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A b s t r a c t .  This paper proposes kernel estimation of the occurrence rate function 
for recurrent event data with informative censoring. An informative censoring model 
is considered with assumptions made on the joint distribution of the recurrent event 
process and the censoring time without modeling the censoring distribution. Under 
the validity of the informative censoring model, we also show that an estimator based 
on the assumption of independent censoring becomes inappropriate and is generally 
asymptotically biased. To investigate the asymptotic properties of the proposed 
estimator, the explicit form of its asymptotic mean squared risk and the asymptotic 
normality are derived. Meanwhile, the empirical consistent smoothing estimator for 
the variance function of the estimator is suggested. The performance of the estimators 
are also studied through Monte Carlo simulations. An epidemiological example of 
intravenous drug user data is used to show the influence of informative censoring in 
the estimation of the occurrence rate functions for inpatient cares over time. 
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i .  Introduction 

In biomedical and epidemiological longitudinal  studies, recurrent  event da t a  are 
frequently collected from a group of subjects  experiencing recurrent  events. As commonly  
caused by loss to follow-up in a longitudinal  study, the observation of each subject ' s  
recurrent  events could be t e rmina ted  before the end of study. Let N ( t )  be the number  of 
recurrent  events over the t ime interval [0, t] and Y be the censoring t ime (i.e., the t ime 
to the end of follow-up). Assume tha t  the observat ion of the recurrent  event process 
N( t )  is t e rmina ted  at t ime Y. Generally,  the  recurrent  event da t a  are collected from n 

m i  independent  subjects.  For the i - th  subject ,  N~(t), Yi and {t i j} j=l  respectively denote  
the recurrent  event process, the censoring time, and the ordered event t imes observed in 
the t ime interval [0, Yi]. Here, mi  is the number  of the recurrent  events occurring at  or 
prior to Yi. 

In applications, because censoring could be caused by informative drop-out  or death,  
it is sometimes unrealistic to assume the recurrent  event process to be independent  of the 
censoring time. To handle informative censoring or missing da ta  in regression models, 
Robins et al. (1995) and Scharfstein et al. (1999) proposed semi-parametr ic  methods  to  
model  the censoring dis t r ibut ion and adjust  the es t imat ion procedures  via the censoring 
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or missingness distribution function. In some applications, nonetheless, modeling the 
censoring mechanism could be intractable or undesirable because the censoring distribu- 
tion is treated as a nuisance parameter in the model. In this paper, instead of modeling 
the censoring distribution, we consider a multiplicative intensity model which possesses 
appropriate interpretations and avoids modeling on the censoring distribution. Explic- 
itly, the considered informative censoring model consists of the following assumptions. 

(A1) Suppose there exists a nonnegative-valued latent variable Zi so that,  con- 
ditioning on zi, Ni ( t )  is a non-stationary Poisson process with the intensity function 
)~(t) = zir where Co(t) is a deterministic intensity function. The occurrence 
rate function of recurrent events in the population is ,~(t) = E[,~i(t)] = #zr  with 

: 

(A2) Conditioning on zi, Ni(.) is independent of Y~. 
When the censoring time Y{ is independent of the recurrent event process Ni(-) un- 

conditional on zi, this informative censoring model reduces to an independent censoring 
model. The related works for the estimation of the cumulative rate function, which is 
formulated in the framework of counting process, can be tracked back to the publica- 
tions of Nelson (1988) and Andersen et al. (1993). For the cumulative occurrence rate 
flmction without the Poisson assumption of (A1), the related works can be backed to the 
studies of Pepe and Cai (1993), Lawless and Nadeau (1995), and Lawless et al. (1997). 
Lin et al. (2000) and Sun and Wei (2000) also provided the non-parametric and semi- 
parametric estimators for the cumulative occurrence rate and the regression parameters 
with a rigorous justification through the modern empirical process theory. 

In the above informative censoring model, the recurrent event process N{(.) is as- 
sumed to be independent of the censoring time Y{ conditional on zi, and is therefore 
allowed to be correlated with the censoring time Y{ through Z{. Thus, the dependence 
between the recurrent events and the censoring time is modeled via the latent variable 
Z.i. It can be viewed as a non-parametric version of the random-effect model considered 
by Lancaster and Intrator (1998). In comparison with the Lancaster and Intrator model, 
note that the hazard function of Y{ and the distribution of Zi are both left unspecified 
in our model. For related research which takes into account the covariate information, 
please refer to Wang et al. (2001). 

