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A b s t r a c t .  Let {Zt,t  >_ 1} be a sequence of trims taking values in a given set 
A = {0, 1, 2 , . . . , m } ,  where we regard the value 0 as failure and the remaining m 
values as successes. Let C be a (single or compound) pattern. In this paper, we 
provide a unified approach for the study of two joint distributions, i.e., the joint 
distribution of the number Xn of occurrences of $, the numbers of successes and 
failures in n trials and the joint distribution of the waiting time T~ until the r-th 
occurrence of $, the numbers of successes and failures appeared at that time. We 
also investigate some distributions as by-products of the two joint distributions. Our 
methodology is based on two types of the random variables X~ (a Markov chain 
imbeddable variable of binomial type and a Markov chain imbeddable variable of 
returnable type). The present work develops several variations of the Markov chain 
imbedding method and enables us to deal with the variety of applications in different 
fields. Finally, we discuss several practical examples of our results. 

Key words and phrases: Run, pattern, waiting time, enumeration schemes, Markov 
chain, double generating function, probability generating function, Markov chain 
imbedding method, transition probability matrices. 

1. Introduction 

Let {Zt, t _> 1} be a sequence of trials taking values in a given set A = {0, 1, 2, 
. . . ,  m}. We regard the value 0 as failure and the remaining m values as successes. If 
m = 1 then  the sequence can be regarded as the  Bernoulli  trials. Let  s be a (single 
or compound)  pa t t e rn  whose elements are integers in ,4. There  are two impor t an t  
distr ibutions associated wi th  the pa t t e rn  $, which are applied to a wide range of areas 
(for example,  quali ty control,  reliability theory,  psychology, genome sequence analysis, 
etc). One is the  dis t r ibut ion of the number  Xn of occurrences of the  p a t t e rn  8 among 
Z1, Z 2 , . . . ,  Zn. The  other  is the dis t r ibut ion of the waiting t ime Tr until  the  r - t h  (r  _> 1) 
occurrence of 8. The  distr ibutions of Xn and T~ have been studied by many  authors  in 
various si tuat ions (see, for example,  Biggins and Cannings (1987), Blom and T h o r b u r n  
(1982), Robin and Daudin  (1999), Fu (1996) and Vchida (1998)). 

Recently, Fu and Kout ras  (1994) in t roduced a finite Markov chain imbedding 
me thod  for the s tudy  of run-re la ted problems, which has a great  potent ia l  for extending 
to other  problems (see Kout ras  (1996a), Fu and Lou (2000) and Kout ras  and Alexandrou  
(1997a)). Kout ras  and Alexandrou  (1995) refined this me thod  and in t roduced a Markov 
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chain imbeddable variable of binomial type (M.V.B.). They studied Xn in the case where 
$ is a success run (non-overlapping, at least, overlapping) of length k in a sequence of 
n Bernoulli trials. Han and Aki (1999) introduced a Markov chain imbeddable variable 
of returnable type (M.V.R.) and derived the distribution of the number of success runs 
of exact length k. By using the Markov chain imbedding method, Inoue and Aki (2003) 
studied Tr in the case where s is a g-overlapping success run of length k in a sequence 
of Markov dependent trials. 

Besides the two random variables Xn and Tr, other important random variables 
are the number of outcomes "i" (i = 0, 1 , . . . , m )  in the observed sequence. Let Sn# 
be the number of the outcomes "i" (i = 1 , 2 , . . . , m )  and let Fn,o be the number of 
the outcomes "0" among Z1 ,Z2 , . . . ,  Zn. We can obtain useful information from the 
two joint distributions: the joint distribution of the number Xn of occurrences of the 
pattern C, the numbers Sn,i of outcomes "i" (i = 1 , 2 , . . . , m )  and the number Fn,o of 
outcomes "0" among Z1, Z2 , . . . ,  Zn or the joint distribution of the waiting time Tr until 
r-th occurrence of the pattern E, the numbers ST,,i of outcomes "i" (i = 1 , 2 , . . . , m )  
and the number FT~,O of outcomes "0" among Z1, Z2,...,  ZT~. For example, in quality 
control, it is quite natural in sampling inspection to use a run of defective items as a 
stopping criterion (see Koutras (1997)). Each item is classified to three categories: fully 
conformable (type S*), partially conformable (type F)  and totally rejectable (type S). 
Assume that we decide to accept the lot if kl consecutive S*-type items are observed 
and reject the lot if k2 consecutive S-type items are observed. Then the distribution 
of the numbers of items of types S*, S and F observed until the termination of the 
sampling inspection plan is used to take corrective action on the production line. For 
example, many problems in bioinformatics relate to the comparison of two (or more) 
DNA sequences taking values in .A = {A, C, G, T}. In order to compare two sequences, 
we should extract information from these sequences composed of four letters. If we 
consider the test of the hypothesis that the two sets of probabilities for the four letters 
are equal, we need to count the numbers of the four letters A, C, G and T, respectively 
in the observed sequences. The distribution of the frequencies of the four letters as well 
as the distribution of the number of occurrences of E give more insight into the analysis 
of the DNA sequence (see Ewens and Grant (2001)). 

We should make extensive use of the Markov chain imbedding method, in order to 
obtain the joint distributions of (Xn, Fn,o, S,~,1,..., Sn,m), (Tr, FT,,O, ST, , l , . . . ,  ST,-,m). 
The purpose in this paper is to develop a general workable framework for the Markov 
chain imbedding method for the derivation of the joint probability distribution func- 
tions and the joint probability generating functions (pgf's) of (Xn, Fn,o, Sn,1,..., Sn,m), 
(Tr, FT.,0, ST. , l , . . . ,  ST,,m) in the various ways of counting runs and patterns. We can 
deal with the wide class of patterns by using the results in this paper, since we consider 
a sequence of trials with more than two outcomes and compound patterns. 

The present paper is organized as follows. In Section 2, we introduce necessary 
definitions and notations. In this paper, each one of the two cases (the variable Xn 
is an M.V.B., the variable Xn is an M.V.R.) is treated separately. In Section 3, in 
the case where the variable Xn is an M.V.B., we develop a unified approach for the 
study of the joint distribution of (Xn, Sn,1,..., Sn,m). Through the joint distribution of 
(Xn,  Sn ,1 , . . .  , Sn,rn), we consider the joint distribution of (Xn, Fn,0, Sn,1, . . . ,  Sn,m). As 
by-products, we examine the joint distributions of (Xn, Sn#) (i = 1 ,2 , . . . ,  m), (Xn, Fn,o) 
(and also, the marginal distribution of Xn). The formulae for the expected value of Xn 
are also obtained. In Section 4, in the case where the variable Xn is an M.V.B., we 
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study the joint distribution of (T~, ST~,I, . . . ,  ST~,m). Through the joint distribution of 
(T~, ST~,I, . . . ,  ST~,m), we consider the joint distributions of (T~, FT,,O, ST~,I,..., ST~,r~). 
As by products, the joint distributions of (Tr, STy#) (i = 1, 2 , . . . ,  m), (T~, FT,,O) (and 
also, the marginal distributions of T~, ST~,i (i = 1 , 2 , . . . ,  rn), FT,,O) are considered. The 
formulae for the expected value of Tr are also obtained. In Section 5, in the case where 
the variable X~ is an M.V.R., we study the joint distribution of (X~, S~,1, . . . ,  S~,m). 
Through the joint distribution of (X~, Sn,1, . . . ,  S~,m), we consider the joint distribu- 
tions of (X,~,F~,o, S~,1,..., S,~,,~). As by-products, we examine the joint distributions 
of (X~, S~#) (i = 1, 2 , . . . ,  m), (X~, F~,0) (and also, the marginal distribution of X~). 
The formulae for the expected value of X~ are also obtained�9 Finally, in Section 6, we 
discussed several practical applications. 

