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A b s t r a c t .  For independent observations from a standard one-parameter exponen- 
tial family, the estimator of change point after being detected by a CUSUM procedure 
is defined as the last zero point of the CUSUM process before the alarm time. By 
assuming that  the change occurs far away from beginning and the control limit is 
large, an explicit form for the bias of estimator is derived conditioning on the chaage 
being detected. By further assuming that  the change magnitude and its reference 
value approach zero at the same order, the local second order expansion of the bias 
is obtained for numerical evaluation. It is found that,  surprisingly, even in the nor- 
mal distribution case, the bias is non-zero when the change magnitude equals to its 
reference value, in contrast to the continuous time analog and the fixed sample size 
case. Numerical results show that  the approximations are quite satisfactory. 

Key words and phrases: Change-point estimator, CUSUM procedure, quasi-sta- 
tionary bias, random walk theory, strong renewal theorem, ladder epoches and ladder 
heights. 

1. Introduction 

Let  Fe(x) belong to  a s t anda rd  one -pa r ame te r  exponent ia l  family  of the  form 

dFo(x) = exp(x0  - c(O))dFo(x), 

for 101 K ( >  0) and c(0) = c'(O) = 0, c"(0) = 1. Also denote  by  ? = c(3)(0) and  
= c(4)(0). T h r o u g h o u t  our discussion, we shall assume tha t  Fo(x) is s t rongly  non- 

a r i thmet ic  in the  sense t ha t  

f ~  
lim sup l ei~dFo(x) < 1. 

I~1--*oo 

This  condit ion implies t ha t  Fe(x) is also s t rongly non-a r i thmet ic  uni formly  for 181 < 0* 
for some 0" > 0 (Siegmund (1979)). 

Suppose  {Xk} are independent  r a n d o m  variables  which follow d is t r ibu t ion  Feo(X) 
for k _< v and  Fe(x) for k > 9, where 00 < 0 < 0 and  ~ i s  the change point .  For a 
pre-selected reference value 01 > 0 for 0 such tha t  c(•0) = c(01), the  C U S U M  procedure  
(Page (1954)), based  on the likelihood ra t io  test ,  makes  an a l a rm at  the  t ime  

N = inf{n > 0 :  Tn = max(0,  Tn_ 1 + Xn) > d}, with  To = 0, 
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where d is the control limit. At 0 = 01, the maximum likelihood estimator of u conditional 
on the change being detected is given by 

= max{k < N : Tk = 0}, 

which is the last zero point of Tk before the alarm time. 
For notational convenience, let E"  [.] denote the expectation when the change point 

is at u, E0o['] and Eo[.] denote the expectations when no change is assumed, and Eooo['] 
denote the expectation when both 0o and 0 are involved. 

In this paper, conditioning on the change being detected, we consider the asymptotic 
quasi-stationary bias and absolute bias of i ,  defined as 

lim lim E"[~ - L, [ N > ,1; and lim lim E"[I~ - "1[ N > L,]. 
d---+oo v'----~(x) d---*oo v--+oo 

In Section 2, we first obtain an explicit asymptotic form for the asymptotic bias. Then, 
by using the strong renewal theorem, we are able to derive the local second order expan- 
sion for the bias as 0 and 00 approach zero. Our main contribution is two-folds. First, 
we develop a general method for estimating the change point in the exponential family 
after sequential detection. Second, we show that  there are some fundamental differences 
between the sequential sampling ease and fixed sample size case. In Section 3, numer- 
ical results in the normal and exponential distribution ease are presented by using the 
approximations. The results show that, in contrast to the fixed sample size case con- 
sidered in Hinkley (1971) and Wu (1999) for the normal ease, the bias is not negligible 
because of sequential sampling, even when the change magnitude equals the reference 
value. It is also different from the sequential sampling case in continuous time analog 
as considered in Srivastava and Wu (1999). Some independent and necessary results on 
the strong renewal theorem and ladder variables are presented in the Appendix for a 
complete presentation. 

2. Quasi-stationary bias and second order expansion 

Let S~ ----- E i = l n  Xi for n > 0 with So = 0, and 

i n f { n > 0 : S n  <_x}; for x < 0 ;  

r x =  i n f { n > 0  S ~ > x } ;  for x > 0 ,  

denote the boundary crossing time and Rx = S~= - x  the overshoot. In special, we denote 
by ~-_ = T0 and % = limx~o+ ~-z as the ladder epoches. 