The succeeding sections of this paper are organized as follows: In Section 2, kernel 
estimation method is proposed to estimate the occurrence rate function for the recur- 
rent events with informative censoring. Here, a natural kernel estimator based on the 
assumption of independent censoring is also considered. The asymptotic properties of 
our estimator are studied in Section 3. Moreover, the empirical consistent smoothing 
estimator for the variance function of the estimator is suggested. It is shown in these two 
sections that  the independent censoring estimator becomes inappropriate and is gener- 
ally asymptotically biased when censoring is informative. Monte Carlo simulations are 
conducted in Section 4 to examine the performance of our estimators. In Section 5, the 
estimation procedure is applied to the intravenous drug user data. A brief discussion is 
provided in Section 6 and the proofs of the main results are placed in the Appendix. 

2. Estimation 

Consider the situation when the censoring time may be correlated with the recurrent 
event process. For example, patients of higher hospitalization frequency may be sicker 
and therefore drop out of the study earlier. As will be discussed later, an estimator based 
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on the assumption of independent censoring becomes inappropriate and is generally 
asymptotically biased under the validity of the informative censoring model. This is 
caused because of the biased sampling of {Zi} in the risk sets. In this section, a method 
is proposed to avoid the influence of the latent variable Zi in the kernel estimation. 

Before introducing our estimation method, let A~(t), O0(t) and A(t) be the cu- 
mulative functions of ),~(t), r and A(t), respectively. Define the density function 
f ( t )  = r 0 < t < To, as the normalized intensity function of r and let 
F(t) be the distribution function of f ( t ) .  In applications, the constant To is usually 
selected as the maximum value of the observed censoring times {Y/}, or as the maximum 
value of the event times {tij}. Under Assumption (A1), because 

A (t) 
Ai(T0~ - Zi~o(To) = f( t ) ,  

the density function f ( t )  can be viewed as the shape parameter for the intensity func- 
tion Ai(t). Further, conditioning on (mi,yi ,zi) ,  the event times (t i l , . . . , t im~) are the 
order statistics of a set of independent and identically distributed random variables with 
the truncated density f ( t ) /F(y i ) ,  t E [O, yi]. Thus, conditioning on {(mi,yi ,  zi)}, the 
likelihood function is 

(2,1) nc : fii=l mi' F(yi) j ocflI-[i:lj=l f(Yi)" 

In the non-parametric models where r is an unspecified intensity function, the likelihood 
function Lc in (2.1) is essentially a non-parametric likelihood for right-truncated data. 
For the estimation of the distribution function F(t),  we can use the non-parametric 
maximum likelihood estimator F(t) ,  proposed by Wang et al. (2001), of the form 

II ( (~(,)>t~ N(l) / ' 

where {s(0 } are the order statistics of the event times {tij}, d(0 is the number of events 
occurring at s(o , and N(0 is the total number of events with event time and censoring 
time satisfying t~j < s(0 < yi. 

The first step of our estimation procedure uses (m~ -1 ~ t-t~j ~ j = l  gy~ ( - - -~))  to estimate 
f ( t ) /F(Yi ) ,  where K ~  (.) is a boundary kernel density of Gasser and Miiller (1978) with 
adjustment for the censoring time Y/, and h is a positive-valued bandwidth. Instead of 
estimating the subject intensity function Ai(t), we do this mainly to avoid the influence 
of latent variables {Z~}. Due to the truncation of the recurrent event process N~(t) at Yi, 
we multiply (m~ -1 '~' ~ j = l  Ky, ( ~ ) )  by A(Y/) = F(Y/)A(To), since ( f ( t ) /F(Yi) )A(Yi)  = 
#zr = A(t). Because F(t) and A(T0) are unknown, the third step is to substitute 
them with appropriate estimators. Conditional on (Yi, zi), the number of the observed 
events, mi, has the Poisson distribution with the expected value zi~o(yi), we derive 

E[mi/F(Yi)] = E[E[mi/F(Yi)  I (Yi, Z~)]] = E[Zi~o(Yi)/F(Yi)] 

= E[Zi~o(To)] = A(To). 
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By substituting/~(t) for F(t), an estimator for ACt ) can be constructed as 

"~(t) = F(t) ( n - l  ~-~ml/F(Yl))  

After the above adjustments, a kernel estimator is proposed as 

' iO, ol, 

where 5;(t) = I(Yi >_ t,m~ >_ 1) and 5*(t) = ~i~=1 5*(t). In (2.2), with subject-specific 
estimators of intensity functions being appropriately formulated, the kernel estimator is 
essentially the average of subject-specific estimators defined with respect to each risk set 
at t. 