2. Definitions and notations 

Let (Zt, t  > 1} be a sequence of trials taking values in a given set ,4 -- (0,1,2,  
�9 . . ,  m}, where we regard the value 0 as failure and the remaining m values as successes. 
Let g be any pattern (simple or compound) whose elements are integers in ~4 and let no 
be the number of 0 element which the pattern g contains. In the sequel, we assume that 
the length of pattern g is greater than 1. In practice, this is the most common situation. 
Then, we denote the number of occurrences of g by X~ and denote the number of 
outcomes "i" (i -- 1, 2 , . . . ,  m) by Sn# among Z 1 , . . . ,  Z~ (n a fixed integer). We denote 
the joint probability distribution function of Xn and Sn(= ( S n , 1 ,  S n , 2 , . . . ,  S n , r n ) )  by 

fn(x, y) = Pr(Xn = x, S~,1 = Yl, S~,2 = Y2,.-.,  S~,m = Ym), 
= Pr (Xn=x ,  Sn =y) ,  x = 0 , 1 , . . . , g n  and O < y l , . . . , y m  <_n-xno,  

where, gn is the maximum number of occurrences of g that can be accommodated in n 
trials, that is, gn = max{x : Pr(Xn = x) > 0}. Needless to say, under the assumption 
that the length of pattern s is greater than 1, we have gl = 0 and fl(x, y) = 0 for x ~ 0. 

The corresponding joint pgf and double generating function of (Xn, Sn,1,.--,  Sn,rn) 
will be defined by 

~ n  n - -  x r~o  

(2.1) r v) E(uXnvS1 ~'1 _ sn .~ 
x = 0  y = O  

(2.2) 
n = l  n = l  x = 0  y = 0  

respectively, where v 'n-~n~ V'~-~n~ V ' n - ~ ~  and v y - "~1 u~ 
A . - . ~ y = O  = A . . ~ y l  = O  " " " A . ~ y m  = O  - -  "Vl " " " V r n  �9 

Let us denote by Tr, (r > 1) the waiting time for the r-th occurrence of ~ and its 
joint probability distribution function of (Tr, ST , , l , . . . ,  STr,m) by 

h r ( n , y ) = P r ( T r = n ,  STr---y), n = l , 2 , . . ,  and O < y l , . . . , y m < n - r n o .  

The corresponding joint pgf and double generating function of (Tr, ST. , l , . . - ,  ST~,m) will 
be defined by 

OO n - - r n  O 
(2.3) 

. . . .  : E 
n = l  y = 0  
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(z4) 

respectively. 
Let Xn 

0, 1 , . . . ,G~.  

OO OO O ~  n - - r n o  

r = l  r = l  n = l  y = 0  

be a non-negative integer valued random variable taking on the values 
Then, according to Koutras  and Alexandrou (1995), the random variable 

Xn is called a Markov chain imbeddable variable of binomial type (M.V.B.) if 
(1) There exists a Markov chain {Yt, t > 0} defined on a state space ft. 
(2) There exists a part i t ion { Ux : x > 0} on the state space fl. 
(3) For every x, P(X,~ = x) = P(Yn r U~). 
(4) P(Yt E U,~ I Yt_I e Ux) = O if w r x , x  + l and t >_ 1. 
Assume first tha t  the sets Ux of the part i t ion { Ux, x > 0} have the same cardinali ty 

s = ]Uxl for every x, more specifically Ux = {U~,0, Ux,1, . . . ,  Ux,s-1}. According to Hail 
and Aki (1999), the random variable Xn is called a Markov chain imbeddable variable 
of returnable type (M.V.R.), if all of the conditions in the above definition of M.V.B. 
hold, except tha t  (4) is replaced by the following statement:  

(4') P(Yt C U w  [ gt-1 C Ux) = 0 if W r X -- 1, X, X + 1 and t _> 1. 
We denote the initial probabilities of the Markov chain by 

rr~ = (Pr(Yo = Ux,o),Pr(Yo = U~, I ) , . . . ,  Pr(Y0 = U~,s-1)), x >_ 0, 

and denote the probabili ty vectors 

f t ( x )  = (Pr(Yt = U~,0), Pr(Yt = U~,I), . . .  ,Pr(Yt = U~,s-1)), 0 < x < in,  1 < t < n. 

Clearly, we have 
Pr(Xn = x) = f n ( x ) l ' ,  0 < x < g, ,  

where, 1 -- ( 1 , 1 , . . . , 1 )  E 74 s. 
We introduce the next two matrices, 

(i) the within states matr ix  At(x) = (Pr(Yt = U~5 I Yt_l = Ux,i))sx~, 
(ii) the between states matr ix  Bt(x) = (Pr(Yt = Ux+l,j [ Yt-1 = Ux,i))sxs. 

If X~ is an M.V.B., then the probabil i ty vectors f t ( x )  satisfy the recurrence relations 
(see Koutras  and Alexandrou (t995), Fu (1996) and Koutras  (1997)) 

f t  (0) = f t - l (O)At  (0), 

f t ( x ) = f t _ i ( x ) A t ( x ) + f t _ l ( x - 1 ) B t ( x - 1 ) ,  l _ < x _ < g ~ ,  l < t < n .  

In addition, we introduce the following matr ix  
(iii) the re turn states matr ix  Ct(x) = (Pr(Yt = U~-I,j I Yt- i  = Ux,i))sxs. 
If  Xn is an M.V.R., then  the probabili ty vectors f t  (x) satisfy the recurrence relations 

(see Han and Aki (1999)) 

f t ( x ) = O ,  x < 0  or x > ~ t ,  l < t < n ,  

f t ( x )  = f t _ l ( x )A t ( x )  -9 f t _ l (X  - 1)Bt(x - 1) q- f t _ t ( x  -9 1)Ct(x + 1), 

O<_x<_gn, l < t < n .  

In both  types of Xn, making use of the recursive schemes, we can easily evaluate the 
fn (x ) .  Therefore, the probabili ty distr ibution function of Xn can be obtained. Remark 
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that  At(x) 4- Bt(x) is a stochastic matr ix  if Xn is an M.V.B. and At(x) + Bt(x) + Ct(x) 
is a stochastic matr ix  if Xn is an M.V.R.  

As already s ta ted  in Introduct ion,  we should make extensive use of the Markov chain 
imbedding me thod  in order to s tudy  the joint distr ibution of (X~, Fn,0, Sn ,1 , . . . ,  S~,m) 
and the joint dis tr ibut ion of (Tr, FT,,O, ST~,I,..., ST~,m). 

3. M.V.B. case: Joint distributions of the numbers of patterns, successes and failures in n 
trials 

Assume that  the number  X~ of occurrences of g in n trials is an M.V.B. In this 
section, we consider the joint dis tr ibut ion of (Xn, Fn,o, Sn ,1 , . . . ,  Sn,m). 

To begin with, we introduce the following transit ion probabi l i ty  matrices 

At,o(x, y) = (Pr(Yt = Ux#,, St = y [ Yt-1 = Ux,~, St-1 = Y))sxs, 

A t , j ( x ,  y) ---- (Pr(Yt --- Ux,i,, St  = y + ej [ Yt-1 ---- Ux,i, St-1 = Y) )sxs, 
j = 1 , 2 , . . . , m ,  

Bt,o(x, y) = (Pr(Yt = Ux+l,i,  , S t  = y [ Yt -1  = Ux,i, S t - 1  = Y) ) s •  

Bt,j(x, y) = (Pr(Yt --- Uz+l,i,, St  = y + ej [ Yt-] = Uz#, St-1 = Y))sxs, 

j - - 1 , 2 , . . . , m ,  

and the probabi l i ty  vectors 

f t ( x ,  y) = (Pr(Yt = Ux,o, St = y),  Pr(Yt -- Ux,1, St  = y ) , - . . ,  

Pr(Yt ---- U~,s-1, St = y)) ,  t > 1, 

where, we denote  the  j - t h  unit vector  of T~ 8 by ej. Manifest ly 

8--1 

f n (x , y )  = Pr (Xn  -- x ,S~  -- y) = ~ P r ( Y n  = Ux,i,Sn = y) = f n ( x , y ) l ' .  
i=0 

Therefore, we can obtain the joint  probabil i ty distr ibution of (Xn,Sn,1, . . . ,Sn,m) by 
evaluating the fn (x ,  y). The next theorem provides a method  for the evaluation of the  
joint probabi l i ty  dis tr ibut ion of (Xn, S ~ , I , . . . ,  Sn,,~). 

