two types of the random variables X, (a Markov chain
imbeddable variable of binomial type and a Markov chain imbeddable variable of
returnable type). The present work develops several variations of the Markov chain
imbedding method and enables us to deal with the variety of applications in different
fields. Finally, we discuss several practical examples of our results.
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1. Introduction

Let {Z;,t > 1} be a sequence of trials taking values in a given set A = {0,1,2,
...,m}. We regard the value 0 as failure and the remaining m values as successes. If
m = 1 then the sequence can be regarded as the Bernoulli trials. Let £ be a (single
or compound) pattern whose elements are integers in A. There are two important
distributions associated with the pattern £, which are applied to a wide range of areas
(for example, quality control, reliability theory, psychology, genome sequence analysis,
etc). One is the distribution of the number X,, of occurrences of the pattern £ among
Zy,Z3, ..., Zy. The other is the distribution of the waiting time T, until the r-th (r>1)
occurrence of £. The distributions of X, and T, have been studied by many authors in
various situations (see, for example, Biggins and Cannings (1987), Blom and Thorburn
(1982), Robin and Daudin (1999), Fu (1996) and Uchida (1998)).

Recently, Fu and Koutras (1994) introduced a finite Markov chain imbedding
method for the study of run-related problems, which has a great potential for extending
to other problems (see Koutras (1996a), Fu and Lou (2000) and Koutras and Alexandrou
(1997a)). Koutras and Alexandrou (1995) refined this method and introduced a Markov
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chain imbeddable variable of binomial type (M.V.B.). They studied X,, in the case where
€ is a success run (non-overlapping, at least, overlapping) of length k in a sequence of
n Bernoulli trials. Han and Aki (1999) introduced a Markov chain imbeddable variable
of returnable type (M.V.R.) and derived the distribution of the number of success runs
of exact length k. By using the Markov chain imbedding method, Inoue and Aki (2003)
studied T, in the case where £ is a f-overlapping success run of length k in a sequence
of Markov dependent trials.

Besides the two random variables X,, and T, other important random variables
are the number of outcomes “” (i = 0,1,...,m) in the observed sequence. Let Sy ;
be the number of the outcomes “” (i = 1,2,...,m) and let F, o be the number of
the outcomes “0” among Zy,Zs,...,Z,. We can obtain useful information from the
two joint distributions: the joint distribution of the number X, of occurrences of the
pattern &£, the numbers S, ; of outcomes “” (i = 1,2,...,m) and the number F, o of
outcomes “0” among Z1, Za, ..., Zy, or the joint distribution of the waiting time T, until
r-th occurrence of the pattern £, the numbers Sr, ; of outcomes “i” (i = 1,2,...,m)
and the number Fr, o of outcomes “0” among Z1, Zs, ..., Zr,. For example, in quality
control, it is quite natural in sampling inspection to use a run of defective items as a
stopping criterion (see Koutras (1997)). Each item is classified to three categories: fully
conformable (type S*), partially conformable (type F) and totally rejectable (type S).
Assume that we decide to accept the lot if k; consecutive S*-type items are observed
and reject the lot if ks consecutive S-type items are observed. Then the distribution
of the numbers of items of types S*, S and F observed until the termination of the
sampling inspection plan is used to take corrective action on the production line. For
example, many problems in bioinformatics relate to the comparison of two (or more)
DNA sequences taking values in A = {A,C,G,T}. In order to compare two sequences,
we should extract information from these sequences composed of four letters. If we
consider the test of the hypothesis that the two sets of probabilities for the four letters
are equal, we need to count the numbers of the four letters A, C, G and T, respectively
in the observed sequences. The distribution of the frequencies of the four letters as well
as the distribution of the number of occurrences of £ give more insight into the analysis
of the DNA sequence (see Ewens and Grant (2001)).

We should make extensive use of the Markov chain imbedding method, in order to
obtain the joint distributions of (Xn, Fn0,501,---»Snm)s (Tr, Fr.0,57.15- 5T ;m)-
The purpose in this paper is to develop a general workable framework for the Markov
chain imbedding method for the derivation of the joint probability distribution func-
tions and the joint probability generating functions (pgf’s) of (Xn, Frn0,Sn,1,---,Sn,m)
(T, Fr.0,5T.1,- - -, ST, m) in the various ways of counting runs and patterns. We can
deal with the wide class of patterns by using the results in this paper, since we consider
a sequence of trials with more than two outcomes and compound patterns.

The present paper is organized as follows. In Section 2, we introduce necessary
definitions and notations. In this paper, each one of the two cases (the variable X,
is an M.V.B., the variable X,, is an M.V.R.) is treated separately. In Section 3, in
the case where the variable X,, is an M.V.B., we develop a unified approach for the
study of the joint distribution of (X, Sn.1,...,Sn,m). Through the joint distribution of
(Xn,8n,1,--+ySn,m), we consider the joint distribution of (X,, Fr 0,51, --,Snm). As
by-products, we examine the joint distributions of (X, Sn;) (: = 1,2,...,m), (Xn, Fny)
(and also, the marginal distribution of X ). The formulae for the expected value of X,,
are also obtained. In Section 4, in the case where the variable X,, is an M.V.B., we
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study the joint distribution of (T, St, 1,..., 57, m). Through the joint distribution of
(T, 87,1, -,57.,m), we consider the joint distributions of (T7, Fr, 0, ST, 1s- -+, ST.m)-
As by products, the joint distributions of (T}, St ;) (i = 1,2,...,m), (Ir, Fr,0) (and
also, the marginal distributions of Ty, St.; (i = 1,2,...,m), Fr, o) are considered. The
formulae for the expected value of T, are also obtained. In Section 5, in the case where
the variable X, is an M.V.R., we study the joint distribution of (X, Sn,1,...,Snm).
Through the joint distribution of (X,,Sn 1,...,5n,m), we consider the joint distribu-
tions of (Xn, Frn0,Sn1s---,5,m). As by-products, we examine the joint distributions
of (X, 8n,) (i = 1,2,...,m), (Xn, Fnpo) (and also, the marginal distribution of X).
The formulae for the expected value of X,, are also obtained. Finally, in Section 6, we
discussed several practical applications.

2. Definitions and notations

Let {Z,,t > 1} be a sequence of trials taking values in a given set A = {0,1,2,
...,m}, where we regard the value 0 as failure and the remaining m values as successes.
Let £ be any pattern (simple or compound) whose elements are integers in A and let ng
be the number of 0 element which the pattern £ contains. In the sequel, we assume that
the length of pattern £ is greater than 1. In practice, this is the most common situation.
Then, we denote the number of occurrences of £ by X,, and denote the number of
outcomes “¢” (i =1,2,...,m) by S, ; among Z1,...,Z, (n a fixed integer). We denote
the joint probability distribution function of X, and S,(= (Sn,1,Sn,2,---,Sn,m)) by

fn(l’,y) = Pr(Xn = $7Sn,1 = ylaSn,Z =Y2,--- aSn,m = ym);
=Pr(X,=2,S,=vy), z=0,1,...,4, and 0<yi,...,ym <N — 2Ny,

where, £,, is the maximum number of occurrences of £ that can be accommodated in n
trials, that is, £, = max{z : Pr{(X,, = ) > 0}. Needless to say, under the assumption
that the length of pattern £ is greater than 1, we have ¢; = 0 and fy(z,y) = 0 for z # 0.

