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A b s t r a c t .  We consider local least  absolute  devia t ion  (LLAD) es t ima t ion  for t r end  
functions of t ime series wi th  heavy tai ls  which are character ised via  a symmet r i c  
s table  law dis t r ibut ion.  The  se t t ing includes bo th  causal  s table  A R M A  model  and  
fract ional  s table  A R I M A  model  as special  cases. The  asympto t i c  l imit  of the  es- 
t ima to r  is es tabl ished under  the  assumpt ion  t ha t  the  process has e i ther  shor t  or 
long memory  autocorre la t ion.  For a shor t  memory  process, the  e s t ima to r  admi t s  the  
same convergence ra te  as  if the  process has the finite variance. The  op t ima l  ra te  of 
convergence n -2/5 is ob ta inab le  by using appropr ia t e  bandwidths .  This  is d i s t inc t ly  
different from local least  squares es t imat ion,  of which the convergence is slowed down 
due to the  existence of heavy tails. On the other  hand,  the  ra te  of convergence of 
the  LLAD es t imator  for a long memory  process is always slower t han  n -2/5 and the 
l imit  is no longer normal .  

Key words and phrases: A R M A ,  fract ional  ARIMA,  heavy tail ,  least  absolu te  devi- 
a t ion  es t imat ion ,  long memory,  median,  s table  d is t r ibut ion,  t ime series. 

i .  Introduction and models 

A substantial literature now exists on using kernel-type smoothers to estimate a 
smooth trend in time series data. These methods are important, in part, because they 
allow estimation of a smooth trend without prior specification of the form of the trend. 
A popular setting which has attracted much attention in the last decade is a fixed-design 
regression with dependent 'errors', under which the observations Y1,... ,Yn follow the 
model 

(1.1) Yt = m ( t / n )  + ct, t = 1 , . . . n ,  

where m(.) is a smooth function defined on [0, 1], and {st} is a stationary process such 
as ARMA time series. If {et} are correlated but with only short-range dependence in 
the sense that  its autocorrelation functions are absolutely summable, it has been proved 
that  nonparametric regression estimators for m(.) are asymptotically normal at the same 
convergence rate as in the case of uncorrelated {st }, although the asymptotic variances 
have one more factor due to the dependence in the data; see Hall and Hart (1990). When 
there exists a long-range dependence, Hall and Hart (1990) shows that  the estimators 
have a slower convergence rate for the long-range dependent normal errors; see also 
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CsSrg5 and Mielniczuk (1995). Since the mean squared errors of the estimators axe 
different from those with independent data, research has been carried out to modify 
the standard kernel regression techniques, including the bandwidth selection procedures, 
to incorporate various dependence structures. This includes Altman (1990), Chiu and 
Marron (1991), Truong (1991), Hart (1991, 1994), Herrmann et al. (1992), Roussas et al. 
(1992), Tran et al. (1996) for short-range dependence data, and Ray and Tsay (1997) and 
Robinson (1994, 1997) for long-range dependence data. A common practice in all the 
aforementioned literature is to assume that st has the zero-mean and a finite variance. 

In this paper, we also deal with the kernel regression estimation for function m(.) 
but with heavy tailed error terms such that E(st  2) = co or El~t I = oo. More specifically, 
we assume that in model (1.1) st is a linear process defined as 

(1.2) st = ~ cjZt-j, 
j=o 

where {Zt} are independent random variables sharing the same standard symmetric 
stable law distribution with index a E (0, 2), i.e. the characteristic function Zt has the 
form 

E(e "z') ; e x p { - I t l  

Under the condition 

o o  

(1.3) 0 < E IcJ]'~ < 0% 
j=0 

the infinite sum in (1.2) is well-defined. Moreover we may say that {r has short 
o o  memory or long memory according as Y~.j=o IcJl a/2 < oo or = oo respectively. Note 

that Eletl = oo when a < 1 and E(s  2) = oc when a < 2, and m(t /n )  is the median 
(as well as mean when a > 1) of Yr. The setting (1.2)-(1.3) includes the causal stable 
ARMA model (Mikosch et al. (1995), and Klfippelberg and Mikosch (1996)) and the 
causal fractional stable ARIMA model (Kokoszka and Taqqu (1995, 1996)) as special 
cases. A causal infinite variance fractional ARIMA(p, d, q) time series may be defined as 