THEOREM 3.1. The probability vectors f t(x, y) ,  (t > 2) satisfy the recurrence re- 
lations 

(3.1) 
m 

f t(x, y) = f t_l (x, y)At,o(x, y) + E f t_l (x, y - e j )Ats(x ,  y - ej) 
j = l  

+ f t _ l ( X -  1, y ) B t , o ( x -  1 ,y )  
m 

4- E f  t _ l ( x -  1 ,y  - e j ) B t , j ( x -  1, y - ej) 
j = l  

for t > 2 ,  O < x < ~ t  and O < y l , y 2 , . . . , y m < _ t - x n o ,  

with initial conditions 

f l  (0, y )  : (Pr(Y1 = U0,o, S1 = y ) ,  Pr(Y1 = Uo,1, S l  - -  y ) , . . . ,  

Pr(Yl = Uo,s-1,  S l  = y )  ), 
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for Yl,Y2,. . . ,Ym = 0, 1. In addition, the joint probability distribution function of 
(X~, Sn ,1 , . . . ,  S,,m ) is given by 

(3 .2)  P r ( X n  = x, S n  ---- y) ---- fn(X, y ) l ' ,  

0 < x < ~n, 0 ~ Yl, Y2,. �9 Ym ~-- n -- xno. 

PROOF. 
the events 

s--1 / 

U {Yt-1 
j=o 

or 

Note  that  the event {Yt = Uxd, St = y} implies the occurrence of one of 

---~ U x , j ,  S t - 1  = y }  U U { r t _ l  = U x , j ,  S t _  1 : y - e i 

i=1 

-( ) U {Yt-1 = U x - l , j ,  S t - 1  ~- Y }  U {Yt-1 -~ U x - l , j ,  S t - 1  = Y - e i }  �9 

j=0 i=1 

The recurrences (3.1) are immediate  consequences of the total  probabi l i ty  theorem. 
It is easy to check the equat ion (3.2) from the following formula, 

s-1 
Pr (Xn  = x, Sn = y)  = Pr(Yn e U~, Sn : y)  = E Pr (Y,  = Uxj, Sn -- y). 

j=o 

[] 

Remark 3.1. In the special case where the matrices At,j(x, y) and Bt,j(x, y) do 
not depend on y, tha t  is, 

At,j(x, y) = At,j(x), Bt,j(x, y) = Bt,j(x), for all y,  

m then the matrices }-~j~--0 A t j  (x) and ~j=o Bt,J (x) are equal to the within s ta te  t ransi t ion 
matr ix  At(x) and the be tween s ta te  transit ion matr ix  Bt (x), respectively. Therefore,  the 

m A matr ix  ~ -~ j=0( t , j (x )  + Bt,j(x)) is a stochastic matrix.  

IfAt,j(x,  y) = At,j and Btd(x, y) = Bt,j (j = 0, 1 , . . .  ,m)  for all x, y,  then the joint  
pgf Ca(U, v) defined as (2.1) can be  expressed as a product  in the following way. 

THEOREM 3.2. If  At , j(x,y)  = At,j, B t j ( x , y )  = Bt,j (j  = 0, 1 , . . .  ,m)  foral lx ,  y, 
then the joint pgf On(U, v) of (Xn, Sn ,1 , . . . ,  S~,,~) can be expressed as 

n 

(3.3) Cn(u, v)  = a(v) H 
t=2 

m 

At,o + uBt,o q- E vj(At,j q- uBt,j) 
j = l  

11 

where, 

(3.4) 
1 

y=O 
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PROOF. 

we can write 

Introducing the vector generating functions 

s t--xno 

x=0 y=0 

v) = v ) l ' .  

By summing both  sides of the equation (3.1) after mult iplying by uxv ~, dPt(U, v) 
can be expressed as 

~t t--l--xno m s t--l--xno 
dl)t(U'V) = E E f t - l ( x ' y )uXvYAt ,~  E v J  E E f t - l (X 'y )uXvYAt , j  

x=O y=O j = l  x=O y=O 
s t-  l-xno 

x~0 y=O 

rn s t-l--xno 

Z Z �9 
j = l  x=0 y=O 

We consider the two possible cases gt = gt-1 and gt = gt-1 + 1 separately. If gt = gt-1, 
we should note the identi ty 

f t _ l ( ~ t - l , y ) B t , j = O ,  for j = 0 , 1 , . . . , m .  

If gt = gt-1 + 1, we should note the identi ty 

f t_ l (~ t , y )A t , j=O,  for j = 0 , 1 , . . . , m .  

Hence, in both  cases we have 

rPt(u , v) = Ct_l(u, v) At,o + uBt,o + ~-~ vj(At,j + uBt,j) 
j = l  

If we take into account tha t  

s 1 1 

~ I ( U ' V )  = E E  f l (x '~])uxvy ~--- E f l ( 0 ' ~ ) v y  = a(v), 
x--0 y=O y=O 

the proof is completed. [] 

For the homogeneous case (i.e. At,j = Aj, Bt, j = Bj, j = 0, 1 , . . .  ,m) ,  the double 
generating function (I)(u, v; w) defined as (2.2) takes more compact  form. 

THEOREM 3.3. If At , j (x,y)  = Aj, Bt , j (x,y)  -- Bj (j = 0 , 1 , . . . , m )  for all x , y  
and t >_ 1, then the double generating function of (Xn, Sn,1,.. . ,  Sn,m) is given by [ ( m )]1 
(3.5) ~ ( u , v ; w ) = w a ( v )  I - w  A o + u B o + E v j ( A j + u B j )  1', 

j=l 
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where  a ( v )  i~ g i v e n  by (3 .4 ) .  

PROOF. From the equation (3.3) under the conditions that At,j(x, y) 
Bt,j(x, y) = Bj, (j = 0, 1 , . . .  ,m),  the joint pgf r v) can be expressed as 

[ in (3.6) r  A o + u B o + ~ v j ( A j + u B j )  1'. 
j = l  

Making use of the formula 

oo m 

Ao + Bo +  vj(Aj + u B j )  w n 
n = O  j = l  e )]1 

= [ [I - w + + j = l  vj(Aj + u B j )  , 

we have the desired result. [] 

= A j, 

Let F,~,o be the number of the outcome "0". Then we can obtain the joint pgf 
r Vo, v) of (Xn, Fn,O, Sn,1,.. . ,  Sn,m) through r v): 

r vo, v) ~ ,  x~ F ~ o S o l  = ]~(U Y 0 ' "U 1 ' ' ' ' V S m  "~'m) 

�9 =,~ X n  n - S n  1 - S , ~ 2  . . . . .  S ,~m S,~ 1 
= ~ t u  Vo ' ' ' v l  ' " " v  s ~ ' ~ )  

= v 3 r  v l / ~ o , . . ,  v , ~ / v o ) .  

Therefore the double generating function 

oo 

'~(~, vo, ~; w) = ~ r  vo, ~)w ~ 
n = l  

takes the form ~(u,  Vo, v; w) ~- rb(u, Vl/VO,..., vm/vo; wvo). More specifically, in terms 
of (3.5), we have the following result. 

THEOREM 3.4. If  Atb(x ,y)  = Aj, Bt , j(x,y)  = Bj (j = 0 , 1 , . . . , m )  for all x , y  
and t > 1, then the double generating function ~ (u, vo, v; w) of ( Xn, Fn,o, S~,I, . . . ,  Sn,m) 
can be expressed as ]1 
(3.7) ffA(u, VO, V ; W ) = w v o a ( V l / V O , . . . , V m / V O )  I - w E v j ( A j + u B j )  1 ' ,  

j=o 

where a(v) is given by (3.4). 