For notational convenience, we denote by {S~} for n _> 0, an independent copy of 
{Sn} and 

M = sup S~, 
0 < k < o c  

as the maximum of {S~} and cr M = argsuP0_<k<ocS ~ as the corresponding maximum 
point. 

Conditioning on N > v, depending on whether ~ > u or ~ < u, we can write 

_ .  = - I - (. - 

where IA denotes the indicator function of the event A. 
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Pollak and Siegmund ((1986), Theorem 2) showed that  the quasi-stationary distri- 
bution of 7", converges to the stationary distribution for T~ as d ~ ec. That  means, 

lim lim P o o ( T , , < Y J N > u ) =  lim lim P O o ( 7 " , < Y ) = P o o ( M < Y ) -  
d----~oo v--+cx:) d---~(x) v---e(x~ 

This implies that when the change occurs, T. is asymptotically distributed as M. 
Thus ,  the event {b > u} is asymptotically equivalent to the event {T-M < 00}, 

i.e. the random walk Sn eventually comes back to zero with initial starting point M. 
Given b > u, the bias b - u is asymptotically 7-M plus the length, say ~,,~ for a CUSUM 
process Tn starting from zero until the last zero point time under Po('). Denote by 
E[X; A] = E[XIA]. As d, u ~ oo, we have 

EU[fJ - I.'; s > b,] ~ EOoO[T-M q- "/m; 7--M < 00] 

= ~:0o0[~- , ;~-M < ~ ]  + Eo['ymlPooo('~-M < ~ ) .  

As noted in Wu (1999), 7m is a geometric summation of iid random variables distributed 
as {T_; 7_ < OO} with terminating probability Po(T- = ac). Thus, we have 

LEMMA 2.1 .  

E0bm] = 
P0(~- = o~) 

On the other hand, given ~ < u, by looking at Tk backward in time starting from 
u, we see that  Tu-k behaves like a random walk {S~} for k _> 0 with maximum value 
M and thus, u - t7 is asymptotically distributed as the maximum point aM. Thus, as 
u, d --~ o% we have 

E ' [ ,  - ~'; ~' > .] ---, EOoO[,,~I; ~ - M  = oo] = E O o [ a ,  P o ( ~ - - ,  = ~ ) ] .  

A similar argument is referred to Srivastava and Wu (1999) for the continuous time 
analog. 

Summarizing the above results, we get the following asymptotic first order result. 

THEOREM 2.1.  As u ,d  --~ oo, 

_ ,Eo[T_;T_ < oo] 
EU[~ - 12 I N  > ill -----> EOoO[T_M;T_ M < 0(3]-~POoO(T-M < (.x,)) P-P-~2 "-~:)5 

- F - ,OoO[OM;  T- -  M = (X)];  

E"[I ~ -  ~ [ I N  > -1 --~ Eooe[~-_~; ~-_ .  < ~ ]  + P~oO(~-.  < ~ )  Eo[~--; ~-- 
< ~]  

+ EOoO[~M;~--M = ~ ] .  

In the following, we shall derive the second order expansions for the asymptotic bias 
in Theorem 2.1 in order to investigate the bias numerically by further assuming both 
0o and 0 approach zero at the same order. The main theoretical tool is the strong re- 
newal theorem and its applications to ladder variables. Following a referee's suggestion, 
the readers are encouraged to read the related results which are presented in the ap- 
pendix before coming back for fully understanding the technique. Otherwise, it is better 
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directly going to Section 3 to see the results in the normal case and some numerical 
demonstrat ion.  

There are five terms in Theorem 2.1 which will be evaluated in a sequence of lemmas. 
Most results generalize the ones of Wu (1999) in the fixed sample size case wi th  normal 
distribution. However, the technique used here is much more general and can be used for 
any distr ibution of exponential  family type and also raises more difficulties. An exception 
to the fixed sample size case is the te rm Eooo [aM; T--M = 0(3] which forms the difference 
between the fixed sample size case and sequential sampling case and also provides some 
new technical difficulties. 