(1.4) �9 (B)et = @(B)(1 - B ) -dz t ,  

where d E (0, 1) is a se l f - s imi lar i ty  parameter, B denotes the backshift operator, q'(.) and 
O(.) are polynomials with degrees p and q respectively, and all the roots of the equation 
O(z) = 0 are outside the unit circle. Because of the presence of d, the process {st} 
has infinite variance as well as long-range dependence. It in fact admits the MA(oo)- 

o o  representation (1.2) with Y~.j=o IcJ j~/2 = co. For further information on ARMA models 
with heavy tails and their applications, we refer to Adler et al. (1997) and Resnick (1997). 

It is known that for regression models with heavy tailed noises, the conventional 
least squares estimators typically have slow convergence rates, are only consistent when 
the tail index a C (1, 2), and even then the limiting distribution is non-normal; see 
Davis etal. (1992) and references within for parametric regression, and Hall et al. (2002) 
for nonpaxametric regression. We consider in this paper the local linear least absolute 
deviations estimator for m(.). The asymptotic limit of the estimator is established for 
both short and long memory cases (Theorem 2.1 in Section 2 below). The limit is normal 
in case of short memory, however it is a stable law in case of long memory. The proof 
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is based on a combined use of the convex lamina (Pollard (1991)) and the asymptotic 
results for stable moving average processes of Hsing (1999), Koul and Surgailis (2001) 
and Surgailis (2002). When {ct} has short memory, the convergence rate as well as the 
first order asymptotic mean and variance are the same as if ct had a finite variance. We 
can reproduce the optimal rate of convergence n -2/5  by choosing the bandwidth of the 
order n -1/5,  which is a folklore in conventional (one-dimensional) kernel regression. In 
this sense, the least absolute deviations estimation is adaptive to heavy tails. However 
when the process has a long memory, the convergence rate is always slower than n -~/5 

and the limit is no longer normal. 
There is a substantial literature on nonparametric regression in the least absolute 

deviation setting. Mallows (1980), Velleman (1980), Truong (1989) and Fan and Hall 
(1994) addressed local median smoothing for independent data, Tsybakov (1986) and Fan 
et al. (1994) developed robust methods for fitting local polynomials. In the time series 
context, Truong and Stone (1992) and Truong (1991, 1992a, 1992b) discussed robust 
nonparametric regression for random-design models, Yao and Tong (1996) suggested 
robust conditional quantile estimation. All of them considered regression models with 
random designs and none of them addressed estimation with infinite-variance data. Hall 
et al. (2002) considered nonparametric least squares as well as least absolute deviations 
estimation for heavy tailed regressive models with random design under the assumption 
that the processes fulfill certain mixing conditions which rule out the possibility of long 
memory properties. 

2. Estimators and main results 

Let xt  = t / n  for t = 1 , . . . , n  and x c (0, 1) fixed. The local linear least absolute 
deviations estimator is defined as rh(x) = &, where 

n 

(&,b) = argmin ~ [Yt - a - b(xt  - x)IK 
(a,b) t=l 

In the above expression, K(-) > 0 is a density function on R 1 and h > 0 is a bandwidth. 
We write ?Tt I (X)  : D which is a n  estimator for rh(x) _= d r n ( x ) .  

In the sequel, we always assume that x E (0, 1) is fixed. Let p(.) denote the marginal 
density function of ~t, a~ = f u 2 K ( u ) d u ,  and D(~) = 1(4 > 0) - I(~ _< 0). We use C to 
denote some generic constant which may be different at different places. 

(C1) For fixed x, rn(-) has second continuous derivative in a neighbourhood 
of x. 

(C2) The kernel K is a symmetric, bounded and non-negative function with 
support [-1, 1]. Further I K ( Z l ) - K ( z 2 ) l  < C l z x - z 2 1  for any zl, z2 E R 1. 

(C3) h = h ( n )  ~ 0 and n h  3 ~ oo as n --~ oc. 