The corresponding joint pgf and double generating function of (X,,Sn1,...,Sn m)
will be defined by

¢, n—zng
(2.1) $n(u,v) = E@Srpi™t o uSem) =37 3 £ (2, y)uto?,
=0 y=0

oo £y n—zng

(2.2) O (u, v;w) = Z Onlu, v)w" = Z Z Z fnlz, y)uvY¥uw",

n=1z=0 y=0

respectively, where Zz;g"" = Z;‘::(;‘O . ZZ,:ZL)O and v¥ =o' .. 0¥,
Let us denote by T,., (r > 1) the waiting time for the r-th occurrence of £ and its

joint probability distribution function of (75, St, 1,...,57.m) by
he(n,y) =Pr(Tr =n,81.=y), n=12... and 0<y,...,yYmn <n—rng.

The corresponding joint pgf and double generating function of (T, St, 1,. .., S1.,m) Will
be defined by

00 n—Tng

2.3) H.(w,v) = E(wT*va*‘l -'-v;?f”m) = Z Z he(n, y)uw™v?,

n=1 y=0
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n—-rng

(2.4) H(w,v;u) = ZH w,v)u ZZ Z hr(n, y)w"v¥u’,

r=1n=1 y=0

respectively.

Let X,, be a non-negative integer valued random variable taking on the values
0,1,...,%,. Then, according to Koutras and Alexandrou (1995), the random variable
X, is called a Markov chain imbeddable variable of binomial type (M.V.B.) if

(1) There exists a Markov chain {Y¥;,¢ > 0} defined on a state space (1.

(2) There exists a partition {U, : £ > 0} on the state space (2.

(3) For every z, P(X, =z) = P(Y, € Uy,).

4) PY; €Uy |Yim1 € Uy)=0ifw#z,2c+1andt>1.

Assume first that the sets U, of the partition { U,z > 0} have the same cardinality
s = |U| for every x, more specifically U, = {Ug0,Uz1,...,Ugs—1}. According to Han
and Aki (1999), the random variable X, is called a Markov chain imbeddable variable
of returnable type (M.V.R.), if all of the conditions in the above definition of M.V.B.
hold, except that (4) is replaced by the following statement:

4) PY; €Uy |1 €U,)=0ifw#z—1,z,r+1andt>1.

We denote the initial probabilities of the Markov chain by

Ty = (Pr()/O = UI,O))PI'(YO = Ux,l)a Pr(YO = z s— 1)) z >0,
and denote the probability vectors
fi(@)=Pr(Yy =U,p),Pr(Yy =Uz1),...,Pr(Ye = Uz s-1)), 0<z2<4,, 1<t<n.

Clearly, we have
Pr(X,=2)=f,(2)1', 0<z<{,,

where, 1 = (1,1,...,1) € R®.
We introduce the next two matrices,
(i) the within states matrix A¢(z) = (Pr(Y; = m] 1Yo =Uy Z))sxs,
(i) the between states matrix By(z) = (Pr(Y; = Uzt1,5 | Yi—1 = Uz,i))sxs-
If X,, is an M.V.B., then the probability vectors f,(x) satisfy the recurrence relations
(see Koutras and Alexandrou (1995), Fu (1996) and Koutras (1997))

ft(O) = ft—l(O)At(O)v
fi@)=Ff (@) A(z) + f,_ (- 1)By(x —1), 1<x2<4l,;, 1<t<n.

In addition, we introduce the following matrix

(iii) the return states matrix C¢(z) = (Pr(Y; = Uz—1,; | Yi—1 = Uz,i))sxs-

If X, is an M.V.R., then the probability vectors f,(z) satisfy the recurrence relations
(see Han and Aki (1999))

fi(lxy=0, <0 or z>4, 1<t<m,

Fi(@) = Fi1 (@A) + Foi(z = DBz — 1) + f_ (2 + 1)Cilz + 1),
0<z<¥, 1<t<n.

In both types of X,,, making use of the recursive schemes, we can easily evaluate the
f . (z). Therefore, the probability distribution function of X, can be obtained. Remark
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that A;(z) + Bi(z) is a stochastic matrix if X,, is an M.V.B. and A¢(z) + B¢(z) + Ce(x)
is a stochastic matrix if X,, is an M.V.R.

As already stated in Introduction, we should make extensive use of the Markov chain
imbedding method in order to study the joint distribution of (X, Fr,0,Sn1;- -1 Sn,m)
and the joint distribution of (T7, Fr, 0,57, 1, - - -, ST, m)-

3. M.V.B. case: Joint distributions of the numbers of patterns, successes and failures in n
trials

Assume that the number X, of occurrences of € in n trials is an M.V.B. In this
section, we consider the joint distribution of (X, Fy, 0, Sn.1,- -1 Sn,m)-
To begin with, we introduce the following transition probability matrices

At,O(l’;y):(Pr(th :l;z ,St_y ()ft 1 —Uz“St 1 —y))sxm

At,j(xa y) = (PI‘(Y}, :1:1, 7St Y+ €; I }/t—l = Ux,zyst—l = y))sxen
j=1,2,...,m

Bio(z,y) = (Pr(Ys = Upt1,0, St = 4y | Y1 = Uzyi, St-1 = ¥))sxs,

Bt,g(”% y) (PI‘(Y} :c+1 i’ St Y+ €; | Y;—l = Uw,iaSt—l = y))sXS7
i=12,...,m

and the probability vectors
Fiz,y) = Pr(Y: =Us0,8: = 9), Pr(Y: = Uz 1, 8: = ¥),- - -,
Pr(Yt zs 17St y)) tZ]-:

where, we denote the j-th unit vector of R® by e;. Manifestly

falz,y) =Pr(Xp = 1,8, =y) = ZPr =Usi,Sn = y) = fa(z,y)1'.

Therefore, we can obtain the joint probability distribution of (Xn,Sn1,...,S%,m) by
evaluating the f, (z,y). The next theorem provides a method for the evaluation of the
joint probability distribution of (X, Sn1,...,Snm).