As by-products, we can derive some interesting formulae from the equation (3.7). 
The double generating functions of (Xn, Fn,o), (Xn, Sn,i) (i = 1, 2 , . . . ,  m) are given by 

oo Vl : Y 2 : ' " : V r n  ~ I  

E E ( u X ~  Fno' ,  n v o ' ) w  =~(u ,  vo, v;w) 
n = l  
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o o  

n = l  

= WVoa(1/Vo, . . . ,  l/v0) 

[ ( )] • I -  w vo(a0 + us0) + ~ ( a j  + uB~) 
j = l  

�9 (u, v0, v ;  w )  v o = v ,  . . . . .  . ~_ ,=1 ,~ ,+~  . . . . .  v ~ = l  

i--1 m-- i  

- 1  

11 , 

i -- 1 , 2 , . . . , m .  

The double generating function of X~ is 
(3(3 

E F-~(~l)X'~)~tn : ffJ(W, VO, V; W )  Ivo:Vl  . . . . .  v m : l :  wa(1)[I - w ( A  + uB)]-tl ', 
n : l  

m m 
where, d = )-~j=o Aj,  B : ~-~j=o Bj  and a(1) : a(v)  Iv1 . . . . .  vm=l (for a direct proof of 
an analogous result see Koutras and Alexandrou (1995)). 

THEOREM 3.5. I f  A t s ( x , y )  = Aj ,  B t , j ( x ,y )  = Bj  (j = 0 , 1 , . . . , m )  for  all x , y  
and t >_ 1, then the expected value of Xn and its generating function are given by 

oo W2 
Mxn(W) = E E(Xn)wn  - 1 _ ~  a(1)[I  - w(A + B)] - IB1  ', 

n = l  

n--1 

E(Zn)  = a(1) E ( A  + B ) i - I B 1  '. 
i=1 

m A m B where, a(1) : a(v)  [v1=~2 . . . . .  ~m=l, A = ~-:~j=o J and B = ~~j=o J" 

PROOF. Note that  

cx~ u=vo=Vl ='"  =vm = l 
.(xo)w  = v0 , . ;w)  

n = l  

and making use of 

d 
--~z(e - zY )  -1 -- (U - z V ) - I v ( u  - zV) -1, 

we have the first conclusion of the theorem. By expanding Mzn (w) in a power series of 
w, we have the expected value of Xn immediately. [] 

The expressions in Theorem 3.5 are easily shown to be consistent with similar 
expressions given in Koutras and Alexandrou (1995), Han and Aki (1999) and 
Chadjiconstantinidis et al. (2000). The formulae for the variance of X~, the covariance 
between Xn and F~,0 and the covariances between Xn and Sn,i (i = 1, 2 , . . . ,  m) can be 
derived from the derivatives of the double generating function ~(u,  vo, v;w), however, 
their expressions are not very attractive. 

[ ( )]1 
x I - w  v i ( A i + u B i ) +  ( A j + u B j )  1', 
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4. M.V.B. case: Joint distributions of the waiting time and the numbers of successes and 
failures 

Assume tha t  the number X~ of occurrences of g in n trials is an M.V.B. In this 
section, we will consider the joint distr ibution of (T~, FT,,O, ST~,I , . . . ,  ST~,m). 

THEOREM 4.1. The joint probability distribution function of (TT, ST~,I , . . . ,  ST~,m) 
can be expressed as 

(4.1) h~(n,y)  = ~-~ , l~ i ,o (n;r ,y ) fn_x(r -  1, y) 
i=1 [ 

j = l  

n >  2, O<_yl ,y2 , . . . , ym <_n, 
h~(1, y) - -0 ,  Y l , Y 2 , . . . , Y m  = 0 , 1 ,  

where ,  

~ , o ( n ; r ,  ~ )  = e ~ B n , o ( r  - 1, y - e ~ ) l ' ,  

~ i j ( n ;  r, y )  = e i B , , , j ( r  - 1, y - e j ) l ' ,  j = 1 , 2 , . . . , m .  

PROOF. Note that 

hT(n, y) = Pr(TT = n, STr : y )  : Pr(T~ = n, Sn = y) ,  

which is equivalent to 

h r ( n ,  y )  -= P r ( X n  =- r ,  X n _  1 z r - 1, S n = y )  : P r ( g n  C U r ,  gn--1 C U r - 1 ,  S n = y ) .  

Making use of the further decomposition of the event {Yn E U~, Yn-1 e Ur-1 ,  Sn = y},  
we have 

hr(n ,y )  = Pr(Yn E U~,Yn-1 e U ~ - I , S n  = y) 
8--1 

= E Pr(Y,~ e UT, ST, = y I Yn-1 = U~-l,i, Sn-1 = y) 
i=0  

x Pr(Yn-1 = Ur-l,i, Sn--1 = y) 
s--1 m 

+ E E P r ( Y n  E Ur, Sn = Y [ Y n - 1  =Ur- l , i ,  Sn-1  = y - - e j )  
i=O j=l 

• Pr(Y~-I = U~-I,i, S~ - I  = y - ej) 
s--1 

: E ei+lB~,o(r - 1, y ) l 'P r (Yn -1  = Ur-l,i ,  Sn-1  = y) 
i=O 

s--1 m 

§ E E e i + l B n , j ( r -  1, y - e j ) l 'P r (Yn -1  = Ur-l,i ,  Sn-1 = y - ej) 
i=0  j = l  

' 
= ~ i , o ( n ; r , y ) f n _ l ( r -  1, y ) +  ~ i , j ( n ; r , y ) f n _ a ( r -  1, y - ej) e i. 

i=1 j = l  
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Under  the assumption that  the length of pa t te rn  $ is greater  than 1, we have immediately  
h~(1, y) = Pr(T~ -- 1, $1 = y) = 0. The proof  is completed.  [] 

In the case where At,j(x, y) = Aj, Bt,j(x, y) = Bj ,  (j  = 0, 1 , . . . , m ) ,  the double 
generating function H(w, v; u) defined as (2.4) takes more compact  form. 

THEOREM 4.2. If  At , j (x ,y)  = Aj, Bt , j (x ,y)  -- Bj (j  = 0 , 1 , . . . , m )  for aUx, y 
and t >_ 1, then the double generating function of (T~, ST~,I,.. . ,  STr,m) is given by 

(4.2) H(~,v;u)  = ~o~a(,,) ~,o + ~ vs~,J 
i=l j= l  / 

x I - w  A o + u B o + E V j , ( A j , + u B j ,  ) e i 
5 '=1  

where, Zi,j = e iBj l ' ,  i = 1 , . . . , s ,  j -- 0 , 1 , . . . , m ,  and a(v)  is given by (3.4). 

PROOF. 
Bt,5 (x, y) = 

From the equat ion (4.1) under the conditions tha t  At, j (x ,y)  = A 5, 
Bj, (j = 0 , 1 , . . . , m ) ,  the joint probabi l i ty  dis t r ibut ion function of 

( T r ,  ~T~- ,1 , . . . ,  ST~,m) is 

[ ~ i , O Y n _ l ( r  - -  1, y )  

m ] 
+ E i 3 i , j f n _ l ( r  - 1, y - e5) e;. 

j = l  

(4.3) h~(n, y) = 
i=1 

A straightforward manipulat ion over (4.3) reveals tha t  

i=1 5=1 n = l  r=0 y=O 

= ~w ~ ~,,0 + v~,,~ CAn, ~)~"e~. 
i=1 n = l  

The proof  is completed if we take into account tha t  

--1 

n = l  j ' = l  

[] 

As described in the next theorem, expanding (4.2) in a power series of  u, we can 
get the joint  pgf Hr(w, v) defined as (2.3). 

THEOREM 4.3. I f A t j ( x , y )  = Aj, Bt , j (x ,y)  = B 5 (j  = 0 , 1 , . . . , m )  for all x , y  
and t > 1, then the joint pgf of (Tr, ST~,I,..., ST~,m) is given by 

(4.4) ) 
i=1 j=l  
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[( ) x I - w Ao + vj ,Aj ,  Bo + v j , B  s, 
j '=l j '=l 

x I -  w Ao + vj ,Aj ,  el, r >_ 1, 

j ' = l  

where a(v)  is given by (3.4). 

r--1 

PROOF. Since 

I - w  A o +  E v s , A s ,  + u  B o +  E v s , B s ,  
j '=l j ' = l  

= I - w Ao + v s,Aj, 
j ' = l  

[ ( x I - wu I -  w Ao + vj,Aj, 
j ' = l  

it follows that 

(m) Bo + ~'_vs, Bj, 
S'=I  

I - w  ( 

O 0  

- Z  
j=O 

--1 )(  ))] A o + ~ v j ,  A s, + u  B o + ~ V  s,B s, 
j'=l j'=l (( ))_1( )] 

I - -  w Ao + E vj'Aj' B~ + vS'BS' 
j '=l j,=l 

--1 ( ( m )) 
x I - w Ao + E vs'Aj' 

S'=I 

• (~uy .  