For notat ional  convenience, we denote by A = 01 - 00 and /k = 0 - 0 where 
c(Oo) = c(01) and c(O) = c(0). Also, let p = c'(0), /2 = c'(0) and Pi = c'(Oi) for i = 0, 1. 
Other  notat ions are referred to the appendix.  

The first lemma generalizes Lemma 4 of Wu (1999). 

LEMMA 2.2. As 0 --* O, 

EO[V-; T_ < CO] - - -  EoS._ cop_ +02/2(p?)_p2__5pl/EoS._)(1 + 0(02)), 
# 

where/31 is given in Lemma A.1. 

PROOF. By using Wald's Likelihood Ratio Ident i ty by changing the measure Po(') 
to P~(.) and Lemma A.1, we have 

E017-;7-  < oo] = Eo['r_e ~'ST-] 

1 A 2 
= -EoS~._ + AEo(T_ST_ ) + --g-Eo(T_S2r_) + o(A). 

# L. 

After some algebraic simplifications, we get the result. 

COROLLARY 2.1. As O--~ O, 

1 + o(O2)) Eobm] : 

To evaluate P0o0(T_M < (X)), we follow a similar technique used in Wu (1999) and 
only the main steps are provided. 

First,  by conditioning on whether  M = 0 and M > 0, we write 

(2.1) POoO(r-M < oo) 

= Pc(r-  < oo)POo(T+ = oo) +Peoo(r--M < oo;M > 0). 

From Lemma A.2, we have 

Po(T- < oo)Peo(r+ = oo) = AoEoST+ ee~ + AEoSr_)  + 0(82) 

AA0 + 0(02). = AoEoST+eeOP+ - 
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For the second term of (2.1), by using Wald's Likelihood Ratio Identity, we have 

PO(T-x < oo) = E~e/xS . . . .  e -AXE~e An-x ,  

Poo(M > x) = Poo('rx < ~ )  = e-~X~ za~ 

From Corollary A.1, we know 

E o R x  - p+ = O(e-~X);  

as x --+ oo. Now, we write 

(2.2) POoO(~--M < c r  > O) 

and E o R - x  - p -  = O(e-"~) ,  

= - Po(~--z < oo)dPoo(M > x) 

= - .fa ~ E~e ~S~-~ dEo~ e - / ' ~  

= _ ~ e -A(x-p- )de- /%(x+p+)  
~ v  

. ~  e-A(~-P-)d(e-A~ -A~ - 1)) 

_ ~/^or e -A(x -P- ) (Eoo  eA(R-~-p- )  _ 1)de-AO(x+p+ ) 

fo ~ )(EOoeA(R ~ P ) - -  e -ga(x-p- - - - -- 1 ) 

• d ( e -A~  - A o ( R ~ - ' + )  - 1)). 

The first term of (2.2) is 
A0 eAp --Aop+ 

A + A o  

The third term of (2.2) is approximated as 

/5 AZXo ( E o R _ x  - p _ ) a x  + 0(o2). 

The fourth term of (2.2) is 

/5 AA0 E o ( R - z  - p - ) d ( E o R x  - p+) + 0(02). 

The third term of (2.2), by integrating by part, can be approximated as 

/5 eAP-(Poo(T+ < oc) - e-~~ + AAo ( E o R z - p + ) d x + o ( 0 2 ) .  

Finally, we have the following approximation, which generalizes Lemma 6 of Wu (1999). 
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LEMMA 2.3. As  0o,0 ~ 0 at the same order, 

_Ao ezxp__Aop + + e ~ P - ( 1 -  e_AOp+) Pooo (T--M < (30) -- A -~ A 0 

/o + AAo - ~  - p_EoS~- + ( E o R - x  - p_ )dx  

+ Eo(R_~ - p_)d(EoR~ - p . )  

+ 9['o~( E o n z  - p+ ) d x )  

+o(02) .  

The evaluation of EOoO[T_M; T _  M < (30] is similar and generalizes Lemma 7 of Wu 
(1999). 