THEOaEM 2.1. Let  Condi t ions  (C1) (C3) hold f o r  the process def ined in  (1.1)- 
(1.3). 

I o~ (i) ~f E l = o  Iczl < o~, then  
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4 2 where ~(x) = ~ m ( x ) ,  ~,j = E L 0  cza_~, and 

a 2 =  lim E 1 D(c i , j )K . 

The limit on the RHS of the above expression exists and is finite. 
(ii) Suppose c j / j - '  ---* bo as j ~ c~ for some ~ E (a -1, 1). Then 

(nh)Z-1/~ { ~ ( x ) -  m ( x ) -  lh2a2ih(x)} d La, 

where La is a stable law with characteristic function 

ZeitL~ ~-exp{-]t]ab~/_-lcr ( / l_ lK(U)(U-V)- i3du)adv} .  

(iii) Suppose cj/j  -z  ---* bo as j --+ oc for some Z C (1, 2 /a) .  Let G denote the 
distribution function of ci. Then 

(nh)l_]/(~) { ~ ( x ) _ m ( x ) _ l h 2 ~ h ( x ) }  d c+ L+ c - L -  
p(O) ~ + p(o) ~ '  

where 

c+ = a* (/l_l K(S)dt) ( /o~(G~(+t)  - G~(O))t-l-1/Zdt) , 

G~(x) = EG(x + Zi), 

I I . = bg(a~-  1) 

r(2 - Z , - - ~  - ap) cos --~---p 

and L+~Z and L~Z are independent copies of a stable law L~ z with characteristic function 

EeitL~ = exp {--I t l~ (1-- isgn(t)tan ~ )  } . 

Remark. (i) If {~t} has the short range dependence, i.e. ~-~j=0 IcJl ~/~ < ~ ,  The- 
orem 2.10) indicates that the asymptotic distribution of the least absolute deviations 
estimator rh(.) is of the same form as if ~t had a finite variance. Note that the first order 
asymptotic approximation for the mean squared error of ~ ( x )  is 

1 2 ~ h4ao4{~(x)} 2 + ~--~a . 

Minimising this approximation over h, we obtain an optimum bandwidth of the order 
n -1/5, which is the same as for (one-dimensional) nonparametric regression estimation 
with finite variances. By using the optimum bandwidth, the estimator rh(x) converges 
at the rate 1/x/-n-h = 0(n-2/5). 

(ii) In Theorem 2.1(ii) and (iii) the condition cj ~ boj -~ implies ~-~j=o IcJ I a/2 = cr 
The asymptotic stable law has been established for the subclass of long memory processes 
fulfilling this condition. 
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3. Proofs 

In this section, we always assume the regularity conditions (C1)-(C3) hold. We 
introduce some notat ion first. 

Let Yt* = Yt - r n ( x ) -  ~ h ( x ) ( x t -  x), zt = (1, x~-x~T Kt  = K ( ~ - ~ ) ,  and h ] ' 
v/-n-h{rh(x) - re(x), h(rhi (x) - rh(x))} T. For 0 = (01,02) T, we define 

r~ 

a(0) = ~{IYt* - OTzt/V~l- 15*l}Kt, 
t=l  

or  n 
2 2 E ztD(Y**)Kt. R(o) = G(o) - p(O)(O~ + 0 ~ 0 )  + ~ - ~  ,:~ 

Obviously, 0" is the minimiser of G(O). We split the proof into several lemmas. Lemma 
3.1 below follows easily from condition (1.3) and the proof of Lemma 3 of Hsing (1999). 

LEMMA 3.1. The marginal density of et is positive and continuous at zero. 

LEMMA 3.2. Let u and v be real numbers. For 0 < q < 1, lu + vIq <_ lu] q + Iv[ q. 
f ~ t h e r  for  I < q < ~ ,  ]u + vJq <_ 2q-l(Iutq + tvlq) and 

IlU-~ Vl q --lUl q --Ivlql ~ lltl]Vl q-1 ~- [ulq--1]Vl. 