THEOREM 3.1.  The probability vectors f,(x,y), (t > 2) satisfy the recurrence re-
lations

(3.1) Folz,y) = fioi(@,9)Ano(z, ) + ) fioi(2,y — €)Ani(z, y — €;)
j=1
+fi1(z—1,y)Bio(z — 1,y)

m
+th—1($—1,!/’6]')Bt,j($—lay‘ej)

i=1

fOT' t227 OS:ESEIS and 0§y11y2a'-'7ymgt—xn07

with initial conditions

fl(oay) = (Pr(lfl = UO,O;SI = y)’Pr(),l = UO,],SI = y)v"'v
Pr(},l = UO,S—11 Sl - y))1
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for yi,y2,...,ym = 0,1. In addition, the joint probability distribution function of
(XnySn1y---ySnm) is given by

(3.2) Pr(X,=z,8,=vy) =f,(z,y)1,
0<z<4lyn, 051,92, .., Ym S n—INg.

ProoFr. Note that the event {Y; = U, ;, S; = y} implies the occurrence of one of
the events

s—1 m
U <{Yt—1 =Us,;,St-1=y}U U{Yt—l =U;;,S¢-1=y~— ei})

j=0 i=1

or
s—1 m
U ({Yt—1 =V, Ser =y} YY1 = Uz, Secr =y — ei}) .
=0 i=1

The recurrences (3.1) are immediate consequences of the total probability theorem.
It is easy to check the equation (3.2) from the following formula,

s—1
Pr(X,=2,S,=y)=Pr(Yo € Uy,Sn=9) =Y Pr(Yo=U;,Sn=v). O
j=0

Remark 3.1. In the special case where the matrices A, ;(x,y) and By ;(x,y) do
not depend on y, that is,
At,j(m; y) - At,j(m)a Bt,j(-/L‘) y) = Bt,j($)7 for all Y,

then the matrices ;" A, () and ™ =0 Bt,j(z) are equal to the within state transition
matrix A;(z) and the between state transition matrix B(z), respectively. Therefore, the
matrix ) 7" (As,;(z) + By;(x)) is a stochastic matrix.

If Ay j(x,y) = A j and By j(z,y) = B ; ( =0,1,...,m) for all z, y, then the joint
pef ¢n(u, v) defined as (2.1) can be expressed as a product in the following way.

THEOREM 3.2. If A j(z,y) = A j, BtJ(x y)=B:; (j=0,1,...,m) forallz,y,

then the joint pgf ¢n(u, v) of (Xn, Sn1s---,Sn,m) can be expressed as
n m

(3.3) dn(u,v) = a( H Ao+ uBo+ Zvj(At,j + uBy ;)
t=2 j=1

where,

1
(3.4) a(v) =3 £,(0,9)v".
y=0
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Proor. Introducing the vector generating functions

£y t—xng

Gl v) =) Y filz,yuTo?,

=0 y=0

we can write
di(u,v) = ¢y (u, v)1".

By summing both sides of the equation (3.1) after multiplying by u®v¥, ¢, (u,v)
can be expressed as

¢y t—1-zxng 2y t—1—zxng
$u(w,v) =Y Y Fealz,yu v”Ato+ZvJZ Y fraleyluteiAy,
x=0 y=0 j=1 =0 y=0

li—1t-1—zno

+u Z Z Fi1(@, y)u"v¥ By
r=0 y=0
m £i—1t—1—zxng

+u2vjz Z Fio1(z, y)u"vYBy ;.
j=1 =0 y=0

We consider the two possible cases ¢; = ¢;_1 and ¢, = €,_1 + 1 separately. If &, = €;_4,
we should note the identity

ft_l(et_l,y)Bt,j = 0, for ] = 0,].,...,77’1,
If ¢, = £;_1 + 1, we should note the identity
ft_l(ft,y)At’j =0, for j = O,l,...,m

Hence, in both cases we have

¢, (u,v) = ¢p,_,(u,v) Ao +uBro+ Zvj (A¢; + uByj)

j=1
If we take into account that
(u,v) = ZZfl(:v Y)uTvy = Zfl(o y)v? = a(v),
z=0y=0 y=0
the proof is completed. O

For the homogeneous case (i.e. A;; = A;, By; = B;j, j = 0,1,...,m), the double
generating function ®(u, v;w) defined as (2.2) takes more compact form.

THEOREM 3.3. If Ay j(x,y) = Aj, By j(z,y) = B; ( =0,1,...,m) for all z,y
and t > 1, then the double generating function of (X, Sn1,...,n,m) is given by
-1

(3.5) ®(u, v;w) =wa(v) |I —w | Ao +uBy + Zvj(Aj + uBj) 1,
j=1
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where a(v) is given by (3.4).

PROOF. From the equation (3.3) under the conditions that A ;(z,y) = A;,
B j(z,y) = Bj, (j =0,1,...,m), the joint pgf ¢n(u,v) can be expressed as

n—1
m
(3.6) ¢n(u,v) = a(v) | Ao +uBo + Y _v;(A; +uB;) 1.
=1
Making use of the formula

O m "
Z Ao +uBy + Z’Uj(Aj +uBj)| w"
n=0 7=1

-1
m

=|I-w A0+uBO+Zvj(Aj+qu) ,
=1

we have the desired result. O

Let F,o be the number of the outcome “0”. Then we can obtain the joint pgf
wn(ua UO: ’U) Of (Xn; FTL,07 Sn,17 e ,Sn,m) through ¢n(u) 'U):

F, S,
Yn(u,v0,v) = E(uXrvg™Cvy™" - uiem)

Xn,n=Sn1=Sn 2= =Sn,m_Sna1 Sn.m
E(u""vg vy ™)

= Ug¢"(u7vl/v07 s ,’Um/’U()).

Therefore the double generating function
[ee)

¥ (u, v, v;w) = Zdzn(u,vg, v)w"
n=1

takes the form ¥ (u,vq, v;w) = ®(u, vy /vo,...,vm/Vo; wrve). More specifically, in terms
of (3.5), we have the following result.

THEOREM 3.4. If A;j(z,y) = Aj, Bij(z,y) = B; (j =0,1,...,m) forall z,y
andt > 1, then the double generating function U(u,vo, v;w) of (Xn, Frn,0,Sn,1,---,Sn,m)
can be expressed as

-1
m

(3.7)  ¥(u,vo,v;w) = wvga(vi/vo,...,vm/ve) |1 — wZvj(Aj +uB;)| ¥,

where a(v) is given by (3.4).

As by-products, we can derive some interesting formulae from the equation (3.7).
The double generating functions of (X, Fr. o), (Xn,Sn;:) (¢ =1,2,...,m) are given by

Z E(uX"vg"'o)w" = U(u,vp, v;w)

n=1 V] =vUp ==V, =1
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= wyvga(1l/vo,...,1/vo)
m -1
X | I —w | v(Ap + uBp) + Z(Aj + uB;) 1,
=1
o0
Z E(uX"UiS”'i)w" = U(u,vg, v;w)
n=1 vo=v1=-=vi—1=1,Vif1="=vm=1
=wa(l,...,Lv;,1,...,1)
e’ N —
i—-1 m—i
-1
m
x | T—w [ vi(Ai +uBy) + (A; +uB;) 1,
i

1=1,2,...,m.