Hence, we can write H(w, v; u) as 

i=1 

x E I -  w Ao + vj, Aj, 
j=O j ' = l  

--1 

I - Ao + E A j, x 

j '=l 

• (~u)se~ 

--1 
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or equivalently in the more interesting form 

~(w, ~;~) = ~ w ~ + ~ ( ~ )  ~,0 + ~ , ~  
r = l  i=1 j = l  

x I - w Ao + vj,Aj,  
j ' = l  

--1 

x I - - w  A o +  vj, Aj, 
j ' = l  

! r 
X e i u  , 

which manifestly yields the desired result. [] 

) 
- 1  

B0+ ~ vj, sj, 
j ' = l  , ] J  

r--1 

In the special case r = 1, from the formula (4.4), we can derive the joint pgf H~ (w, v) 
related to the first occurrence of g. More quickly, by exploiting the formula 

we can also derive the joint pgf Hi(w, v) of (T~, STI,1,..., Sr~,m). 

COROLLARY 4.1.  I f  At, j(x,  y) = Aj,  Bt,j(x, y) = Bj  (j = O, 1 , . . .  ,m) for all x, y 
and t >_ 1, then the joint pgf of (T1, SThl,..., ST~,m) is given by 

H l ( W , V )  - = w 2 a ( v )  ~-~ fli,o-t- v j f l i , j  
i=1 j = l  

[ m 
! 

I -  w Ao + vj,Aj, ei, 
j ' = l  

where,/~i,j = eiBjl', i = 1 , . . . , s ,  j = 0 , 1 , . . . , m ,  and a(v) is given by (3.4). 

In a similar fashion as in the conclusion of Section 3, we can easily establish for- 
mulae for the joint pgf of (Tr, FT.,O, ST~,I,..., ST~,m). Through Hr(w, v), the joint pgf 
Gr(w, vo, v) of (Tr, FT.,O, STr,1,..., STr,m) can be expressed as 

a~(w, vo, v) = E(wT~v[T~~ vmsTr~) 
�9 "~[ T r  T r - - S T r l - - S T r 2  . . . . .  S T r m - S T  1 STrm\ 

---- I~I,W V 0 ' ' ' V 1 "' " ' ' V m  ' ) 

=- H r ( w v o ,  V l /Vo ,  v 2 / v o ,  . . . , Vm/VO). 

Through H(w, v; u), the double generating function of (T~, FT.,O, ST~,~,..., ST~,m) is also 
expressed as 

(30 

G ( w , ~ ) o , V ; U  ) = ~-~ a r ( W ,  Vo, V)U r 

r = l  
o o  

= ~ H~(wvo, ~)l/V0, v2/v0,..., Vm/Vo)u r 
r----1 

= H ( W V o ,  v i / v O , . . .  , Ym/VO; u) .  
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More specifically, in terms of (4.2) and (4.4), we have the following result. 

THEOREM 4.4. Assume that At,5(x,y) = Aj,  B t d ( x , y )  = B 5 (j = 0 , 1 , . . . , m )  
for all x, y and t > 1. Then the double generating function G(w, vo, v; u) of (Tr, FT,,O, 
ST~,I , . . . , ST~,m ) is given by 

8 m 

(4.~) a(~,  vo, ~; u) = u~2voa(~llVo, . . , vml~o) y~  ~ v5~,5 
i=1 5=o [ ]1 

x I - w  v j , ( A y + u B 5 ,  ) ei, 
j'=o 

and the joint pgf G~(w, vo, v) of (Tr, FT,,O, S T y : , . . . ,  ST~,m) is given by 

c~(~, ~o, ~) = ~+~o~(v~lvo , . . . ,  v~lvo) 
r - -1  

• ~ v : ~ , 5  I - ~  ~5,A5, v5,~5, 
i = 1  j = 0  j ' = O  \ j ' = 0  

! 
x I - w v j ,A 5, el, r > 1, 

5' =o 

where, 1~i,5 = eiBbl ' ,  i = 1 , . . . , s ,  j = 0 , 1 , . . . , m ,  and a(v)  is given by (3.4). 

As by-products,  we can derive some interesting formulae from the equation (4.5). 
The double generating functions of (T~, FT,,O), (Tr, STy#), i = 1, 2 , . . . ,  m are given by 

r = l  

(x) 

Z E(:~v:")u" 
r = l  

= a (w ,  vo, v; u) 
Vl : . - - : V r n : l  

= uw2voa(1/vo, . . . ,1 /vo)  vo~5,o + E ~5,j' 
j = l  j ' = l  

--1 

x I - w  v o ( A + u B ) +  (A 5,+uBb,  ) 

= G(w,vo, v;u) 
VO=Vl = ' " V I _ I  =I~vI+ I = ' " V m - ~ I  

= u : a ( ~ ,  v i , ~ )  v:5,i + Z ~.' 
i - 1  m - i  5=1 j ' r  

j ' r  

i ---- 1 , 2 , . . . , m .  
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The double generating function of T~ can be expressed as 

(4.6) 
O0 V O ~ Y l  ~ ' " ~ V m  ~ 1  

E ( ~  ~ ) u  ~ = a ( ~ ,  vo, v; ~) 
r = l  

-- uw2a(1) ~ _ ~ j , j , [ I - w ( A + u B ) ] - l e ' j ,  
j=l j'=o 

m m where, A = Y~y=0 Aj, B = Ej=o Bj and a(1)  = a(v)  1,1 . . . . .  v m = l  (for a direct proof of 
an analogous result see Koutras (1997)). 

We can also establish the double generating functions of FTT,O, ST,.,i (i =- 1, 2 , . . . ,  m), 

00 W ~ V l  ~ ' " ~ V m  ~ 1  
E(~oT~ ~ ~ : a(w,  vo, ,,; ~) 

r = l  

=uvoa(1 /vo , . . . , 1 / vo )  Yogi,o+ E ~ j , j ,  
j = l  j ' = l  [( )]1 

x I -  vo(A+ uB) + (Ay +uBj , )  e}, 

~=1 ~ E(v~TT'~)ur = C ( w ,  v0,  v ; u )  w = v o = v l  . . . .  v , _ l = , , v , + l  . . . .  v m = l  

i--1 m - - i  j = l  j '~ t i  

x I - vi(Ai + uBi) + (Ay + uBj,) e~j, 
j ~ i  

i = 1 , 2 , . . . , m .  

By differentiating the above expressions, we can establish the formulae for the ex- 
pected values of Tr, FT.,O, ST,.,i (i = 1, 2 , . . . ,  rn), their variances, the covariance between 
Tr and FTr,o and the eovariances between Tr and ST~,i (i = 1, 2 , . . . ,  m). For example, 
from the formula (4.6), we get 

OO 8 m 

E(Tr)u ~" : 2ua(1)  ~ ~ ~j,j,(I - A -  u B ) - l  e} 
r=l j=l j'=o 

+ ~ ( 1 )  ~,y(I-A-uB)-I(A+~B)(I-A-~B)-i~}. 
j = l  j '=O 

Aki and Hirano (2000) considered the distributions of the numbers of non-overlapping 
occurrences of "1" runs of length k until the n-th occurrence of "1" in a sequence of 
{0, 1}-valued random variables. They called the distribution "the generalized binomial 
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distribution of order (k - 1)". Through slight modifications of our methods and results 
in this secton, we can deal with the problems as well. 

Closing, we mention tha t  Inoue and Aki (2002) studied the generalized waiting t ime 
problem for the first occurrence of a pa t te rn  in a sequence obtained by P61ya's urn 
scheme. They present a completely different method,  which is based on the methods of 
conditional probabili ty generating functions and a notion of truncation.  