When Yi is independent of N~(-) unconditional on zi, the non-parametric kernel 
estimation method of Bartoszyfiski et al. (1981) can be extended to the following kernel 
estimaor 

(2.3) ~h(t) = ~ K. ,  , t C [0, To], 
i=1 

m, K [ t-tlj ~ where 5i(t) = I(Yi >_ t) is an indicator function. The term (~-]j=l Y~(-W-]) in (2.3) 
is a natural kernel estimator of the subject-specific intensity function Ai(t) for t in the 
interval [0, Y~]. In the estimation, Ah(t) uses the information of subjects who are still at 
risk at t, i.e., Yi _> t. Because the censoring is independent of the recurrent event process, 
the risk set at each t forms a random sample from the population and the smoothing 
technique uses the risk set as the base for kernel estimation. However, in the next section, 
we will show that  this independent censoring estimator is asymptotically biased under 
the assumptions of informative censoring. This is mainly caused by the biased sampling 
of {Zi} in the risk sets. 

3. Asymptotic properties 

In this section, the asymptotic risks of the kernel estimator Ah(t) are established. 
The properties developed here are based on the mean squa~d error and the  asymptotic 
normality of the estimator. Let MSE(Ah(t)) and MISE(Ah)  = f MSE(Ah(t))~r(t)dt, 
where 7r(t) is a non-negative weight function, represent the mean squared error and the 
mean integrated squared error of Ah(t). By the decomposition principle of the mean 
squared error, it is convenient to consider the bias and the variance of Ah(t), which 
are denoted separately by B(~h(t)) and V(~h(t)). Throughout this section, Yi's are 
assumed to be independent and identically distributed with the cumulative distribution 
function Fy(y) and the probability measure Py(y). Moreover, PYZ(Y, z), Pray(k, y) and 
Pmyz(k, y, z) represent the probability measures of (Y, Z), (m, Y) and (m, Y, Z). 

Before the derivation of the main results, the following conditions are assumed: 
(A3) G(t) = f zI(y > t)dPyz(y, z) is a continuous function for t E [0,T0]. 
(A4) The kernel density K ~ ( ~  --~) = ~c~(s, t-~ t-u -g--)K(-h-- ) is continuous, bounded and 

satisfies 

/~o(t,h, s) = 1, 131(t,h,s) = O, t32(t,h,s) < 0% and v4(t,h,s) < oo, 
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where flj(t, h, s) = f~/h_,)/h uJa(s,  u ) K ( u ) d u  and 71(t, h, s) = f~ /h ) /h  [a(s, u)K(u) l  tdu. 

(A5) A(t) is twice differentiable and bounded. 
(A6) h ~ 0 and nh --~ oc as n ~ oc. 
As one can see, the property of non-parametric estimator 3,(t) will be used in the 

subsequent proofs for the asymptotic risks of Ah(t). Define Q(t) = fo G(u)A(u)du and 

R(t)  = G(t)A(t) .  Wang et al. (2001) derived the i.i.d, representation of A(t) as 

(3.1) 

where 

with 

) , ~ ( t )=A( t )  1 + -  di(t) + op(n -1/2) , 
Tt i=1 

di(t) = - f kb i (y)dPmv(k ,  y) mi  
h(y) + 1 + bi (t) 

bi(t) = E R2(u) - R( t i j )  " 
j = l  

Since di(t) has zero expectation and the finite second moment E[d~ (t)], they showed the 
asymptotic normality of A(t) below. 

LEMMA 3.1. Suppose that assumptions (A1)-(A3) and Fy(To)  < 1 are satisfied. 

When n --* oc and t E (0, To], v/n(/~(t) - A(t)) d N(0, E[d2(t)]). 