The double generating function of X, is

o0

Z E(w ™ Yu™ = U(u,vg, V; W) |ygmvy=...=v,,=1= wa(1)[I — w(A + uB)]~ 1,

n=1
where, A =10 A;, B =37 B;j and a(1) = a(v) |v,=..=v,,=1 (for a direct proof of
an analogous result see Koutras and Alexandrou (1995)).

THEOREM 3.5. If A;j(z,y) = A, Byj(z,y) = B; (j =0,1,...,m) forall z,y
and t > 1, then the expected value of X, and its generating function are given by

w2

el - w(4 + BB,

Mx, (w) =) E(Xp)uw" =

E(X,) = a(1) E(A + B)'BY.

where, a(1) = a(v) |y=vpz- v, =1, A = Z;n:o Aj and B = ZT:O B;.

PrOOF. Note that

> d
,; E(Xp,)w" = %\I/(u, Vg, V; W)

U=Ve=V] = =Um=1

and making use of
dilz(U —2V) = (U - 2V)" V(U - 2V) 7L,

we have the first conclusion of the theorem. By expanding M, (w) in a power series of
w, we have the expected value of X,, immediately. 00

The expressions in Theorem 3.5 are easily shown to be consistent with similar
expressions given in Koutras and Alexandrou (1995), Han and Aki (1999) and
Chadjiconstantinidis et al. (2000). The formulae for the variance of X,,, the covariance
between X, and F), o and the covariances between X,, and S, ; (i =1,2,...,m) can be
derived from the derivatives of the double generating function ¥(u,vg, v;w), however,
their expressions are not very attractive.
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4. M.V.B. case: Joint distributions of the waiting time and the numbers of successes and
failures

Assume that the number X,, of occurrences of £ in n trials is an M.V.B. In this
section, we will consider the joint distribution of (T}, Fr, 0, ST, 1,-- -, 57, ,m)-

THEOREM 4.1. The joint probability distribution function of (I, St. 1,--.,57.,m)
can be expressed as

8§

(4.1) he(n, y) =Y | Bio(ms,y)f oy (r — 1, 9)

i=1

m
+Zﬁ7’ij(n7 Tay)fn—l(r -lLy—- ej) e;»
j=1
TLZ 27 OSylnyV"aym Sn>

h"(l’y)___oy Y1, Y2, Ym = 0,1,

where,

Bio(n;r,y) = €;Bno(r — 1,y — e;)1,
ﬂi,j(n;r, y) = eiBn,j(T' -1y - ej)l', 13=12,...,m.

Proor. Note that
he(n,y) =Pr(T, =n,81. =y) =Pr(T, =n,8, =y),
which is equivalent to
he(ny)=Pr(X,=rXp1=7r—-1,8,=y)=Pr(Yo € U, Y,_1€ U,_1,8, =9).

Making use of the further decomposition of the event {Y, € U,,Y,_; € U,_1, S, = y},
we have
hr(”» y) = Pr(Yn eU,, Yo 1€U;1,8, = y)
s—1
- ZPI‘(Yn € U'r, Sn =Y i Yn—l = Ur—l,i> Sn—-l = y)
i=0
X Pr(Y,_1 = U1, 8n-1=19)
s—-1 m
+ ZZPr(Yn ceU,S.,=y l Y, 1= Ur—l,i; Spn_1= Yy — ej)
i=0 j=1
X Pr(YR_l = Ur—l,i, Sn—l =Y — ej)
s—1
= Z €it1Bno(r — 1Y)V Pr(Y,1 =U,_14,Sn1 = )
i=0
s—1 m
+ ZZ €it1Bnj(r— 1,y — ;)1 Pr(Ypn_1 =Ur_1i,Sn-1 =y — €;)
i=0 j=1
S k442
= Z ﬁi,O(n; T, y)fn—l(r -1, y) + Zﬂi,j(n;rv y)fn-—l(r -Ly- ej) e;'

i=1 j=1
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Under the assumption that the length of pattern £ is greater than 1, we have immediately
hr(1,y) = Pr(T, = 1,81 = y) = 0. The proof is completed. O

In the case where A; ;(z,y) = A;, By ;(z,y) = B;j, (j = 0,1,...,m), the double
generating function H(w, v;u) defined as (2.4) takes more compact form.

THEOREM 4.2. If Ay j(z,y) = Aj, B j(z,y) = B; (j =0,1,...,m) forallz,y
and t > 1, then the double generating function of (T, Syﬁl, . STr,m) is given by

)

(4.2) H(w,v;u) = uw?a(v) Z Bio+ Z Vi B; 4
i=1 j=1
-1

m
X I —w A0+UBo+ Z’Uj/(Aj/ +’U,Bj/) e;

j'=1
where, B; ; = e;B;1',i=1,...,8,j=0,1,...,m, and a(v) is given by (3.4).

PROOF. From the equation (4.1) under the conditions that A, ;(z,y) = A,
By j(z,y) = Bj, (j = 0,1,...,m), the joint probability distribution function of
(Tr, STT,17 PR 7STr,m) is

8

43)  he(n,y) =D |Biofaci(r=1,9)+ > Biifu1(r—Ly—e;)| €.

=1 j=1
A straightforward manipulation over (4.3) reveals that

oo o o

H(w, v;u) = uwZ mwzmﬂw Y XY Falny)uvture

n=1r=0y=0

S m o0
=uwd | Bio+ Y viBis | Y bulu,v)ure]
=1 j=1 n=1

The proof is completed if we take into account that

-1

Z ¢, (u,v)w" =wa(v) | I —w | Ag +uBy + z vj{Ay +uBj) . 0

n=1 i'=1

As described in the next theorem, expanding (4.2) in a power series of u, we can
get the joint pgf H,(w, v) defined as (2.3).

THEOREM 4.3. If A, ;(z,y) = A, Byj(z,y) = B; (j =0,1,...,m) for all z,y
and t > 1, then the joint pgf of (Tr, St 1,-..,5T.,m) is given by

(44)  He(wv)=wa@)Y | Bio+D vibi;
i=1 =1
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m ! m
X I—w| Ag+ Z Uj'Ajl By + Z ’Uj/le
Jj'=1 j'=1
-1
X (I —-w (Ao + Z ’Uj/Ajf)) 6;;, r>1,
Jj'=1

where a(v) is given by (3.4).

Proor. Since

I—w A0+Z’Uj'Aj' +u| Bg+ Z’Ulejl
j'=1 §'=1
= (I —w (A(] + Z Uj’Aj’)>
Jj'=1

-1
m m
X ([ I—wu|Il—-w A0+Zvj/Ajr Bo+2vj:Bj/ ,
j'=1 §'=1
it follows that

-1
I—w Ao-f-zvj/Ajl +u BO+Z'Uj’Bj’
=1 i'=1
-1
:Z I—’U] A0+ Z'Uj/Aj/ .B()+ Z’Uj/le
3=0 i'=1 3=l

-1
X (I —w (A() + Z ’Ule]'f))
3'=1

x (wu)?.