5. M.V.R. case: Joint distributions of the numbers of patterns, successes and failures in n 
trials 

T H E O R E M  5.1. 

lations 

We assume tha t  the number  Xn of occurrences of s in n trials is an M.V.R. This 
section will deal with the joint distr ibution of (Xn,  F~,0, S~,I, .  �9 �9 S~,m). In this section, 
we will use the same notations and terminology as in Section 3. In addit ion to these, we 
introduce the s • s t ransi t ion probabili ty matrices for the Markov chain {Yt, t > 0}. 

Ct,o(X, y) = (Pr(Yt = Uz_l,i , ,  S t  = y [Yt-1 = Us,i, S t - 1  • Y))sxs,  

C t s ( x ,  y) = (Pr(Yt = U~-l,i , ,  S t  = y + ej  [ Yt-1 = U~,i, S t -1  = Y)) ,x, ,  

j = l , 2 , . . . , m .  

In a similar fashion as Section 3, we can obtain the joint probability distr ibution of 
(Xn, S ~ , I , . . . ,  Sn,m) by evaluating the f n ( X ,  y). The next theorem provides a method  
for the evaluation of the joint probabili ty distr ibution of (X~,  Sn ,1 , . . . ,  Sn,m). 

The probability vectors f t(x,  y) ,  (t >_ 2) satisfy the recurrence re- 

(5.1) f t ( x ,  y)  
m 

= f t _ l ( X ,  y)At,o(X, y)  + E f t _ l ( X ,  y -- e j )A t , j ( x ,  y - e j)  
j = l  

+ f t _ l ( X  -- 1, y )Bt ,o(x  - 1, y)  
m 

~- E f t _ l ( X - -  1, y - -  e j ) B t , j ( x -  1, y -  e j )  
j = l  

+ f t _ l ( X  + 1, y )G ,o (X  + 1, y)  
m 

+ E I t _ I ( x  + 1, y - e j )C t , j ( x  + 1, y - ej) ,  
j = l  

f o r  t_>2,  O < x < g t  and O < yl , Y2, . . . , ym <_ t - xno, 

with initial conditions 

y (o, y)  = (Pr(Y1 = U0,o, S l  - -  y ) ,  Pr(Y1 = Uo,1, S l  ~- y ) , . . . ,  

Pr(Y1 = Uo,8-1, S l  : y)),  

for  Y l , Y 2 , . . . , Y m  = 0, 1. In addition, the jo in t  probability distribution funct ion  of  
( X n  , Sn ,1 , . . . ,  Sn,m ) is given by 

(5.2) Pr (Xn = x, Sn  = y) = f n ( x ,  y ) l ' ,  

0 < x < g.n, 0 < y l , y 2 , . . . , y m  <-- n - - x n o .  
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PROOF. 
the events 

or 

or  

Note that the event {Yt = U~,j, St = y} implies the occurrence of one of 

m ) 
U {Yt-1 : Ux,j,  S t - 1  : y }  I j U { Y t _ l  : Ux,j , s t _  1 : y - e i  } 

j=0  i=l 

U { r t - 1  = U x - l , j ,  S t - 1  = y }  U {Mr-1 - -  U x - l , j ,  S t - 1  = Y - e l }  
j=0  i= l  

) U Yt-1  = Ux+l, j ,  S t - 1  = y }  (..J {Yt-1 = Ux+l,j ,  S t - 1  = y - e l }  . 
j=o  i=1 

The recurrences (5.1) are immediate consequences of the total probability theorem. It 
is easy to check the equation (5.2) from the following formula, 

8- -1  

Pr(X~ = x, S~ = y) = Pr(Y~ E Ux, Sn = y) = E Pr(Yn -- U~,j, Sn = y). [] 
j=0  

Remark 5.1. In the special case where the matrices At , j (x ,y) ,  Bt , j (x ,y)  and 
Ct,j (x, y) (j --- 0, 1 , . . . ,  m) do not depend on y, that is, 

At,j(x, y) = At,j(x), Bt,j(x, y) = Bt,j(x), Ct,j(x, y) -- Ctd(x), for all y, 

then the matrices ~-~j~=o At,j (x), ~ = o  Btd (x) and ~j~=o Ct,j (x) are equal to the within 
state transition matrix At(x),  the between state transition matrix Bt(x) and the re- 

m X turn state transition matrix Ct(x), respectively. Therefore, the matrix ~j=o(At , j (  ) + 
Bt,~(x) + Ct,j (x) ) is a stochastic matrix. 

If At,j (x, y) = At,j, Bt,j (x, y) = Bt,j and Ct,j (x, y) = Ct,j (j = O, 1 , . . . ,  rn) for all 
x, y, then the joint pgf Cn(u, v) of (Xn, S~,1, . . . ,  S~,m) defined as (2.1) can be expressed 
as a product in the following way. 

THEOREM 5.2. If  At , j (x ,y )  -- At,j, Bt , j (x ,y)  = Bt,j and Ct , j (x ,y)  = Ct,j (j = 
0 , 1 , . . . , m )  for all x , y ,  then the joint pgf Cn(U,V) of (Xn,Sn,1 , . . . ,Sn ,m)  can be ex- 
pressed as 

(5.3) Cn(U, V) 

= a(v) At,o + nBt,o + uCt,0 + ~ vj At,y + uBtd + uCtJ  1', 
t=2 j=l  

where a(v) is given by (3.4). 

PROOF. Introducing the vector generating functions 

x-~O y=O 
ft(x, y)uXv ~, 
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we can write 
r v) = v) l ' .  

By summing bo th  sides of the equat ion (5.1) after multiplying by uXv y, Ct(u, v) can be 
expressed as 

et t--l--xno m gt t--l--xno 

dPt(u ,v) = E E f t - l (x 'y )uXvYAt ,  ~ + E v j E  E f t - l ( x ' y )u~vYAt , j  
x=0 y=O j = l  x=0 y=O 

et--1 t--l--xno 
Jr- U E E Yt- I (X 'y)uXvYBt ,o  

x=O y=O 
m gt-1 t- l -xno 

j = l  x=0 y=o 

1 et t - - l - -xno 

@ -- E E f t - l (X 'y)ux?)YCt ,~ u 
x=0 y=O 

1 m ~t t - l -xno 

+-Evil2 E I , - l ( X ,  y l u x v Y c , , J  �9 u 
j = l  x=O y=O 

We consider the two possible cases It = i t - 1  a n d / t  = i t - 1  -~- 1 separately. If It = i t - l ,  
we should note the identity 

f t _ l ( l t - l , y ) B t , j = O ,  for j = 0 , 1 , . . . , m .  

If gt = ~t-1 ~- 1, we should note the identi ty 

f t - l ( l t ,  y)At,j = O, f t - l ( l t ,  y )Ct j  = 0, for j = 0, 1 , . . . , m .  

Hence, in bo th  cases we have 

~/~t(~t, V) = ~/~t_l(U, V) At,o + uBt,o + uCt,o + vj At,j + uBt,j -~- uCt,j  �9 
j = l  

If we take into account tha t  

.e I 1 1 

q~l(~t' V) = E E f l ( x ' y ) ~ t x v y  = E f l ( 0 ' y ) ' y  ~-= a( ' t /) ,  
x=0 y=0 y=0 

the proof  is completed.  [] 

For the  homogeneous case (i.e. At,j = Aj, Bt,j = Bj, Ct,j = Cj,  j = 0, 1 , . . . ,  m),  the 
double generating function of (Xn, S~,1,... ,  Sn,m) defined as (2.2) takes more compact  
form. 

THEOREM 5.3. If  At , j(x,y)  = Aj, Bt , j(x,y)  = Bj and Ct,j(x,y) = Cj (j = 
0, 1 , . . .  ,m)  for all x, y and t > 1, then the double generating function of ( X , ,  Sn ,1 , . . . ,  
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Sn,m) is given by 

(5.4) I - w (Ao + uBo + 1Co 
u 

+ E v~ Aj + ~B~ + -}c~ 
j = l  

- 1  

I I , 

where a(v) is given by (3.4). 