PROOF. See Wang et al. (2001). [] 

From (3.1), the estimator Ah(t) in (2.2) can be re-expressed as 

(3.2) Ah(t) = E ~ i ( t )  1 + -- d l (~ )  + Op(n -1/2 , 
n 

i=1 /=1 

5*(t)/A(Yi) x-~m~ K [t-t~j~ where ~/(t) = 5.-qU~7--~/--,j=l u~[--g-JJ. Before deriving the mean squared error of 

Ah(t), we first state the following technical lemma. Under the regularity conditions, the 
moments of ~i(t) can be obtained. 

LEMMA 3.2. Suppose that assumptions (A1)-(A6) and #~. (To) > 0 are satisfied. 
When n is sufficiently large and t E (0, To], 

(3.3) 
(3.4) 
and 

(3.5) 

E[(i(t)] : A(t)n -1 + b~( t )n - lh  2 + o(n- lh2) ,  

E[(i2(t)] = a2( t )n -2h  -1 + o(n-2h  -1) 

f 
E[[~i(t) lv] <- ~ ~ . ( t )  --](k>l,y>-t} 

• n-L'h -u+l, 

. .  ) -k--;-: 7 u r m y z ~ ,~ , y, z) 
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where ~ = 3, 4, 

b~(t) = 2 , ~ .  (t) 
/ 

and 
a](t) = ( )'(t)(f(k>-"Y>-t)(72(t, h,y_)A(y)/k)dPmyz(k,y,z)) 

,~.(t) ) 
with Vs" (t) = f(k>_,,y>_t} dPmy(k, y). 

PROOF. See Appendix. [] 

From Lemma 3.2 and the relation between ~h(t) and }-]in1 ~i(t) in (3.2), we have 
the bias and the variance of ~h(t). 

THEOREM 3.1. Suppose that assumptions (A1)-(A6) and #~. (To) > 0 are satisfied. 
When n is sufficiently large and t C (0, To], the bias and the variance of s are 

(3.6) B(~h(t)) ---- b~(t)h 2 + o(h 2) + O(n-lh  -1/2) 
and 
(3.7) y(~h(t)) = ~ ] ( t ) ( n h )  -~ + o((nh)-l). 

PROOF. See Appendix. [] 

Under the validity of the informative censoring model, ~h(t) is shown to be an 
asymptotically unbiased estimator of A(t). However, the estimator ~h(t) in (2.3) is 

generally asymptotically biased. When n is sufficiently large, the bias of ~h(t) is derived 
as follows: 

(3.s)  G(t) ) (1 + o(1)). B(]h(t)) : A(t) 1 -- pz(1-- -Fy( t ) )  

The proof for B(~h(t)) is along with the same lines as the proof for B(~h(t)). The 
asymptotic representations for MSE(~h(t)) and MISE(Ah) can be obtained from (3.6) 
and (3.7). It follows from assumption (A6) that both B(Ah(t)) and Y(~h(t)) converge to 
zero. This convergence rate now depends on whether and how the sample size converges 
to infinity and the bandwidth h converges to zero. As for the convergence rates of 
MSE(~h(t)) and MISE(~h),  the best convergence rates are equal to n -4/5, which is 
attained by taking h = 0(n-1/5). When the further assumption, (A6') h = n-1/bho for 
some positive bounded constant h0, is made, we can derive 

(3.9) v ~  ~i(t)  - ~h(t)  A 0, as n - ~  ~ .  

i----1 

From (3.9) and by using the Berry-Ess@en theorem to the quantity Ein=l ~i i t ) ,  the asymp- 
totic normality of ~h (t) is then obtained in the following theorem. 
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THEOREM 3.2. Suppose that assumptions (A1)-(A5), (A6') and #~.(To) > 0 are 
satisfied. When n converges to infinity, 

P d  v/~(~h(t)-A(t))-ba(t)  ) O(u) 
(3.10) sup ~ aa(t) < u - ~ 0, 

where ~(.) denotes the cumulative distribution function of the standard normal distribu- 
tion. 

