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Abstract. We consider local least absolute deviation (LLAD) estimation for trend
functions of time series with heavy tails which are characterised via a symmetric
stable law distribution. The setting includes both causal stable ARMA model and
fractional stable ARIMA model as special cases. The asymptotic limit of the es-
timator is established under the assumption that the process has either short or
long memory autocorrelation. For a short memory process, the estimator admits the
same convergence rate as if the process has the finite variance. The optimal rate of
convergence n~ 2/ is obtainable by using appropriate bandwidths. This is distinctly
different from local least squares estimation, of which the convergence is slowed down
due to the existence of heavy tails. On the other hand, the rate of convergence of
the LLAD estimator for a long memory process is always slower than n~2/% and the

limit is no longer normal.
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1. Introduction and models

A substantial literature now exists on using kernel-type smoothers to estimate a
smooth trend in time series data. These methods are important, in part, because they
allow estimation of a smooth trend without prior specification of the form of the trend.
A popular setting which has attracted much attention in the last decade is a fixed-design

regression with dependent ‘errors’, under which the observations Y7,...,Y, follow the
model
(1.1) Yi=m(t/n)+e, t=1,...n,

where m(-) is a smooth function defined on [0,1], and {e;} is a stationary process such
as ARMA time series. If {€;} are correlated but with only short-range dependence in
the sense that its autocorrelation functions are absolutely summable, it has been proved
that nonparametric regression estimators for m(-) are asymptotically normal at the same
convergence rate as in the case of uncorrelated {;}, although the asymptotic variances
have one more factor due to the dependence in the data; see Hall and Hart (1990). When
there exists a long-range dependence, Hall and Hart (1990) shows that the estimators
have a slower convergence rate for the long-range dependent normal errors; see also
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Csorgd and Mielniczuk (1995). Since the mean squared errors of the estimators are
different from those with independent data, research has been carried out to modify
the standard kernel regression techniques, including the bandwidth selection procedures,
to incorporate various dependence structures. This includes Altman (1990), Chiu and
Marron (1991), Truong (1991), Hart (1991, 1994), Herrmann et al. (1992), Roussas et al.
(1992), Tran et al. (1996) for short-range dependence data, and Ray and Tsay (1997) and
Robinson (1994, 1997) for long-range dependence data. A common practice in all the
aforementioned literature is to assume that €; has the zero-mean and a finite variance.

In this paper, we also deal with the kernel regression estimation for function m(-)
but with heavy tailed error terms such that E(2) = oo or Ele;| = oo. More specifically,
we assume that in model (1.1) &, is a linear process defined as

o0
(1.2) £y = chZt_j,
=0

where {Z;} are independent random variables sharing the same standard symmetric
stable law distribution with index a € (0,2), i.e. the characteristic function Z; has the

form .
E(e”Zt) = exp{—|t|*}.

Under the condition
oo

(1.3) 0< Z ;1% < oo,
i=0

the infinite sum in (1.2) is well-defined. Moreover we may say that {e;} has short
memory or long memory according as Z;’io |cj|"/ 2 < o0 or = oo respectively. Note
that Ele;] = oo when a < 1 and E(¢2?) = co when a < 2, and m(t/n) is the median
(as well as mean when a > 1) of Y;. The setting (1.2)—(1.3) includes the causal stable
ARMA model (Mikosch et al. (1995), and Kliippelberg and Mikosch (1996)) and the
causal fractional stable ARIMA model (Kokoszka and Taqqu (1995, 1996)) as special
cases. A causal infinite variance fractional ARIMA(p, d, q) time series may be defined as

(14) (B)e; = ©(B)(1 - B) ™2,

where d € (0, 1) is a self-similarity parameter, B denotes the backshift operator, ®(-) and
©(-) are polynomials with degrees p and g respectively, and all the roots of the equation
®(z) = 0 are outside the unit circle. Because of the presence of d, the process {e;}
has infinite variance as well as long-range dependence. It in fact admits the MA(o0)-
representation (1.2) with E;io |c;|*/? = oo. For further information on ARMA models
with heavy tails and their applications, we refer to Adler et al. (1997) and Resnick (1997).

It is known that for regression models with heavy tailed noises, the conventional
least squares estimators typically have slow convergence rates, are only consistent when
the tail index o € (1,2), and even then the limiting distribution is non-normal; see
Davis et al. (1992) and references within for parametric regression, and Hall et al. (2002)
for nonparametric regression. We consider in this paper the local linear least absolute
deviations estimator for m(-). The asymptotic limit of the estimator is established for
both short and long memory cases (Theorem 2.1 in Section 2 below). The limit is normal
in case of short memory, however it is a stable law in case of long memory. The proof
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is based on a combined use of the convex lemma (Pollard (1991)) and the asymptotic
results for stable moving average processes of Hsing (1999), Koul and Surgailis (2001)
and Surgailis (2002). When {e;} has short memory, the convergence rate as well as the
first order asymptotic mean and variance are the same as if ¢, had a finite variance. We
can reproduce the optimal rate of convergence n~=2/% by choosing the bandwidth of the
order n~1/% which is a folklore in conventional (one-dimensional) kernel regression. In
this sense, the least absolute deviations estimation is adaptive to heavy tails. However
when the process has a long memory, the convergence rate is always slower than n=2/%
and the limit is no longer normal.