LEMMA 2.4. As 0o,0 ~ 0 at the same order, 

EO~ A0(i#= A +1A0) 2 A + P-AO ) 

A~ ( I  + p-(EoS~+ - P+) - f o ~ 1 7 6  - 

/o - E o ( R - x  - p - ) d ( E o R x  - p+) 

PROOF. Again depending on whether {M = 0} or {M > 0}, we have 

(2.3) EOoO[r-M;~'--M < CO] 

= EO[T_;T_ < c~]POo(T+ = C~) -- Eo[7 -x ;7 - :  < ooldPOo(T: < 00). 

The first term of (2.3) can be approximated by using Lemma 2.2 and Lemma A.2 
a s  

Eo[~_;~_ < ~]P0o(~+ = ~ )  = ~o % --:- + o(1) - + o(1). 

For the second term of (2.3), we use the similar techniques as in Lemma 2.3 and write 

(2.4) - Eo[ r - z ;T -x  < cx~]dPoo(Tx < cx~) 

= - . ~  E~(T_xe-a(*-R-*) )dEole-~~  

= - Eo(T_~)e- / ' ( x -P- )dEole  -A~ + o(1) 
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1 ( - x  + E o R _ x ) e - A ( x - P - ) d e  -A~ 
# 

/o ] - Ao ( - x  + EoR_x)e(EoR~ - p§ + o(1). 

The first term of (2.4) is approximated as 

A 0 [  ( 1 p_ ) f0 ~ ] -: eZXP_--Aop+ -- ( E o R - z  - p_)dx  + o(1). 
# ( A + A o )  2 A + A o  

The second term of (2.4) is equal to 

[/0 /0 ] A o (x - p - ) d ( E o n x  - p+) - ( E o R - z  - p - ) d ( E o R x  - p+) 
# 

A0 "]~_ (-oS~+ - ~+)- -/i~ (E0~-  ~+)~x 

Combining the above results, we complete the proof. 

Finally, we evaluate Eooo[aM; T-M = oc]. We first write 

(2.5) Eooo[aM; ~--~ = o~1 = EooaM - E o o [ a ~ E y ' ( - M + R - M ) ] .  

For the second term of (2.5), we write 

Zoo [aMEoE A(-M+R-M) ] 
= EOo[aMe--hM]ehO - + EOo[aMe-AM(Eoe AR-M -- eZXP-)]. 

To evaluate t?,Oo [aMe-~M], we note that under TOo (') 

(aM, M )  =d (r(+K), S V ) ) ,  

where =d denotes equivalence in distribution, T(+ k) is the k-th ladder epoches defined in 
the Appendix and 

K = sup{k > 0:  ~_(+k) < ec}. 

Note that K is a geometric random variable P ( K  = k) = pk(1 - p )  for k > 0, with 
terminating probability 

1 - p = Poo ( %  = oc). 

For given k, (T(+ k), S • ) )  is, in distribution, equivalent to the sum of k iid random variables 

distributed as (%, ST+). 
Thus, 

Eoo [aMe -~M] : EOo [r -~sT~K) ] 
o c  - ( k )  - A S  ( ~ )  

= ~ E O o t U  ~ § ; g  = k] 
k = l  
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= ~'_kEoo[7-+e-AS.+;7-+ < ~](Eoo(e-AS'+;7-+ < ~ ) ) k - X p o o ( 7 - +  = ~ )  

k=l 

E~176 < ~] Poo(7-+ o0). 
(1 - E0o[~-~+ ;7-+ < ~ l )  ~ 

The next two lemmas give the approximations for the related quantities. 

LEMMA 2.5. A s  0o,0 ~ 0 at the same  order, 

1 - Eoo [e - A s ' +  ;7-+ < co] 

= (A -}- /Xo)EoSr+e-(A-O~176176176 + o(02)). 

PROOF. Using Wald's Likelihood Ratio Identity, we have 

1 - E o o [ e - ~ S r + ; T +  < oo] = 1 --Eo~e-(Zx+A~ 

A Taylor expansion following the lines of Lemma A.2 will give the result after some 
algebraic simplification. 

In particular 

Poo (7-+ = (x)) = AoEoS. r+  e 0~176 (P(~)_p2+ -al/EoS,-+ )(1 + o(0g)). 

The following lemma can be proved similarly as for Lemma 2.2, and its proof is 
omitted. 