PROOF. The first two inequalities follow from Lemma 2.7.13 of Samorodni tsky and 
Taqqu (1994). The last one follows from the inequalities 

and 

lU-}- Vl q ~ (l~l n a ]Vl)IU--~vlq -1 ~ ([ltl ~- IVI)(IUl q-1 -~- IV[ q - I  ) 

lU-t-Vl q ~ ( l U l -  IVl)(lUl q-1 --IVl q - l )  ~_ I lUl -  IVll X [U-t-Vl q-1.  

LEMMA 3.3. Let pt(x ,y)  be the joint density of @l,~ t )  f o r  t > 1. It holds that 
suPt>_2pt(O,O ) < 0(3. 

PROOF. Note tha t  the characteristic function of (C1, Cj+I) is 

f ( t l ,  t2) - Ee i(tl~l+t2cj+l) 

= E exp i tl C k Z l - k + t 2  
k=0 k=0 

= E exp i tick +t2ck+j)Zl_k 

1 

= exp - Itlck+t2c~+jl ~ -  E 
= l=- j  

+ i E t2cl+jZl-i  
l= - j  
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We consider the case a E (0, 1] first. By the inverse formula and L e m m a  3.2, the 
densi ty funct ion pj+l  (0, 0) is equal to 

--1. { P ( e l  < x,  e j+l  < x)  - P ( e l  < x, e j+l  < O) lim x---*0 x ~ 

- P @ l  < 0, c j +  1 < z )  J r - r @ l  < 0, e j + l  < 0 )}  

l im 1 f f {  _. x--*O 4 ~ X  2 e ~(tlx+t2x) _ e - i t l x  _ e- i t2x  + 1 } f ( t l , t 2 ) d t l d t 2  
J , ]  1 } ff O([tl l)O([t2l)exp - ~-~[tlek + t2ck+3[ ~ - ~ [t2cl+jl a dtldt2 

k=0 l = - j  

< - / / O ( [ t t l ) O ( [ t 2 l ) e x p  { -  k=0~ [tl[~[ckl~ 

oo --1 / 
+ E t  ~ c  2 k+j - ~ [t2[~[cz+j[ ~ dhdt2  

k=o t= - j  

" f __ O(]t2[)exp -It2[ ~ [ck] ~ - _ _  Icl[ ~ dt2. 
J l=j 

Note tha t  (1.3) implies 

j--1 (x~ oo 

k=0 l=j k=0 

for all large j ' s .  Hence there exists j0 > 0 such tha t  supj_>jo pj+l(O, 0) < co. 
W h e n  a E (1, 2), the  required inequali ty can be derived from 

[tlek -}- t2Ck+j[ a > ] t l C k [ a  
- 2 [t2ck+~l~ 

in a similar manner  and the  above relat ion is implied by L e m m a  3.2. This  completes  the  
proof  of L e m m a  3.3. 

LEMMA 3.4. As n --* oc, E{R(O)}  --* O. 

PROOF. Let d t =  O T z t / V ~ .  Withou t  loss of generality, we may  assume tha t  
dt >_ O. T h e n  

(3.1) {IYt* - O T z t / v ~ [  -- IYt*]}gt 

= Kt[Yt*{I(Yt* > dr) - I(Yt* < dr) - I(Yt* > 0) + I(Yt* _< 0)} 

+ d t { l (Y t*  <_ dr) - I(Yt* > dt)}]  

= -2KtYt* I (  0 < Yt* <-. dr) 

+ dtKt{X(Yt* <_ O) + I(0  < Yt* <- dr) - I(gt* > O) + I(0  < Yt* <- dr)} 

= - d t K t D ( Y t * )  + 2Kt (d t  - Yt*)I(0 < dt - Yt* < dr). 
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Note that (C2) implies dt ~ 0 as n ---+ oo. We have 

E { ( d t  - Yt*)I(0 _< dt - Yt* < dt)}  = p(0)dt2{1 + o(1)}. 

Combining the above equation with (3.1) we have 

E{([Yt* - OT zt/v'~-~] -- ]Yt*] + d t D ( Y t * ) ) K t }  = P(O)Ktd2t { 1 + o(1)}. 

Thus 

E G(O) + E d t D ( Y t * ) K t  
t = l  

= p ( O ) E d 2 t K t { 1  +o(1)} 
t = l  

2 2 
----+ p(O) (01 + 0 2 u ) 2 K ( u ) d u  = p(0)(021 + 020"0), 

c < )  

since nh  ---+ oo. This completes the proof of the lemma. 