J

Hence, we can write H(w, v;u) as

H(w,v;u) = uw?a(v) Z (ﬂi,o + Zvjﬁm)

i=1 j=1

-1
X Z (I —w (Ao + Z ’Uijj')) (BO + Z 'Uj/Bj/)
=0 j'=1 j'=1

-1
X (I—w (AO + Z 'Uj/Aj/))
J'=1

x (wu)’ e}

J
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or equivalently in the more interesting form

H(w,viw) = S w*a(®) Y [ o+ D uifh
r=1 i=1 j=1

-1 r—1

m m
X I—w | Ay + Z’Ulej' By + Z’Uj/Bj/
Jj'=1 Jj'=1

-1

m
X | I—-w A0+ZU]‘/A]'/
=1

X eju”,
which manifestly yields the desired result. O

In the special case r = 1, from the formula (4.4), we can derive the joint pgf Hq (w, v)
related to the first occurrence of £. More quickly, by exploiting the formula

Hi(w,0) = [ THw )]

u=0

we can also derive the joint pgf H;(w,v) of (Th, St 1, -, S11,m)-

CoRrOLLARY 4.1. If Ay j(z,y) = Aj, B j(z,y) =B; (1 =0,1,...,m) for all z,y
and t > 1, then the joint pgf of (T1, Sty 1,--.,S1,,m) s given by

-1

S m m
Hy(w,v) =w2a('u)z ﬁi,o+2vjﬂi,j I—wl} Ag+ ZvjrAj/ e,
i=1

7j=1 j'=1
where, 3;; = e;B;1,i=1,...,s,7=0,1,...,m, and a(v) is given by (3.4).

In a similar fashion as in the conclusion of Section 3, we can easily establish for-
mulae for the joint pgf of (T, Fr, 0, S1,.,1,- -, 5T, ,m). Through H.(w,v), the joint pgf
Gy (w,vg,v) of (T1, Frr 0,57, 1, - - -, ST, m) can be expressed as

Gr(’w, Vo, ’U) — E(wTrv(I;Tr,Ov]'-STr,l . .UiTr,m)

Tr—Sr.1—-S ——=S1..m ST, Sr,.m
— E(wTT'UO Tp,1 =~ PTp,2 Ty, UIT SO "UmT )

= H,-(’lU’U(),Ul/’U(),Ug/UO, N ,’Um/’Uo).

Through H(w, v;u), the double generating function of (T}, Fr, o, ST, 1, - - -, ST,.,m) is also
expressed as

[o o]
G(w,vp, v;u) = Z Gr(w,vg, v)u"
r=1

o0
= Z H, (wvo, v1 /vo,v2 /v, .. ., Um/vo)u"
r=1

= H(wvo,vl/vo,...,vm/vo;u).
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More specifically, in terms of (4.2) and (4.4), we have the following result.

THEOREM 4.4. Assume that A;j(z,y) = Aj, Bej(z,y) = B; (j = 0,1,...,m)
for all z,y and t > 1. Then the double generating function G(w,vo, v;u) of (Ty, Fr, 0,
ST,1,- -, 5T, m) 18 given by

8 m
(4.5) G(w,vg, v;u) = uw2voa(v1/v0,...,vm/UO)ZZvjﬂi,j
i=1 j=0

-1

m
X I—wZvj/(Aj1+qul) e,

/=0

and the joint pgf Gr(w,ve, v) of (Tr, Fr, 0,51 1,---,5T.,m) is given by

1
G, (w,vo,v) = w T tvga(vy/ve, ..., Vm /o)
-1 r—1
S m m m
DD il || 1-w)_ vy D vy By
=1 j=0 §r= §'=0

-1

m
x | I—-w E vy Aj e, r>1,
=0

where, 5; ; = e;B;1',i=1,...,s,j=0,1,...,m, and a(v) is given by (3.4).

As by-products, we can derive some interesting formulae from the equation (4.5).
The double generating functions of (T;, Fr, o), (Tr,S1.,i), i = 1,2,...,m are given by

oo
Z E(wTrv(fT”O)u" = G(w, vo, v;u)
r=1

vi=-=vm=1

8

m
= uw2voa(1/v0, cee, ]./’U()) Z 'UOﬂj,O + Z ,Bj,jl

j=1 j'=1
-1
m
x |I—w | vo(A+uB)+ Z(AJ" + uBj/) e;,
j'=1
oo
ZE(wTrva“")uT = G(w,vg, v;u)
r=1 vo=v1="v;1=1,0ip 1= Vm=1

s

m
_ 2
= uw a(l,...,l,vi,l,...,l)z viﬂj,i_l-z/gj,j’

i-1 m—i =1 J#
-1
m
x |I—-w Ui(Ai+uBi)+Z(Aj' —f—qu;) e},
i

1=1,2,...,m.
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The double generating function of T, can be expressed as

o0
(4.6) Y E@w™ " = G(w,vo,v;u)
r=1 Vo=V1= =V, =1
= uw?a(1) > B ([ - wA+uB) " e},
J=14=0

where, A =37""0 A;, B =310 B; and a(1) = a(v) |y;=..=v,.=1 (for a direct proof of
an analogous result see Koutras (1997)).
We can also establish the double generating functions of Fr, o, St1..; (i = 1,2,...,m),

[e¢]
Z E@d™ W = G(w, vo, v; u)

r=1

W=v1 =+ =VUpy=1

s

= uvga(1l/vg,...,1/vq) Z vaBj0 + Z Bj.5

Jj=1 i’=1
-1
m
x |I= |vo(A+uB)+ > (Aj +uBy) e},
j'=1

e o]

3" E@™ " = G(w, vo, v;w)

r=1 w=vg=v1="U_1=1,v11="- V=1

=ua(l,...,1,v;,1,...,1 v; 85, + i 5
( ); Bii+ Y By

i1 \-;,—1,—/ / 3#
-1
m
x | I - Uz(Az +ubB;) + Z(Aj' + ’LLB]'I) 6;-,

'
1=1,2,...,m.

By differentiating the above expressions, we can establish the formulae for the ex-
pected values of T, Fr, o, St (i =1,2,...,m), their variances, the covariance between
T, and Fr,_ o and the covariances between T, and St_; (1 = 1,2,...,m). For example,
from the formula (4.6), we get

iE(T,)uT = 2U0,(1) i i /Bj,j’ (I —A- ’LLB)_IC‘I]-
r=1

j=1j'=0

+ ua(l) i Zm: B (I —A—uB) Y (A+uB)(I—-A- uB)"le;.

§=15'=0

Aki and Hirano (2000) considered the distributions of the numbers of non-overlapping
occurrences of “1” runs of length & until the n-th occurrence of “1” in a sequence of
{0, 1}-valued random variables. They called the distribution “the generalized binomial
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distribution of order (k — 1)”. Through slight modifications of our methods and results
in this secton, we can deal with the problems as well.