In the above derivation, it is found that ~f~ Y~_I ~i(t) and vfn-hAh (t) have the same 

asymptotic variance. Thus, by using the i.i.d, property of ~i(t)'s and substituting the 
non-parametric estimator A(t) for A(t), we propose the empirical consistent smoothing 
estimator of V(Ah(t)) by 

2 

(3.11) V(Ah(t))-l~-~"5*(t)(A(Yi)~--~KY'(~)-Ah(t))5"*2(t)i=, \ mi j : l  

With similar arguments as the derivation of Lemmas 3.1, 3.2 and (3.9), the quantity 
v/-s163 can be shown to converge to a~,(t) in probability. 

4. Monte Carlo simulation 

To examine the finite sample properties of Ah (t) and the empirical smoothing estima- 
tor for the variance function of Ah (t), Monte Carlo simulations are used. The simulated 
data are similar in nature to those recurrent event data collected in empirical biomedical 
and epidemiological cohort studies. Two types of recurrent event data are generated 
below. 

Let the latent variables Zi be independent and identically distributed with the 
uniform distribution U(0.5, 4). The first data set is generated from 400 independent non- 
stationary Poisson processes {Ni(t)} with the corresponding subject-specific intensity 
functions Ai (t) = zir (t), where 

( t  - 6 )  3 
r = 3 + 7 ~ '  t E [0, 10]. 

Since the expectation of Z is equal to 2.25, it implies that the occurrence rate function 
A(t) = 2.25r for t E [0, 10]. Conditional on zi, the censoring time Y~ is designed to be 
distributed as a truncated distribution of the exponential distribution exp(zj10) ,  where 
the truncated distribution ranges from 1 to 10 and has the density 

0.1z~ exp(-0.1ziy) 
fYIz~(Y) = (exp(-0.1zi) - exp( -z i ) ) '  y E [1, 10]. 

This simulated data set satisfies the assumptions of informative censoring. When zi in 
exp(zi/10) is replaced by a constant, the informative censoring condition in (A2) then 
reduces to the independent censoring condition. The second data  set  is generated so 
that it is similar to the first except that zi in exp(zi/10) is substituted by 2.25. 

Computed by (2.1) and (2.3), the kernel estimators Ah (t) and Ah (t) are applied to the 
simulated data. Moreover, the empirical consistent smoothing estimators of V(Ah(t)) in 
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(3.11) and V(Ah(t)) are provided. Here, the considered smoothing estimator of V(~h(t)) 
is suggested by 

A ~ 1 n m i 

(4.1) -  2(t) 6 (t) -  h(t) 
�9 i = 1  

For these estimators, an appropriate bandwidth is used by examining the plots of the 
estimated curves, and the Gaussian kernel is selected for K(.). Based on other kernels, 
such as the Epanechnikov kernel and the uniform kernel, estimators gave similar results, 
hence, are omitted. Also, alternative selections of bandwidth are also possible. Figures la  
and lb show the true occurrence rate function A(t), the 1000 simulation averages of the 

estimates ~h(t), ~h(t) and their corresponding estimated +1.96 standard bars, and the 
• standard errors of the 1000 occurrence rate estimates at the corresponding time 
points. As shown in Fig. la, there is no observable difference between these two estimates. 
However, in Fig. lb, Ah(t) provides a much less biased estimate under assumptions of 
the informative censoring model. The similarity and difference in the estimated rate 
functions are clearly due to the absence or presence of informative censoring. Meanwhile, 
it can be found in these figures that the estimated standard errors are very close to the 
true standard errors of the estimators. 
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Fig.  I .  T h e  rea l  occur rence  ra te  f u n c t i o n  A( t )  (so l id  curve)  and  the  e s t i m a t e d  occur rence  ra te  
functions ~h(t) (dashed curve) and ~h(t) (dotted curve). ( la)  The 4-1.96 s tandard errors (solid 
line) and the estimated 4-1.96 standard errors of )~h (t) (dotted line) at the corresponding time 
points for recurrent event data  with independent censoring. ( lb)  The -4-1.96 s tandard errors 
(solid line) and the estimated -]-1.96 standard errors of ~h(t) (dashed line) at the corresponding 
time points for recurrent event data with informative censoring. 
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5. A data example 