LEMMA 3.5. As  n --* 0% R(O) converges to 0 in probability. 

79 

and 

i = 1  i = 1  

-- p2(O)-  f(ol + 02u)4K2(u)du{1  + o(1)} --+ 0, 

n- -1  

Z ( n - -  i ) IETITi+l l  
i = 1  

n - - 1  

= E ( n  -- i)p/+l(0, O)Kld~Ki+ld~+l{1  + o(1)} 
i = 1  

n 2 2 PROOF. Note that R(O) = ~-]~i=1 Tt -p(O)(O~ + 02a0) with 

Tt = Kt[IYt* - OT zt/V'-~hl -- IY?l + OT z t D ( Y t * ) / v / - ~ ]  �9 

n T It follows from Lemma 3.4 that we only need to prove that ~ t = l (  t - E T t )  p O. Note 
that 

P T i - E T ~ )  > e  

n - 1  
2 

1 E(T i  - ET i )  2 + ~-~ Z ( n  - i ) {E(T1T i+I )  - E T 1 E T i + I } .  <-~ 
i = 1  i = 1  

From (3.1) we have 

~--~ET~= 4p(0)m {1 + o(i)} 
i = 1  i = 1  

4 0 1 f 
= 5p( )~---s j (o l  + 02~)aK2(u)du{1 + o(1)} --, 0, 

n n 

E ( E T / ) 2  = E p 2 ( O ) K ~ d ~ { 1  +0(1)}  
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n - 1  

< supPJ+l(O'O)nKld2 E/(i+1d/2+1(1 -f- o(1)} 
j_>l i=1  

< suppj+l(O,O)Ch-lK ( l / n -  x )  / 
- -  j> l  h (01 + 02u)2K(u)du{1 + 0(1)}. 

Note tha t  by (C2) 
K((1/n  - x - 1/(nh))/h) = 0 

as n large enough. Hence by (C2) and (C3) 

h _ l K  ~l /n: -  x~ _ ]K((1/n-  x ) /h ) -  K ( ( 1 / n -  x -  1/(nh))/h)l < C/(nh3 ) 4 0 .  
\ h ] h 

Thus by Lemma 3.3 
n--1 

E ( n  - i)ET1Ti+I ~ O. 
i=1  

By the same arguments  as above we have 

~( n -- i)ETIETi+I 
n--1 

< n E IETIETi+I ] 
i=1  
n--1 

= n EpU(O)K,  d2Ki+ld2+,{1 + o(1)} ~ 0. 
i=1  

Hence the lemma is proven. 

L E M M A  3 .6 .  xfE  =o Icily/= < then 

lim E{D(el)  - D(el,1)} 2 = 0. 

PROOF. Let W1 = Cl,l and W2 = el - W1. Then W1 and W2 are independent.  It 
follows from the symmetr ic  distributions of el and cl,t tha t  

E{D(e l )  - D(el,t)} 2 = 2P(el > 0, Cl,l < 0). 

Let gw1 and Gw2 
Then 

Note tha t  

denote the density of W1 and the distr ibution of W2, respectively. 

f P(E" 1 > 0,  g'l , /  <: 0)  - - - -  gwl(y)[1 - G w 2 ( - y ) ] d y .  
( X )  

Gw2(Y) = P Z1 < Icjl ~ y 
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and gw~ is uniformly bounded (see Lemma 3 of Hsing (1999)). Hence by Potter bounds 
(see Geluk and de Haan (1987)) 

F P(c1 > 0, el,/ < 0) = gwi(y)[1 - Gw~(-y)ldY + gw,(y)[1 - Gw2(Y)ldY 
oc 6 

= o  1 - P  Icjl +o(6) .  

Therefore the lemma follows by letting l --* oc first, and then 5 ~ 0. 

LEMMA 3.7. If  ~t~=o [Ctl ~/2 < OC, then 

1 
)_~ D(ei)Ki ~ N(O, a 2) 

V / - ~ i = l  

where 

exists and is finite. 