PROOF. From the equation (5.3) under the conditions that At,j(x, y) = Aj, 
Bt , j(x,y)  = Bj and Ct,j(x,y) = Cj, (j = 0 ,1 , . . .  ,m), the joint generating function 
of r v) can be expressed as 

f r v) -- a(v) IAo 

Making use of the formula 

m( )] 
+ uBo +1-Co + E A, + uB, + ~C~ 

j=l 

n - 1  

/]" 
n = O  U j = l  

j = l  

we have the desired result. [] 

11" 

- 1  

In a similar fashion as in the conclusion of Section 3, we can easily establish formulae 
for the double generating function of (Xn, Fn,0, Sn,1,.. . ,  Sn,m). Through Cn(U, V), the 
joint pgf r Vo, v) of (Xn, F=,0, Sn,1,..., Sn,m) can be expressed as 

r v) - ,  x~ Foo s~l ~ /5~?~ V0 ' Vl ' - . .VSm n ' m )  

E(~Xovo-SO,~-s~ . . . . .  ~ o ~  s.~...@,~) 
~_  , , V l  ' 

= v~r Vl/~O,..., v m / v o ) .  

Therefore the double generating function 

V(u, vo, v ; ~ ) =  ~ Cn(u, vo, v )~  n 
n = l  

takes the form kO(u, Vo, v; w) = O(u, v l /vo , . . . ,  v,~/vo; WVo). More specifically, in terms 
of (5.4), we have the following result. 

THEOREM 5.4. If Atd(x ,y)  = Aj, Btd(x ,y)  = Bj, Ctd(x,y)  = Cj (j = 0, 
1 , . . . ,m)  for all x, y and t > 1, then the double generating function ~(u, vo, v;w) of 
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( X n ,  F n , o ,  ~ n , 1 ,  �9 �9 - , ~ n , m )  

(5.5) ~ ( u ,  vo, ~; ~) 

can be expressed as 

- ~vo~(v i /vo , . . . ,  v~/vo) 

where a(v)  is given by (3.4). 

I -  w E v j Aj + uBj  + I c j  1', 
j=O 

As by-products, we can derive some interesting formulae from the equation (5.5). 
The double generating functions of (Xn, Fn,0), (Xn, Sn,i) i = 1, 2 , . . . ,  m are given by 

o ~  

E - X,~ Fno~ n E(u  v o )w 

= ~(u, vo, v;w) 
Vl =V2=. . .mVm=I  

= w v o a ( 1 / v o , . . . ,  l /v0) 

i ~  vo ~o§247 + Z  A ~ §  1' 
j=l 

oo 

E g ( u X n v S i n ' i ) w n  

n=l 

= ~ ( u ,  vo, v;w) 
VO~Vl m ' " = V i _  I ~ I ,vi+ I =...=Vrn ~ I 

= w a ( 1 , . . . ,  1,vi, 1 , . . . , 1 )  

i--1 m - - i  

• 

[ (( / ( ))]1 
. ~  v. A.+~. .§  + k  A~+~'~+I~ 1' 

i = l , 2 , . . . , m .  

The double generating function of Xn is [ ( 1)]1 
E E ( w X n ) u n = ~ ( u ,  vo,v;W) lvo=vl . . . . .  v,,~=l=wa(1) I - - w  d + u B +  C 1', 
n = l  

m m m 
where, A = ~-~j=o Aj,  B = Ej=o Bj ,  C = • j=o  Cj and a(1) = a(v)  Iv1 . . . . .  vm=l (for a 

direct proof of an analogous result see Han and Aki (1999)). 

THEOREM 5.5. I f  A t , j ( x ,y )  = Aj ,  B t , j ( x , y )  = By, Ct , j (x ,y )  = Cj (j = 0, 
1 , . . . ,  m) for all x, y and t > 1, then the expected value of Xn and its generating function 
are given by 

w2 a ( 1 ) [ I -  w(A + B + C ) ] - I ( B -  C)1' ,  M x o ( w )  = ~ E ( X n ) w  n - 1 - 
n = l  
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n - 1  
E(X~) = a(1) ~-~(A + B + C)i- ' (B - C)I ', 

i : l  

m m m where, a(1) = a(v) Ivl=v2 .. . . .  vm=l, A = }-]j=0 Aj, B = •j=o Bj and C = Ej :o  Cj. 

PROOF. Note that  

and making use of 

E(X )w 
n = l  

= ~-~-~I~(U'Vo'V;W) U=Vo=Vl . . . . .  v , ,~= l  

d ~ ( U -  y ) - I  = ( U -  z V ) - I v ( u -  zV) -~, 

we have the first conclusion of the theorem. By expanding Mxn (w) in a power series of 
w, we have the expected value of Xn immediately. [] 

The expressions in Theorem 5.5 are easily shown to be consistent with similar expres- 
sions given in Han and Aki (1999). The formulae for the variance of Xn, the covariance 
between Xn and Fn,0 the covariances between Xn and Sn# (i = 1, 2 , . . . , m )  can be 
derived from the derivatives of the double generating function ~(u,  v0, v;w), however, 
their expressions are not very attractive. 

Remark 5.2. When the number Xn of occurrences of g in n trials is an M.V.R., 
we can treat the joint distribution of the waiting time Tr until the r-th occurrence of 
the pattern g, the numbers ST~,i of outcomes "i" (i = 1, 2 , . . . ,  m) and the number FT~,O 
of outcomes "0" until Tr. However, we do not dwell on the matter, since the analysis 
of such case can be performed by combining the results in Section 4 with the results in 
Section 5. 

Remark 5.3. Another important random variables are the numbers of an outcome 
"i" whose previous outcome is "j" (i,j = 0, 1 , . . . ,  m) (i.e. the numbers of times that  an 
outcome "i" follows an outcome "j"). For example, in DNA sequence, the probability 
structure of occurrences of four letters (A, T, G and C) is usually described by a first 
order Markov chain. Sometimes, a first order Markov model fits real data better than the 
independence model. It is important to assess whether the first order Markov dependence 
model describes reality better than independence model. The distribution of the numbers 
of times that an outcome "j" is followed by an outcome "i" (j, i = A, T, G, C) is needed 
for the test for the first order Markov independence and provides more useful information 
for the modeling of the DNA sequence. Our methods and results in this paper can be 
extended to cover this case easily. 

6. Applications 

In this section, we will present some examples, which are closely related to practical 
problems, such as quality control, start-up demonstration test, reliability theory, . . .  etc. 
Assume that  the transition matrices treated here are independent of x, y and t, that  is, 
At,j(x, y) = Aj, Bt,j(x, y) = Bj, Ct,j(x, y) = Cj (j = 0 , 1 , . . . , m ) .  



164 K I Y O S H I  I N O U E  

6.1 Sooner waiting time problems 
Let Z1, Z 2 , . . .  be a sequence of independent  and identically dis t r ibuted (i.i.d.) ran- 

dom variables taking values in A -- {0, 1 , . . . ,  m}. Assume that  

Pi = Pr (Z t  = i ) ,  t > 1 and i = O, 1 , . . . , m .  

Let Tr (r _> 1) be the wait ing t ime for r runs in total  which are among "/"-runs of 
length ki (i = 1 , 2 , . . . , m ) .  Assume that  counting of all runs are performed in the 
non-overlapping sense. 

We have 

m 

Ao + uBo + E vi(Ai + uBi) 
i = l  

p o  p l V l  
p o  0 

po 
P o  + u p l v l  0 

P o  p l Y 1  

P o  p l Y 1  

P o  p l y 1  
P o  �9 u p 2 v 2  p l V l  

P o  p l Y 1  
P o  p l Y 1  

P o  p l V l  
P O  ~ U p m V m  p l V l  

0 " � 9 1 4 9  

p l  V l  " " " 

0 . .  

0 . .  