LEMMA 2.6. As  0o,0 --~ 0 at the same  order, 

Eoo [r+e - A s , +  ; 7-+ < c~] 

_ EoS~+ e_(A_Oo)p++l/2(A_Oo)2(p(2)_p2+)_(O2/2)(al/EoS.+)_Ol(A+Ao)(cq/EoS~+) 

• (1 + o(O2)). 

(2.6) 

In particular, 

Eoo [7-+; 7-+ < oo] - - -  EoS~+ eOo.+ +Oo~/2(.(:)_.~_5~1/~oS.+)(1 + 0(O2)). 
#l  

On the other hand, 

EOo [O-Me-AM (E~e AR-M -- e Ap- )] 

= A E O o [ a M ( E o R _ M  -- p_)](1 + o(1)) 

/j = - A  Eoo[Crx [ M = x ] ( E o R _ ~  - p _ ) d P o o ( M  > x) 

= A A o  Eoo[Cr~ I M -- x](RoR_~: - p _ ) d ( x  + EoR~)(1 + o(1)). 
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Since 
Eoo[Sr+;r+ < co] = EOSr+(1 + o(1)), 

as Oo --+ O. Thus,  K = Or(x) ,  where Op(.) means at the same order in probability. This  
implies 

Thus,  (2.6) is at the  order of O(0). 
By let t ing A = 0, the first term of (2.5) can be evaluated by combining Lemmas  2.5 

and 2.6. 

LEMMA 2.7. As Oo ~ 0, 

Eoo [%; T+ < (x) l 1 
- -  - -  e-(2~176176 + o(0~)). 

EO~ ---- POo(T+ = oo) AOP1 

Finally, we have the following result. 

LEMMA 2.8. As 0o,0 --+ O, 

Eooo [aM; r - M  = oc] 

_ 1 e_(2a/EoS%)O ~ 
Ao#l  

_~.__.oo e.,/A/3-20(O_Oo)(p(+2)_O2+_cq/EoS,+)_2(O_Oo)2(cq/EoS~+){1 + O(02))" 
# i (  A + AO)2 , -  

Combining Lemmas 2.1-2.8 and A.1-A.2,  we have the following second order ex- 
pansion for the  asymptot ic  bias of s 

THEOREM 2.2. As 0o,0 --+ 0 at the same order, we have 

lim lim E ~ [ # - u [ N > u ]  - 
d--~ oo/2--+00 

1 ( A A  eAP--AoP++eAP-(1--e-AOP+)I 
#zx ULx0 
A (=_ i p_ )eAp__Aop+ 

(A + /Xo)~ ~x-Jho 
0o ~1 200 

+ o - e~ Eo&~ + 7 -  p-p+ 

0 cq 
ooo 

Similar result can be obtained for E'[[~) - uI[N > v] and is omit ted.  
In special, when 0 = 01 we have the following result. 
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COROLLARY 2.2. A s  0 = 01 ----* O, 

lim lim E ~ [ ~ - u l N > u ]  
d - - +  o o  /]---+ 0(3 

- 4 A  ~ + - + 

~  

1 /31 
2 EOST_ 

173 ̀2 ~ 1 ~1 1 (  OL1 ) 
3  ̀ + - -  + o(1). 

- -  - 40----o 288 16 2 EoS~-_ 2 p~) - p2+ EoS~-+ 

PROOF. The first equation is a direct simplification of Theorem 2.2. For the second 
equation, we note tha t  as 00 -~ 0, 

#1 = 01e(~'/2)~176 + o(021)), 

A o = 201 e('Y/6)~176 (1 + o(012)), 

Oo = --01e ('~/a)~ /ls)~ (1 + o(0~)), 

I.tO = --Ol e -( '[  /6)01+0~ (~ / 6 - (17  /72 )~ 2) (1 + 0(02)). 

Some tedious simplifications give the result. 

Therefore, the local bias of b is largely affected by the skewness 3 .̀ If 3  ̀ > 0, 
the local bias becomes positive. If Fo(x) is symmetric,  from Corollary A.2, we have 

p (~ )_p~__  ~1 =-~ and thus EoST + 6 ' 

7 1 /~1 
E"[b - u I N > u] ,~ - 4 - - ~  2 E o S ~  + o(1), 

which is surprisingly a non-zero constant,  in contrast  to the fixed sample size case as 
given in normal  case of next section. 