PROOF. Let 9c_~,t be the a-field generated by {Zi , i  <_ l}. Note that  

D(ei)Ki - ~ D(ei,l)Ki 
i=1 i=1 

) = E { D ( e ~ ) -  D(ei, t)}KiI  <_ 1 
i=1 

[n(x+h)] [n(x+h)] o~ 

= E { D ( e i ) -  D(ei j )}Ki  = E E KiUi,j,t, 
i=[n(x-h)] i=[n(x-h)] j = l  

where 

Ui,j,~ = { E ( D ( s i )  l Y_oo#_j) - Z(D(ei) I ~'_~,i--(j+l))} 
- {E(D(ei,t) I ~ - ~ , i - / )  - E(D(e{,I) I:F_~,i_(j+I))}I(j  <_ l). 

Then the lemma follows from Lemma 3.7, the boundedness of Ki and the proof of 
Theorem 1 of Hsing (1999). 

LEMMA 3.8. Suppose cy/j  -~ --~ bo > 0 as j ~ co, where/3 C (o1-1,  1). Then there 
exists 6o > 0 such that for any 61 > 0 

P { sup(nh)- l+z-1/a  i=1 Ki(I(ei  <_ x) - P(ci < x) +p(x)ei)  > (~1 ~- O((nh)-5~ 

PROOF. It is similar to the proof of Theorem 2.1 in Koul and Surgailis (2001) by 
n 1 replacing I ( - s l  <_ j < n) and ~ t = l v j (  A (t - j ) -~0+n) )  in Lemma 4.3 of Koul and 
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Surgailis (2001) by I ( - s l  < j < n)nh and Et=lVj (  A ( t -  j ) -~O+~)) I ( [n (x -  h)] < t <  
[n(x + h)]), respectively. 

LEMMA 3.9. Suppose c j / j  -~ ~ bo as j ~ oc, where 3 E ( a - l , 1 ) .  Then 
(nh) -1-1/~+~ }-]inl KiD(Ei) converges in distribution to a stable law with characteristic 
function 

exp{-'t"(2p(O)bo)'f_-1oo(/_:K(u)(u-v)-'du)'dv}. 
PROOF. Define cj ---- 0 if j < 0. Note that  

(nh) -1 -V~+z  KiD(~i) = (nh) -1-1/~+z 2Ki I(ei <_ O) - , 
i=l i=1 

(nh) -1-1/~ ~ 2p(O)Kici : (nh ) - l -1 / a+ /3  

i=1 

E nh)-l-1/c~+~ 2p(O)gic i - j  
l=-o~ i=1 

~-~ ~-~ 2p(O)Kici- jZj ,  
j=--oo i=1 

( " )~ 
~-- E (nh) - l -1 /a+ /3  E 2p(O)Kici- j  

l<_nx-Snh i=1 

+ ~2  (nh)- ' -" ~§ ~2p(0)Kic~_j 
l>nx-Snh /=1 

= A 1  + A2. 

It is easy to check that  for any 8 > 1 

A 1 --4 (2p(0)b0) a K(u)(u  - v ) -Zdu  dv 
oo 

and ( nx+nh oo 
~x2 <_ ~ 2;(O)(nh) -1-1/"+~ sup K(x) c. -~ 0. 

l=nx--Snh j=0 / 

Hence the limiting characterist ic function of rnh~-l-1/~+Z V "n 2p(0)Kizi  is k '~! A.-~i= 1 

Thus Lemma 3.9 follows from Lemma 3.8. 

LEMMA 3.10. Suppose c j / j  -~ ~ bo as j -~ oc, where/3 E ( 1 , 2 / a ) .  Let G denote 
the distribution function of ~i. Then there exists 80 > 0 such that for  any 81 > 0 

{ �9 n ( 
P sup (nh) -1 / (~ )  E Ki I(ci <_ x) - G(x) 

i=1 
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- } - ~ . ( a ( x  - b j Z d  - E G ( x  - b j Z d )  > 51 = O { ( n h ) - e ~  

j= l  

83 

and 

E(I{0< -e~ ~(x)(x~ -x):/e+o(h~)}) =p(O)m(x)(~-x)2/2{1+o(1)}. 