The data from the AIDS Link to Intravenous Experiences cohort study (Vlahov et 
al. (1991)) provides information on inpatient admissions and Human Imunodeficiency 
Virus (HIV) status of intravenous drug users. In total, there are 297 HIV-positive and 
450 HIV-negative intravenous drug users involved in this study. The study was initiated 
in 1988 and started to systematically collect health service data in July, 1993. The 
repeated hospitalizations for each drug user here were observed between August 1, 1993 
and December 31, 1997. Let tij ,  j = 1 , . . .  ,mi,  be the time length from August, 1, 1993 
to the date of the j - th  inpatient admission, y~ the time length to the last visit for the 
i-th drug user, and To the maximum time of yi's. In our analysis, we consider only 
drug users who entered the study before July 16, 1993. A drug user is defined to be 
HIV-positive if he or she was infected by HIV-1 virus prior to July 16, 1993. A drug 
user is defined to be HIV-negative if the individual was not recorded as HIV-positive at 
anytime before December 31, 1997. Those drug users whose HIV-1 infection occurred in 
the study period are excluded from our data  analysis. 

Among HIV-positive drug users, the median of the number of recurrent events is 2 
and the number ranges from 0 to 14. The mean of the censoring time is 3.257 years and 
the censoring time ranges from 0.047 to 4.394 years. For HIV-negative drug users, the 

( 2 a )  H I V - p o s i t i v e  D r u g  U s e r s  

0 I 2 3 4 

Time (ye~)  

( 2 b )  H I V - n e g a t i v e  D r u g  U s e r s  

o 1 2 3 4 

Time (ye~)  

( 2 c )  H I V - p o s i t i v e  v e r s u s  H I V - n e g a t i v e  D r u g  U s e r s  

0 T 2 3 4 

~ e  (year) 

Fig. 2. The estimated occurrence rate functions ~h(t) (solid curve) and ~h(t) (dashed curve) 
of HIV positive and HIV negative intravenous drug users. 
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median of the number of recurrent events is 1 and the number ranges from 0 to 19. The 
mean of the censoring time is 3.734 and the censoring time ranges from 0.275 to 4.394 
years. The main objective of this study is to estimate the occurrence rate functions of 
hospitalizations for HIV-positive and HIV-negative drug users. The data serves as a good 
example for our methodology because the drug users are likely to drop out for reasons 
associated with the outcome measurement and, in AIDS research, the HIV-positive drug 
users are known to have high mortality rate which is apparently associated with the 
inpatient care measurement. 

As in the simulation study, the kernel estimators ~h (t) and ~h (t) are computed using 
an appropriate bandwidth and the Epanechnikov kernel density for K(.). Figures 2a 
and 2b show the estimated occurrence rate functions, which are computed by (2.2) 
and (2.3), for HIV-positive and HIV-negative drug users. Figure 2c further provides the 
corresponding +1.96 estimated standard error bars of the hospitalization rate estimators 
at the selected time points. We can see that the two different kernel estimates result in 
similar curves for HIV-negative drug users as shown in Fig. 2b. In contrast, in Fig. 2a, 
the two estimates result in very different hospitalization rate functions for HIV-positive 
drug users, suggesting the presence of significant informative censoring. Furthermore, 
the estimate ~h(t) for HIV-positive drug users appears to be significantly higher than 
~h(t) for HIV-negative drug users (Fig. 2c). The analysis essentially reveals the actual 
need of health service or insurance from HIV-positive drug users, an implication which 
cannot be derived from the descriptive statistics that are typically used in AIDS research. 

6. Discussion 

In this paper, we propose kernel estimation of the occurrence rate function for 
recurrent event data in an informative censoring model. The informative censoring model 
is constructed by assuming independence between the censoring time Y/and the recurrent 
event process Ni (') conditional on z~. The multiplicative relationship between the latent 
variable Z~ and the baseline intensity function Co(t) in (A1) is the key assumption which 
makes the construction of Ah(t) possible. As part of the requirement of the model, all 
the subject-specific occurrence rate functions of recurrent events are assumed to have 
the same baseline intensity function. Further research will involve work to consider 
alternative informative censoring models and also to develop methods to allow for time- 
dependent latent variable Zi(t). 
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Appendix 

PROOF OF LEMMA 3.2. By the definition of ~s(t), it can be derived tha t  

(A.1) E[~i(t)] : E [(~*(t) k Trts j : l  

: E[(t~*(i)(t)-}-I)-I]E [6;(t)( m~~KYi  ( ~ ) ) ]  

where 5*.(i)(t) = )-]]r 5;(t). Since 5*(i)(t) is distr ibuted as Binomial ( n -  1,/~}(t)), the  

expectat ion of (5.*(0(t) + 1) -1 is directly calculated as 

(1.2) E[(6:(s)(t) Jr- 1) -1] :-  (1 - (1 - ,~(t))n)(np~(t)) -1. 