Closing, we mention that Inoue and Aki (2002) studied the generalized waiting time
problem for the first occurrence of a pattern in a sequence obtained by Pélya’s urn
scheme. They present a completely different method, which is based on the methods of
conditional probability generating functions and a notion of truncation.

5. M.V.R. case: Joint distributions of the numbers of patterns, successes and failures in n
trials

We assume that the number X, of occurrences of £ in n trials is an M.V.R. This
section will deal with the joint distribution of (X,, Fr 0,81, --,5n,m). In this section,
we will use the same notations and terminology as in Section 3. In addition to these, we
introduce the s x s transition probability matrices for the Markov chain {Y;,¢ > 0}.

Cio(@,y) = Pr(Ye =Us 14,8t =y | Yic1 = Ui, St-1 = Y))sxss
Cij(z,y) = Pr(Ye =Up_10, St =y + €; | Yie1 = Ui, S¢-1 = ¥))sxs»
i=12,...,m.

In a similar fashion as Section 3, we can obtain the joint probability distribution of

(Xn,8n,1,---,Sn,m) by evaluating the f,(z,y). The next theorem provides a method
for the evaluation of the joint probability distribution of (X,, Sn1,.-.,Snm)-

THEOREM 5.1. The probability vectors f,(z,y), (t > 2) satisfy the recurrence re-
lations

(5.1) Fo(@,y) = Fio1(@,9)Aro(@,9) + ) Fioa(2,y - €))Ari(x,y — €;)

j=1
+fia( =1L y)Biolz —1,y)

+) fia(z—1,y—e)Bjz—1,y - e;)
7=1

+ ft-—l(x + 13 y)Ct,O(x + 17 y)

m
+th—l(x+17y_ej)Ct,j(x+17y_ej)v
7=1
Jor  t22, 0<z</{ and 0<y,¥2,--.,Ym <t — 2N,

with initial conditions
f1(07 y) = (PI‘(Yl = UO,(), Sl = y),Pr(Y1 = U0,17 Sl = y),. cay
Pr(YI = UO,S—l)‘Sl = y))a

for y1,y2,...,ym = 0,1. In addition, the joint probability distribution function of
(Xn,Sniy--rSnm) is given by

(52) Pr(Xn =z,8,= y) :fn(xﬁ y)]',;
0 ngéna Osylyy27--'7ym Sn—an'
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PRrOOF. Note that the event {Y; = U ;, S; = y} implies the occurrence of one of
the events

s—1 m
U ({Yt—l = U:c,jy S 1= y} U U{Yt—l = Uz:,j) Si1=9y— ei}) .

=0 i=1
or
- m
U ({Yt 1= Us—1,5, St 1—y}UU{Yt—l:Uz—l,jyst—lzy_ei})
j=0 i=1
or

s—1 m
U ({Y:t—l =Uzt1,5,5t-1 =y} U U{Yt—1 =Uz1,5,St-1 =9y — ei}) .

§=0 i=1
The recurrences (5.1) are immediate consequences of the total probability theorem. It
is easy to check the equation (5.2) from the following formula,

s—1
Pr(X, =2, =y)=Pr(Y, e U, S, =y) = ZPI‘(Yn =Ugj, Sn= v)- ()

=0

Remark 5.1. In the special case where the matrices A ;(z,y), B ;(z,y) and
Cii(z,y) (7 =0,1,...,m) do not depend on y, that is,

Arj(z,y) = A j(x), Bij(z,y) =By j(z), Cij(z,y)=Crj(z), forall y,

then the matrices )~ o A ;(z), D - 7o Br,j(z) and S i=0C,j(z) are equal to the within
state transition matrix A;(x), the between state transition matrix B;(z) and the re-
turn state transition matrix Cy¢(z), respectively. Therefore, the matrix 2 T oA () +
B, ;(z) + Cy j(x)) is a stochastic matrix.

If Ay j(z,y) = A¢j, Bej(z,y) = By and Cyj(z,y) = Cr; ( =0,1,...,m) for all
z,y, then the joint pgf ¢, (u, v) of (X,,, S, 1,. .., m) defined as (2.1) can be expressed
as a product in the following way.

THEOREM 5.2. If Ay ;(x,y) = A5, Bej(z,y) = By and Cy j(z,y) = Cr5 (4 =
0,1,...,m) for all z,y, then the joint pgf ¢n(u,v) of (Xn,Sn1,..-,5nm) can be ex-
pressed as

(5.3) on(u,v)

’U)H AtO+UBt0+ Ct0+2vj (At’J +’LLBt]+ Ct,j) ]_’,
t=2 j=1

where a(v) is given by (3.4).

ProOF. Introducing the vector generating functions

fy t—zxno

¢t(u7‘v) = Z Z ft(mv y)uxvy’

=0 y=0
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we can write
¢t(u, v) = ¢y (u, v)1'.

By summing both sides of the equation (5.1) after multiplying by u*v¥, ¢,(u, v) can be
expressed as

£y t—1—xzno by t—1—zno
¢(u, v)—z Z il yhu® '”yAtO"‘ZUJZ Z fea(z, y)uv? Ay,
z=0 y=0 j=1 =0 y=0

l—~1t—1—zn0

+u Z Z Fio1(z, y)uv¥ By
=0 y=0
m £i—1t—-1-zng

+qujZ Y fialzyyutoBy
j=1 =0 y=0

£y t—1—zng

+ - Z Z fii(z, 9)u®v¥Cyp

xO y=0

£ t—1—xno

FuY 3 e uor e

=0 y=0

We consider the two possible cases €; = ¢;_, and ¢; = £;_1 + 1 separately. If £y = £;_4,
we should note the identity

ft_l(ft_l,y)Bt,j =0, for ] =0,1,...,m
If 4, = £,_1 + 1, we should note the identity
ft—l(eh y)At,J = 07 ft—l(eta y)Ct,J = Oa for .7 = 07 17 e, Mm

Hence, in both cases we have

1 " 1
¢:(u,v) = ¢y (u,v) | Ao +uBgo+ ~Cro+ > v (At,j +uBy; + ;Cm)
j=1

If we take into account that
(u,v) = ZZfl(w yuTv¥ = Zfl(O y)v¥ = a(v),
z=0y=0

the proof is completed. O

For the homogeneous case (i.e. A;; = A;, B;; = Bj, C;,; =Cj,j =0,1,...,m), the
double generating function of (X,,Sn 1,..., S, m) defined as (2.2) takes more compact
form.

THEOREM 5.3. If At,j(.’L', y) = Aj, Bt,j(x,y) = Bj and Ct’j(.’L',y) = Cj (] =
0,1,...,m) for all z,y and t > 1, then the double generating function of (Xn,Sn1,---,
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Sy.m) s given by

(54) ®(u, v;w) = wa(v) [I —w (Ao + uBy + —11200

-1
I
1,

= 1
+ Z’Uj (AJ + UBJ‘ + ECJ)>

j=1
where a(v) is given by (3.4).