3. Two examples 

In this section, we discuss two special cases: normal and exponential  distributions. 

3.1 Normal  distribution 
0 2 

Here c(0) = T and Fo(x) = ~(x)  the s tandard  normal distribution, which is sym- 
metric. Thus, 3  ̀= ~ = 0, and from Corollary A.2 

and 

1 
p+ = - p _  ~ 0.583, EoS~+ = - E o S ~ _  x/2'  

Eo S~+ eo  S~_ - O, 

EoS _ = 
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The approximations for the related quantit ies are simplified as 

1 1 
E o ( T m ) -  202 4 + o(1); 

Oo e_o(O_Oo) +o(02); POoO(T-M < OC) -- 0 -- 0-------s 

O0 e(O_Oo)2 
EOoO[T-M;T-M < (X)] -- 28(0--_80) 2 + O(1); 

1 1 
Eooo[aM; T-M = OC] = 2002 2(0 -- 00) 2 + O(1). 

Summarizing the above results, we have the following corollary. 

COROLLARY 3.1. As 00,8 --~ 0 at the same order, 

1 1 Oo 
lim lim E ~ [ 5 -  u [ N > u] - + + o(1), 

d - - , ~ - - - * ~  202 20~ 4(0 - 0o) 

lim lim E . [ [ i . _  ul [ N > u] = l ( ~_ 1 2 ) 8o 
d ~  ~,--,o~ 2 + 0o 2 (8 -- 80) 2 + 4 ( 8  -- 0o) + o (1 ) .  

At  0 = Oa = -0o ,  

1 
lim lim E " [ b - u [ N > u ] = -  +o (1 ) ,  

d----~ o o  v---~ o o  

3 1 
lim lim E ~ [ [ b -  u l l  N > u] - + o(1). 

Remark.  Wu (1999) considered the bias of the est imator in the large fixed sample 
size case, which corresponds to the maximum point of a two-sided random walk, and 
obtained the following result: 

1 1 1 0 + 0 0  
E~'[t) - u] - 202 20g + 4 0 - 0----~ + o(1); 

and at 0 = -8o,  
3 1 

E"[]D - ul] - 40o2 4 + o(1). 

Srivastava and Wu (1999) also considered the continuous t ime analog in sequential sam- 
pling case which gives 

1 1 
E ' [ b - u [ N > u ] ~  202 202, 

and at 0 = -0o ,  
3 

E~'[[D- uI I N > u] ~ 402 . 

We see tha t  the sequential sampling plan has a local effect at  the second order and 
is negative at 0 = -0o.  

To show the accuracy of the second order approximations,  we conduct  a simple 
simulation study. For d = 10 and 00 = -0.25,  -0 .5  we let u = 50 and 100. 1000 



138 YANHONG WU 

Table 1. Biases in the normal case. 

u Oo 0 E[D - ~ I N > ~] E[li - ~11 N > ~] 
50 -0.25 0.25 0.113(-0.125) 9.737(11.875) 

0.5 -4.902(-6.083) 7.090(8.139) 

0.75 --5.682(-7.174) 6.376(7.826) 

1.0 -5.768(-7.55) 6.188(7.81) 

--0.5 0.5 0.268(-0.125) 3.052(2.875) 

0.75 --1.302(-1.211) 2.338(2.149) 

1.0 --1.673(-1.583) 2.135(1.972) 

100 --0.25 0.25 1.368(-0.125) 11.728(11.875) 

0.5 --5.644(-6.083) 7.768(8.139) 

0.75 --6.181(-7.174) 6.942(7.826) 

1.0 --6.250(-7.55) 6.520(7.81) 

--0.5 0.5 -0.223(--0.125) 3.052(2.875) 

0.75 --1.109(-1.211) 2.208(2.149) 

1.0 -1.564(-1.583) 2.084(1.972) 

replications of the CUSUM charts  axe s imulated for each case. Only those runs wi th  
N > u are used for calculating ~. Table  1 gives the simulated results. Th e  approximated  
values from Corollary 3.1 are given in the bracket. We see tha t  the approximat ions  axe 
generally good. The  case u = 100 shows quite sat isfactory results. Also, we see tha t  
approximations for the case 00 = - 0 . 5  perform be t te r  than  those for the case 00 = - . 25 .  
The  reason is tha t  our results are given by first assuming d, u --~ cc and then  let t ing 
00, 0 --~ 0. The  effect of u is very little. However, as the local bias is at the order  O(1/0o 2) 
at 0 -- -00,  which approaches infinity as 00 ~ 0, there  could be an error  t e rm at  the 
order,  say, O(1/(dO))  for finitely large d. Thus,  the approximat ion may per form be t t e r  
for 0 = - 00  = 0.5. The  case when Od approaches a constant ,  called modera te  deviat ion 
as considered in Chang (1992), is definitely wor thy  for a future  study. 