0 

0 

o 

o 

0 - - ,  

0 - , -  

0 . . ,  

0 , , -  

0 P 2 V 2  0 

0 p 2 v 2  0 

P l V l  p 2 v 2  0 

0 p 2 v 2  0 

0 P 2  v 2  0 

0 0 p 2 V 2  

: : : 

o o o 
0 0 0 

0 p2v2 0 
0 p 2 V 2  0 

0 p 2 V 2  0 

0 p 2 V 2  0 

the initial condition 

0 " " �9 p m v r n  0 

0 " "  p , ~ v m  0 

0 " " " p m U m  0 

0 " "  p , ~ v m  0 

�9 " 0 " ' "  p ~ n v r n  0 

�9 . 0 . . .  p m v m  0 

�9 " " p r n v m  0 

�9 " p 2 V 2  " " " p m V m  0 

0 . . .  p m v , , ~  0 

0 " ' "  p m v m  0 

0 " " " 0 p m v m  

0 " "  0 0 

0 " "  0 0 

0 
0 

0 
�9 �9 0 

�9 �9 0 

�9 - 0 

- -  0 

�9 �9 0 

�9 . � 9  0 

�9 � 9  0 

�9 . .  0 

�9 " " p m V m  

�9 �9 " 0 S •  

and 

. . ,  o,,p2v2, o , . . . ,  0,...,,pmvm, 0 , . . . ,  0), 
Y 

k 2 - 1  k j - 1  

/~i,j ---- e iBj l '  = 

m 

where s = E i = I  k i  - m + 1. Since 

a ( v )  ~ -  ( p O , p i v l ,  0 , .  

kl --1 

Pl,  if ( i , j )  = (k l ,  1), 
P2, if (i,j) = (]~1 -{- k2 - -  1, 1), 

: 

Pe, if ( i , j ) = ( k l + k 2 + . . . + k e - e + l , 1 ) ,  
: 

Pro, if ( i , j ) = ( k l + k 2 + " ' + k m - m + l , 1 ) ,  
0, otherwise, 

uFi(w, v) 
H ( w ,  v ;  u )  = 1 - p o w  - Fo(w, v )  - U F l ( W ,  v)' 

after some calculations, we obtain  
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where, 

m 

i = 1  1 - -  ( p i w v i ) k '  ' 

F~ (~, v) = ~ ( p ~ ) k ,  (1 - p~wv~) 

Furthermore, expanding H(w,  v; u) in a power series of u, we obtain 

- p o w  - Fo(w,  v)  " 

In case of r =- 1, we obtain the joint pgf of the sooner waiting time random variable 2"1 
and the numbers of s u c c e s s e s  (ST1,1, . . . ,  STl,rn) appeared at that  time. Stefanov (2000) 
consider the waiting time problems for the first occurrence of a run of either Ys of length 
kl or 2~s of length k2 or 3is of length k3 in a Markov chain with state space {1,2, 3} 
and Mso discussed other waiting time problems (see Stefanov and Pakes (1997, 1999)). 
Ebneshahrashoob and Sobel (1990), Feller (t968), Aki and Hirano (1993) and Aki et al. 
(1996)). Aki and Hirano (1994) studied the distribution of the number of failures and 
successes until the first occurrence of a success run of length k in some {0, 1}-valued 
random sequences (see Aki and Hirano (1995)). 

As Koutras and Alexandrou (1997b) stated, it is important to consider the sooner 
waiting time problems, since their distributions play a key role in various applied areas 
of research (for example, quality control, start-up demonstration tests, learning criteria 
in psychology). 

6.2 The number of occurrences of success runs of exact length k 
Let Z0, Z1, Z2,. �9 �9 Zn be a time homogeneous {0, 1}-valued Markov chain with tran- 

sition probabilities 

P . i j = P r ( Z t  = j l Z t _ a  = i ) ,  t _ > l  and i , j - - O ,  1 

and initial probabilities 
pj = Pr(Z0 = j) ,  j -- 0, 1, 

(we say success and failure for the outcomes "1" and "0", respectively). We study the 
joint distribution of the number of occurrences of success runs of exact length k and the 
number of successes in the Z1, Z2 , . . . ,  Zn (see Mood (1940), Han and Aki (1999) and 
Doi and Yamamoto (1998)). 

We have 

A0+, 0 + 1 0+v1(A1 § +  Cl) 
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Poo PolVl 0 0 �9 .. 0 0 
Plo 0 PllVl 0 �9 �9 �9 0 0 
p lo  0 0 Pl lVl �9 �9 �9 0 0 

Pl0 0 0 0 "'" pl lv l  0 
PlO 0 0 0 . . .  0 up11Vl 
PlO 0 0 0 �9 �9 �9 0 0 
PlO 0 0 0 . . .  0 0 

T h e  init ial  cond i t ion  is 

0 
0 
0 

0 
0 

P l l V l / U  ~ 

P l l V l - /  (k+2)x(k+2) 

a ( v l )  ---- (PoPoo + PlPlO, (PoPol + plPll)Vl, 0 , . . . ,  O) C 7~ k+2. 

In  order  to  o b t a i n  the  doub le  gene ra t ing  func t ion  of  (Xn, S,~,1), we need  to  invert  t he  
m a t r i x  I - w ( Ao + uBo + 1Co + vi ( A1 + uB1 + 1 C1 )). S t r a i g h t f o r w a r d  ca lcu la t ions  yields 
t h a t  

, P 0 ( u ,  v l , w )  

where,  

P0( , w )  = 1 + (pOl - pll) Vl - po1  1(;11  1) k - 1 ( 1  - p11 v1)(1 - 

P1 (?.t, Vl, w) ---- 1 + (PlO -Poo)W - (1 - u)(1 -P11WVl)(Pl lWVl )k-1 [1 + (Plo -Poo)w] ,  

P(u, Vl, w) = 1 - (Poo + P11V1)W + POOPllW2Vl 

- -  P l O P O l W 2 V l [ 1  - -  (1 -- U)(1 -- PllWVl)(PllWVl)k-1]. 

6.3 Waiting for the first scan 
Let  Z1, Z 2 , . . .  be a sequence  of  i.i.d, t r ials  t ak ing  values in .4 = {0, 1}. A s s u m e  t h a t  

Po = P r ( Z t  = 0), Pl = P r ( Z t  = 1), t _> 1. 

Let  T ~  deno t e  the  wai t ing  t ime  for the  first occu r r ence  of  a scan,  which  is defined as 

j = m a x ( n - - m +  l ,1 )  

T h e  d i s t r ibu t ion  of  T ~  will be referred to  as "geomet r i c  d i s t r i bu t i on  of  o rde r  k/m" 
(see B a l a k r i s h n a n  and  K o u t r a s  (2002) a nd  Glaz  et al. (2001)).  In  case of  k = m,  the  
co r r e spond ing  d i s t r i bu t ion  is geomet r i c  d i s t r i bu t ion  o f  o rde r  k (see P h i l i p p o u  et al. (1983) 
and  K o u t r a s  (1996b)).  For  example ,  in the  case of  k = 3, m = 4, we consider  the  jo in t  
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distribution of (T34, ST4,1). We have 

Ao + viA1 = 

I po ply1 0 0 0 0 0 0 0 0 0 
0 0 Po 0 0 plY1 0 0 0 0 0 
0 0 0 Po 0 0 p ly ]  0 0 0 0 
0 0 0 0 19o 0 0 plY1 0 0 0 

PO plVl 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 PO 0 0 
0 0 0 0 0 0 0 0 0 Po 0 
0 0 Po 0 0 plVl  0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 Po 
0 0 0 Po 0 0 p l v l  0 0 0 0 
0 0 0 0 Po 0 0 p l v l  0 0 0 / 

Since the initial condition 

l l x l l  

a ( y l )  = ( p O , p l V l , O , . . . , O ) ,  

and 
/ pl, if ( i , j )  = (6, 1), (7, 1), (9, 1), 

e i B j l  I [ 0, otherwise, 

by a direct application of Corollary 4.1, we have 

H i ( w ,  vl ) = (plwvl  )3 (1 + 2pow - poPlW2Vl - p2plW3Vl) 
~ 2 ~ 2 ~ , , 4 ~ , 2  nt_ ~ 3 ~ 3 ~ , , 6 ~ , 3  " 1 -- poW -- pOPlW2Vl -- t,0t, t ~  ~1 ~'0t ' l  ~ "1 
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