PROOF. From the equation (5.3) under the conditions that A ;(z,y) = Aj,
B j(z,y) = B; and Cyj(z,y) = Cj, (j = 0,1,...,m), the joint generating function
of ¢n(u, v) can be expressed as

n—1
1 = 1 ,
(bn(u,'v) = a(v) A0+UB()+‘1;C()+2;’UJ' Aj+UBj+aCj 1.
]:
Making use of the formula
n
- 1 & 1
= A 120 n
> | Ao+ uBo+ ~Co +Zv_,, (AJ +uBj + uq) w
n=0 j=1
-1

1 e 1
= |I- A B —-C A B, + -C;
w o+ u 0+’u, 0+j§vg( jtu ]+u J) ’

we have the desired result. O

In a similar fashion as in the conclusion of Section 3, we can easily establish formulae
for the double generating function of (X,, Fy, 0, Sn,1,---,Sn,m). Through ¢,(u,v), the
joint pgf ¥y (u, v, v) of (Xp, Frno,Sn1,--.,Snm) can be expressed as

’l/)n(u, Vo, 'U) = E(anvgn,OUfn,l . "U,,in’m)

Xn, 0= Sn1—Sn2="—Sn,m_Sn1 Sn,m
E(u™ v, v o)

= vgPnlu,v1/vo,...,Um/vo).

Therefore the double generating function
o
U(u,vo, v;w) = Z¢n(u,vo, v)w"
n=1

takes the form ¥ (u,vo, v;w) = ®(u,v1/vo,.. ., vm/vo; wrg). More specifically, in terms
of (5.4), we have the following result.

THEOREM 5.4. If At’]’(l', y) = Aj, Bt,j(ZL', y) = Bj, Ct’j(:t, y) = C] (] = 0,
L,...,m) for all z,y and t > 1, then the double generating function ¥(u,vo, v;w) of
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(Xn, Fn0,Sn,1,---,9n,m) can be expressed as

(6.5)  U(u,vo, v;w)
-1

m
1
= vaa(Ul/UOv s ,'Um/’UO) I—w Z'Uj (A] + UBj + ECJ) 1,,
—o

where a(v) is given by (3.4).

As by-products, we can derive some interesting formulae from the equation (5.5).
The double generating functions of (X, Fr0), (Xn,Sn,i) ¢ = 1,2,...,m are given by

o0
E E(uX”vg"’o)w"
n=1

= U(u, vy, v;w)

V] =V2=++-=Up, =1

=wvga(l/vg,...,1/vo)
-1

1 i 1
x |I— A B —-C A B;+ ~-C; 1,
w m( WHL0+UO)+Z;(]+M f+uj)
o0
Z E(uX"Uf"“)w"
n=1
= U(u,vo, v;w)
vo=v1="-=v;_1=1,0; 41 =" =VUm=1
=wa(l,...,L,v;,1,...,1)
N — e —
1—1 m—1
-1
1 = 1
X | IT—w| v (Ai+uBi+EC¢) +Z(Aj+UBj+aCj) ]_’7
J#i

i=1,2,...,m.

The double generating function of X, is

o0 1 -1
Z E(w ™ )u™ = U(u, vo, ¥;W) |vpmvy=-.mv,,—1= wa(l) [I —w <A +uB + EC>] 1,
n=1

where, A =37 A;, B=31"(B;j, C =3 " C; and a(1) = () |o,=-.=v,,=1 (for a
direct proof of an analogous result see Han and Aki (1999)).

THEOREM 5.5. If A;j(x,y) = A;, Byj(z,y) = Bj, Ci(z,y) = C; (j = 0,
1,...,m) forallz,y and t > 1, then the expected value of X, and its generating function
are given by

w2

ool —wA+B+C)"Y(B-O)Y,

Mx,(w) =Y E(Xp)uw" =
n=1
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E(X,) = a(1) ni(A +B+C)Y Y(B-0O),

=1
where, a(1) = a(v) loy=vy=-mvm=1, A=D1 Aj, B= 37" Bj and C = 3772, Cj.

ProOOF. Note that

> d
> B )w" = 5-9(u, vo, v;w)
n=1 u=vp=v1=--=vUm=1
and making use of
ad;(U — V) = (U - 2V) WU - 2V) 7L,

we have the first conclusion of the theorem. By expanding Mx_(w) in a power series of
w, we have the expected value of X,, immediately. O3

The expressions in Theorem 5.5 are easily shown to be consistent with similar expres-
sions given in Han and Aki (1999). The formulae for the variance of X,,, the covariance
between X, and F, o the covariances between X, and S,; (i = 1,2,...,m) can be
derived from the derivatives of the double generating function ¥(u,vq, v;w), however,
their expressions are not very attractive.

Remark 5.2. When the number X,, of occurrences of £ in n trials is an M.V.R.,
we can treat the joint distribution of the waiting time 7, until the r-th occurrence of
the pattern £, the numbers Sr, ; of outcomes “” (i = 1,2,...,m) and the number Fr, o
of outcomes “0” until 7,,. However, we do not dwell on the matter, since the analysis
of such case can be performed by combining the results in Section 4 with the results in
Section 5.

Remark 5.3. Another important random variables are the numbers of an outcome
“” whose previous outcome is “j” (4,5 =0,1,...,m) (i.e. the numbers of times that an
outcome “¢” follows an outcome “;57). For example, in DNA sequence, the probability
structure of occurrences of four letters (A, 7', G and C) is usually described by a first
order Markov chain. Sometimes, a first order Markov model fits real data better than the
independence model. It is important to assess whether the first order Markov dependence
model describes reality better than independence model. The distribution of the numbers
of times that an outcome “j” is followed by an outcome “” (j,i = A, T, G, C) is needed
for the test for the first order Markov independence and provides more useful information
for the modeling of the DNA sequence. Our methods and results in this paper can be
extended to cover this case easily.

6. Applications

In this section, we will present some examples, which are closely related to practical
problems, such as quality control, start-up demonstration test, reliability theory, ... etc.
Assume that the transition matrices treated here are independent of z, y and £, that is,
Arj(z,y) = Aj, Bej(@,y) = Bj, Coj(z,y) =C; (j=0,1,...,m).



164 KIYOSHI INOUE

6.1 Sooner waiting time problems
Let Z1,Zs,... be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables taking values in A = {0,1,...,m}. Assume that

pi=Pr(Z;=14), t>1 and i=0,1,...,m.