3.2 Exponent ia l  d is tr ibut ion 
Here, we are interested in quick detect ion of increment  in the mean of an exponent ia l  

dis tr ibut ion from the initial mean  1. 
Let  fo (x )  = e -(~+1) for x_> - 1 .  T h e n c ( O )  = - O - I n ( i - O )  for ]0[ < 1. Thus,  

(k--l)! c'(O) = 0/(1 - 0) and c(k)(O) = (1-0) for k > 2 and V = 2 and t~ = 6. 

Because of the memoryless  property,  Rx follows exp(1) for any x _> 0. Also, it is 
noted tha t  S~_ follows U ( - 1 ,  0) (Siegmund (1985), p. 186, Prob lem 8.10). Tans ,  

EoS~-+ = 1, p+ = 1, p(~) 

1 1 
EoS~_ = - -  p_ - 

2'  3 '  

Since OL 1 = 0, we have EOS,_/31 = 1"'87 from Corollary A.2. 

From Theorem 2.2, we have the  following result. 

- -2 ,  

p~) 1 
6 
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COROLLARY 3.2. As 0,0o ~ 0 at the same order, 

lim lim E ~ [ 6 - v l N > u ]  = 
d ~ o ( ) / ]  ---+ o o  

At 0 = -0o, 

A + 2Ao e_fl/2)g_A o 1Ae_(A/2)(  1 _ e_~O ) 
~(A + %)2 

Ao e_(1/2)A_zX o 
2~(n + ZXo) 

1 Ao _ _ _  + e (2/3)A 
A0#I p l ( A  4- A0)2 

0 00 7 00 
+ - -  + o(i) .  

0 - 00 0 18 0 - 00 

lim lim E ( ~ ) [ i -  u I N > z,] - 1 17 + o(1). 
d--.oo ~ o o  200 24 

We see tha t  due to the asymmet ry  of Fo(x), the local bias becomes positive as 00 is 
small. 
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Appendix 

Strong renewal theorem and ladder variables 

In this appendix, we state  the strong renewal theorem and its applications to the 
approximations for the probabilities and moments  associated with the ladder variables. 
The strong renewal theorem is given in Stone (1965) and developed in Siegmund (1979) 
for the exponential  family. 

Let 7 -(~ = T (~ = 0 and T(+ 1) = T+ and 7 -(1)_ = T_. For n > 1, we define 

T(n )=  inf{k : Sk > S {+~-,)}; 

T(~ ) = inf{k : Sk _< S(~-1)},  

as the k-th ladder epoches. Denote for x > 0, 

o<3 o o  

Uo+(X) = ~ Po(S4o, < . ) ;  u0; (x)  = E Poo(-S.(:, <_ x), 
n = 0  n = 0  

as the renewal functions of {S,~}. The following uniform strong renewal theorem is s ta ted  
in Chang (1992) which formalizes the results of Siegmund (1979). 
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UNIFORM STRONG RENEWAL THEOREM. 
C such that 

There exist positive numbers r, O, and 

U~ + E 2 x oS~+ 

(x) EoS,+ 2(EoS.+)~ 

us (x) + - -  

~ Ce-rX; 

x Eoo S~_ 

EooS r 2( EooS~_ )2 
< Ce -rx 

uniformly for -0" < Oo < 0 < 0 < O* and x > O. 

An immediate consequence of the strong renewal theorem is the exponential con- 
vergence rate for the overshoot, which is stated in Chang (1992). 