PROOF. It is similar to the proof of Lemma 2.3 of Surgailis (2002). 

LEMMA 3.11. Suppose cj/ j  -~ ~ bo as j ~ oc, where ~ E (1 ,2/a) .  Let G denote 
the distribution function of ei. Then 

n 

(nh)-l/(~Z) E KiD(ci) d c+L +~ + c-L~z, 
i=1 

where c • and L+an are defined in Theorem 2. l(iii). 

PROOF. It follows from Lemma 2.4 of Surgailis (2002) and Theorem 3.1 of Kasa- 
hara and Maejima (1988) that 

(nh) -1/(~) Ki E { G ( - c j Z i )  - EG(-cjZi)}  d c+L+az + c-L~z. 
i=1 j = l  

Hence Lemma 3.11 follows from Lemma 3.10 and the fact that  

n n ( 1 )  
~_, KiD(ei) = 2 ~ Ki I(ei <_ O) - . 
i :1  i :1  

PROOF OF THEOREM 2.1. Since R(O) P 0, the convex function 

G(O) - (nh)-'/uo T E ziD(Yi*)Ki 
l< i<n 

2 2 converges to p(0) (02 + 02 a 0). By the convexity lemma (Pollard (1991)), the convergence 
is uniform on compact sets in R 2. Using the arguments of Pollard ((1991), p. 193) we 
can show that the difference between the minimiser of 0 of G(O) and the minimiser of 

n 

L o T  E ziD(Yi*)Ki + p(0)(0~ + 022a~) 
x/nh i=1 

converges to 0 in probability. This implies that 

1 
(3.2) yrn--h{~h(x) - re(x)} - 2v/_n~p(O) E D(Yi*)Ki + Op(1). 

i=1 

We may assume tha t /h (x )  > 0. Then 

D(Yt*) = D(et) + 2I{0 < - e t  _< # ~ ( x ) ( z t  - x ) 2 / 2  + o(h2)}, 
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Hence 
1 n 1 

nh 3 ~ K ~ E ( I { 0  < -~ t  < ~(x)(x~ - x)2/2}) -~ ~ ( x ) p ( 0 ) .  
t = l  

Let Wi = KJ(O < -ei < ih(x)(xi - x)2/2). Then 

P - E W e )  > 

i = 1  

n n - -1  2 
1 E E ( W i _ E W ~ )  2 +r E(n_ i ) (E(W1Wi+I)_EW1EWi+I)"  ~-- e2n2h6 

i = 1  i = 1  

Note that EWi = Kip(O)ii~(x)(xi - x)2/2. We have 

n 

1 E ( E W i ) 2  
n~-h ~ 

i = 1  

n 

1 EP2(O)K2iit2(x ) ( x i -  X)4h4{1 + 0(1)} 
n2h 6 -4--h~ 

i = 1  

p(0)2~h2(x) ~ 1 2 
4n 2 n-~h2Kh(X~ - 1)4{1 + o(1)} 

i : 1  

P(O)2ii~2(X)4nh ( f f  K2(u)u4du) {1 + o(1)}--*0. 

Similarly, 

and 

1 ~-~EW~-- 1 n2h 6 n2h 6 E K2p(O)rh(x)(xi - x)2/2{1 + 0(1)} 
i = 1  i = 1  

p(O)ih(X)2nh 3 (JK2(u)u2du){1+o(1)}- -*0 ,  

n- -1  1 
n2h6 E ( n  - i)EW1EWi+, 

i = 1  

n - - 1  1 - n2h 6 E K1Ki+lPi+l (0, 0)~t2(x) (Xl - 1) 2 (Xi+l - x) 2 {1 + o(1)} 
i=1 2 2 

<-supp~+l(O'O)~h-lK~21 ( X l h X ) 1 ( / K ( u ) u 2 d u ) - n  {1 +o(1)} 

- - ~ 0 .  

The last limit was ensured by Lemma 3.3. Combining all the above arguments together, 
we have that 

1 

2v ;(0) 
• D(r + Op(1). 
i = 1  

Now the theorem follows from Lemma 3.7, Lemma 3.9 and Lemma 3.11 immediately. 
The proof is completed. 
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