Let T, (r > 1) be the waiting time for r runs in total which are among “/”-runs of

length k; (i = 1,2,...,m). Assume that counting of all runs are performed in the
non-overlapping sense.
We have
m
Ag +uBg + E v;(A; + uB;)
i=1
Po pivi 0 -+ 0O pavy O 0 - PmUm 0 . ) \
Po 0 piva -+ 0 pova O 0 © PmUm 0 e 0
Po 0 0 - piv1 Pp2v2 0 0 - DPmUm 0 .. 0
po + up1v1 0 0 0 pova O 0 - DPmUm 0 A 0
Po pivi O 0 pova O 0 © PmUm 0 ces 0
Po pivi O 0 0 pov2 --- O © PmUm 0 e 0
: : : : .l - Dmum O 0
= Po vz O 0 Y Y © p2v2 0 PmUm O 0 ,
po + upave  p1vi 0 0 0 0 -+ 0 - pPmUm 0 0
PO pivi 0 .-+ 0 povy O 0 © PmUm 0 ‘.- 0
Po pivL 0 -~ 0 pauv2 0 0 0 PmUm 0
Po pova 0O -+ 0 pov2 O ~--- O .- 0 0 pmvm/
Po + UPpmUm P12 0 0 pavo 0 0 (4] 0 (1] X8
where s = 37", k; — m+ 1. Since the initial condition
a’(v) = (pO,?lvl,O, e 7Qap2v27 07 v 1Q7 .o 1?mvm707 R 7q)7
ky—1 ka~1 km—1

and
(ply if (7'7.7): (k171)7
D2, if (7’).]) == (kl + k2 - 1’ 1)7

B”'vJ:eZB.71,:< Pe, if (Zvj):(k1+k2++kl'—e+17l)7

0, otherwise,

\

after some calculations, we obtain

uFy (w, v)

H yu) =
(930 = T )~ aFi{w o)
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where,

_ i piwv; — (piwy;)k

Fo(w,
o(w, v) 22T (pawwr)*
m
(pswv;)* (1 — pywv;)
F(w,v) = - .
; 1 - (pwv;)*s

Furthermore, expanding H(w, v;u) in a power series of u, we obtain

1 —pow — Fo(w, v

In case of r = 1, we obtain the joint pgf of the sooner waiting time random variable T}
and the numbers of successes (Sty1,..., 57, ) appeared at that time. Stefanov (2000)
consider the waiting time problems for the first occurrence of a run of either 1’s of length
ki or 2's of length ks or 3's of length k3 in a Markov chain with state space {1,2,3}
and also discussed other waiting time problems (see Stefanov and Pakes (1997, 1999)).
Ebneshahrashoob and Sobel (1990), Feller (1968), Aki and Hirano (1993) and Aki et al.
(1996)). Aki and Hirano (1994) studied the distribution of the number of failures and
successes until the first occurrence of a success run of length & in some {0,1}-valued
random sequences (see Aki and Hirano (1995)).

As Koutras and Alexandrou (1997b) stated, it is important to consider the sooner
waiting time problems, since their distributions play a key role in various applied areas
of research (for example, quality control, start-up demonstration tests, learning criteria
in psychology).

6.2 The number of occurrences of success runs of exact length k
Let Zo, Z1, 23, . .., Zy be a time homogeneous {0, 1 }-valued Markov chain with tran-
sition probabilities

pi;=Pr(Z;=j|Z4-1=14), t>1 and 4,j=0,1

and initial probabilities
pj:Pr(ZOZj)’ j:0717

(we say success and failure for the outcomes “1” and “0”, respectively). We study the
joint distribution of the number of occurrences of success runs of exact length k£ and the
number of successes in the Z1,Z»,...,Z, (see Mood (1940), Han and Aki (1999) and
Doi and Yamamoto (1998)).

We have

1 1
Ay +uBg + ECO + v (Al + uB; + aCﬁ)
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Poo Doit1 0 0 e 0 0 0

po 0 pyvr O -+ O 0 0

pio O 0 puvr - 0 0 0

P1o 0 0 0 P11 0 0

D10 0 0 0 0 upy1v1 0

Pio 0 0 0 0 0 P11 /U

po 0 0 0 0 0 PV (kyo)x(k+2)

The initial condition is

a(v1) = (popoo + Prpr0, (Popor + P1p11)v1,0, .. .,0) € RFFZ,

In order to obtain the double generating function of (X, Sy 1), we need to invert the
matrix [ —w(Ao+uBo+ —11200 +v1(Ay+uB+ %Cl)). Straightforward calculations yields
that

PO(ua U, U))

Pl (ua V1, 'LU)
P(u,v;,w)

+ (popo1 + P1p11)wur P(u, 01, w)

®(u, vi;w) = (PopPoo + P1P10)W
where,

Po(u,v1,w) =1+ (po1 — p11)wvy — porwvr (pr1wvr)* 1 (1 — priwvr ) (1 — w),
Py(u, vy, w) = 1+ (pro — poo)w — (1 — w)(1 — prawwy)(priwvy)* 1 + (p1o — poo)w),
P(u,v1,w) =1 — (poo + p11v1)w + poop11w’vy

— proporw?v1 [l — (1 — u)(1 — priwvr) (priwvq )*71).

6.3 Waiting for the first scan
Let Z1,Z,, ... be a sequence of i.i.d. trials taking values in A = {0,1}. Assume that

Po = Pr(Zt - 0), D1 = PI'(Zt = 1), t> 1.
Let 77" denote the waiting time for the first occurrence of a scan, which is defined as

T, =min¢n: Z Z; > k

j=max(n—m+1,1)

The distribution of T} will be referred to as “geometric distribution of order k/m”
(see Balakrishnan and Koutras (2002) and Glaz et al. (2001)). In case of kK = m, the
corresponding distribution is geometric distribution of order k (see Philippou et al. (1983)
and Koutras (1996b)). For example, in the case of k = 3, m = 4, we consider the joint
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distribution of (7%, Sta,1)- We have

po pvi 0 0 O 0 0 0 0 0 0
0 0 p 0 0 piwg 0 0 0 0 0
0 0 0 Po 0 0 p1 0 0 0 0
0 0 0 0 Po 0 0 P1v1 G 0 0
Po P1u1 0 0 0 0 0 0 0 0 0
Ao+viA;=1| 0 0 0 0 0 0 0 0 p 0 O
0 0 0 0 0 0 0 0 0 po O
0 0 Po 0 0 P11 0 0 0 0 0
0 0 0 0 O 0 0 0 0 0 po
0 0 0 Do 0 0 P11 0 0 0 0
0 0 0 0 p 0 0 puy 0 0 0/,

Since the initial condition
a'(vl) = (37071711117 07 e 50);

and
p1, if (7'7.7) :(671)’(7$1)7(9’1)7

i =e;B;1' =
Bis i 0, otherwise,

by a direct application of Corollary 4.1, we have

Hl(w,vl) = (;01wu1)3(1 + 2pow — p0p1'w2'ul - P3P1w3v1) .
1 — pow — popr1w?v;y — pgpiwtv] + pipiuwltel
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