COROLLARY A.1. There exist positive numbers r, O* and C such that 

IPo(Rx <_ y) - Po(Ro~ <_ Y)[ <- Ce-r(x+Y); 

IPoo(n-x > -Y)  - Poo(R-oc > -Y)I < Ce-rtx+Y), 

uniformly for -0"  <_ Oo < 0 < 0 < O* and x, y >_ O, where 

1 
.~Y Po(S .+  > Po(Roo <_ y) - EoS.+ x)dx; 

and 
1 

- -  / ~  Poo(S._ < Poo(R-~ > - y ) -  -EooS~ ~ y ~ d y  ~ 
Jo 

We denote by p(~) = EoR~c ~ and p+ = p(~). 
One important application of the strong renewal theorem is to deliver very accurate 

approximations for the (joint) moments of ladder variables. The following lemma gives 
two very important approximations which is given in Lemma 10.27 of Siegmund (1985) 
and extended in Chang (1992). 

LEMMA A.1. 

where 

As 0 < 0--* O, for k >_ 1, 

EoS~,~ = EoS~,~ + ~ + k EoS~+,lO + -~ 2 { k EoS ~+2~+ - ~ )  + o(02), 

1 E ck+l / 1 E S k+2 # E o ( T + S ~ + ) - k +  1 oo.+ + 0 < ~ - - ~  o r+ + a k ]  + o(0), 

/o ak = (EoRkx - p ))Uo (dx ). 

Similarly, as 0 > Oo ~ O, 

EooS~_ = EoS~ + ~ o o ~_ + - Zk + 
- \ t ~ + 2  - 

1 r~ ok+l / 1 E S k+2 ,OEOo(~-S~_)- k + l-OO._ +Oo\y-+- ~ o ._ +Zk] +o(0o). 
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where 

f0 ~ /3k = (EoRk_~ - p(_k))U+ (dx) .  
+ 

An interesting application of Lemma A.1 is the following two different versions of 
approximation for the probability Po (~r_ = oc). 

LEMMA A.2. As  0 -+ 0, 

IZ _p+O_l/2(p(~) _p2+ --c~,/EoSr+ )02 (1! q_ 0(02)), 
Po('r-  = c~) - E o s ~ e  

= - A E o S ~ _  e ~ +l/2(P?)_p2_ -,Bx/EoST_ )0 ~ (1 + 0(02)). 

PROOF. For the first approximation, by using the Wiener-Hopf equation and 
Lemma A. 1, we have 

P o ( r -  = c~) - 1 _ p 
Eo (r+ ) Eo S~+ 

1 -1 
: ]A ( EOST+ -[- OEOST~' ~ r - 2  --2 --OZl) -[- 

( 02( 2 Oq ) )--1 
--  # 1 + Op+ + _)  EoS~-+ -2  p EoS~-~ + 0(02) ' 

which is equivalent to the required result. 
By using the Wald's Likelihood Ratio Identity first and then a Taylor expansion, 

we have the second approximation: 

PO(T- = 00) ---- 1 - Eoe ~ s r -  

 3E-S3 o(A3) = -  AE#S~ + A2E-.q'2 + + 
- 2 ~  6 0 r - J  

E o S ~ _ + ~  0S~ + - ~ \ ~  _ -  

A (E~176 - ~ ~-+ ) + 2 A2 E 5; 3 o(/X 2) 

( o2( 
= -AEoS,._ 1 + Op_ + T p2~ 

which is equivalent to the required result. 

) EoS._  + ~ ' 

An interesting consequence of this lemma is the following link between the moments 
of X1 and overshoot under Po('). 

By matching the two versions of approximation in Lemma A.2, we have 

A 

# 
___EoS.r+ EOST- = e_O(p++p_)_o212(p(~)+p(_2)_p2+_p~ --~I/EOS.r+ --/31/EoS-r )(1 @ 0(02)). 
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A Taylor expansion around zero gives 

0 2 0 3 
It = c'(O) = 0 + -~V + - ~  = Oe(7/2)~176 + 0(02)), 

and 
702 72/93 = 20e('~/6)0+(0~/24)'~(1 + 0(02)). zx=2~ +T 

Thus, we have the following identities: 

COROLLARY A.2. 

1 
EoS~+EoS~_ = 2; 

V p + + p _  = -~; 

ai /31 _ i (t~ - 72). 

EoS~+ EoS~_ 3 
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