Thus, (A.1) can be wri t ten  as 

(1.3) zips(t)] : z ~ ( t )  ~n__ ~ K Y '  (n.~(t) ) - l (1  + o(1)). 
j : l  

Let ts* j be unordered observations of tij. It implies from assumption (A1) tha t  condi- 
tioning on (ms, ys, zi), ts* j are independent ly  identically distr ibuted random variable with 
density A(t)/A(yi) for t E [0, ys]. By assumptions (A1)-(A6) and the Taylor expansion, 
we can get 

(A.4) E[6*(t)(A(Yii)~KYi(~))Ij=I 

= E  E ~(t)h(Y~) )--~g., (ms, Y~,zd mi j=l 

= E Z 5*(t)A(Yi) ~ K . ,  (ms,Yi,Zs) 
ms j=l 

--_ ~{k>l,y>t}A(y ) (~oYKy ( ~ ) ) ~ ( u )  , , _ _ ~(y)aujdPmyz(k ,y ,z)  

Substituting (1.4) into (1.3), the expectat ion of ~s(t) in (3.3) is then obtained. Prom 
(A.2), it is s traightforward to derive that  

k mi j=l 

2|"1 (1 + o(1)) 

] ("~.(0) 
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with 

(A.6) 

where 

I )21 k mi j=l 

k m~ J=~ 

= (I + II), 

(A.7) I : E  E l  "~ 

= L ~ ,  ~'~ ( / o ~  ( ~ )  ~,~u) ~ , ~  ~ ~ , 

and 

(AS) II :E E[ m; 

([~j (t--t~jl I (thti~j2)) ]} 
x Ky, -h- Kv, ] (mi, Yi, Zi) 

J 2 

: / k>_l ,y>_t} ( l -k -1 ) ( fooYKy(~-~)A(u)du)  2dPmYZ(k,y,z) 

= (3~{ k>l,y>_t} (1-k-1)dPmyz(k'Y'Z)))~2(t)+~ 

Therefore, (3.4) is obtained from (A.5), (A.7) and (A.8). Along the same lines as the 
derivation of E[~(t)], the s tatement  in (3.5) follows. 

PROOF OF THEOREM 3.1. From (3.3), (3.4) and the property E[dl(t)] = 0, we get 

(A.9) E ~i(t) = ~(t) + b~(t)h 2 + o(h 2) 

and 
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(A.10) 

= E (i(t) E dl(Y{) + ~i(t)di(Yi) 
n 

i=1 lT~i 

[ { "~{ ( ~ ) ) ]  (1+o(1)) : E ~ dz(Yi)6;(t) A(Yi) ~ Kv, 
l#i ~ m i  j : l  ~5*(t)  

+ O ( n - l h  -1/2) 

= n (/  ( ( k 2) a(u)du) dPmyz(k,y,z)) 
(1 + o(1)) 

• #5* (t) + O(n- lh -1 /2)  

= O(n- th-1/2) .  

From (A.8) and (A.9), the bias of i h ( t ) i n  (3.6)is derived. The proof of (3.7)is developed 
by considering E[12(t)]. Straightforward decomposition shows that 

Eli,(t)] : 111 + I< (A.11) 

with 

and 

I I I :  E (i (t) 1 + - dl(Yi) + Op(n -1/2 
n /=1 

1 E d z ( Y i )  Op(n 1/2) : ( , n  2 - n , _ ] E  ~ { , _ ,  + - + . I V  
n 

i=1 /=1 

From (3.4)-(3.5), it follows that 

(A.12) 

and, hence, 

(A.13) I I I  = cr~( t ) (nh)  -1  + o ( ( r t h ) - l ) .  

Similarly, we can show that 

(A.14) I V  = (E[Ah(t)])2(1 + o(1)). 

Substituting (A.13) and (A.14) into (A.11), the variance in (3.7) is than derived. 
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