There is a substantial literature on nonparametric regression in the least absolute
deviation setting. Mallows (1980), Velleman (1980), Truong (1989) and Fan and Hall
(1994) addressed local median smoothing for independent data, Tsybakov (1986) and Fan
et al. (1994) developed robust methods for fitting local polynomials. In the time series
context, Truong and Stone (1992) and Truong (1991, 19924, 1992b) discussed robust
nonparametric regression for random-design models, Yao and Tong (1996) suggested
robust conditional quantile estimation. All of them considered regression models with
random designs and none of them addressed estimation with infinite-variance data. Hall
et al. (2002) considered nonparametric least squares as well as least absolute deviations
estimation for heavy tailed regressive models with random design under the assumption
that the processes fulfill certain mixing conditions which rule out the possibility of long
memory properties.

2. Estimators and main results

Let 2; = t/nfort =1,...,n and = € (0,1) fixed. The local linear least absolute
deviations estimator is defined as m(x) = @, where

- R -z
(a,b):argmmZ[Y}—a~b(zt-—x)|K<xth )

ab)

In the above expression, K (-) > 0 is a density function on R! and k > 0 is a bandwidth.
We write 7h1 (z) = b which is an estimator for m(z) = L m(z).

In the sequel, we always assume that x € (0,1) is fixed. Let p(-) denote the marginal
density function of &;, 02 = [ 42K (u)du, and D(£) = I(£ > 0) — I(£ < 0). We use C to
denote some generic constant which may be different at different places.

(C1) For fixed z, m(-) has second continuous derivative in a neighbourhood

of z.

(C2) The kernel K is a symmetric, bounded and non-negative function with

support [—1,1]. Further |K(z1)~ K (22)| < C|21 22| for any 2y, zo € RL.

(C3) h=h(n) — 0 and nh® — co as n — .

THEOREM 2.1. Let Conditions (C1)—(C3) hold for the process defined in (1.1)-

(1.3).
(i) If 20 le|*/? < oo, then

Vnh {m(x) —m(x) — %hzagm(z)} LN N(0,02),
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. 2 j
where 1(z) = Lym(z), €ij = Y 1_oaZi—i, and

UQ:jliIgoE{zx/_p(O)ZDEZ’J)K(%- )} '

The limit on the RHS of the above expression exists and is finite.
(ii) Suppose c;/j=P — by as j — oo for some B € (a=1,1). Then

1
(nh)P-1/ {ﬁz(x) —m(x) — §h203ﬁl(£€)} 2 L,
where Ly, is a stable law with characteristic function

Eeitle — exp {—It]“bg‘ /_: (/_11 K(u)(u — v)_ﬂdu>a dv} .

(iii) Suppose ¢;j/j=P — by as j — oo for some B € (1,2/a). Let G denote the
distribution function of €;. Then

ct
(nh)} =1/ {m(a:) —m(z) - %h%gm(x)} R

( / K(s)dt> ( / (Goo (d8) — oo(O))t‘l_l/ﬁdt),

Goo(z) = EG(z + Z3),

where

1/(ah)
* bg(alg — 1)
7= Taf ’
I'(2 — af) cos Tﬂo‘ﬁ

and L;tﬂ and L5 are independent copies of a stable law Lo with characteristic function
Ee'tlas = exp {—|t|°‘ﬂ (l — isgn(t) tan Ig—ﬂ) } .

Remark. (i) If {e:} has the short range dependence, i.e. Z olei|%/? < oo, The-
orem 2.1(i) indicates that the asymptotic distribution of the least absolute deviations
estimator 71(-) is of the same form as if €; had a finite variance. Note that the first order
asymptotic approximation for the mean squared error of M(z) is

oty + Lo?
47 "0 nh
Minimising this approximation over h, we obtain an optimum bandwidth of the order
n~1/5, which is the same as for (one-dimensional) nonparametric regression estimation
with ﬁmte variances. By using the optimum bandwidth, the estimator m(z) converges
at the rate 1/v/nh = O(n=2/5).

(ii) In Theorem 2.1(ii) and (iii) the condition ¢; ~ bj ~# implies PRy o lei|®/? = oo.
The asymptotic stable law has been established for the subclass of long memory processes
fulfilling this condition.
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3. Proofs

In this section, we always assume the regularity conditions (C1)-(C3) hold. We
introduce some notation first. R

Let Yy = Y; — m(x) — m(x)(z — ), 2 = (1, 272)T, K, = K(2:%), and 6 =
Vnh{m(z) — m(z), h(t (z) — i(z))}T. For § = (6,0,)T, we define

G(O) = S {I¥; — 07z vk - Y/},

T &
——}; E ZtD(Y;*)Kt.
t=1

R(a) = G(@) - p(O)(O% + 0503) + \/‘7-1—‘ —

Obviously, g is the minimiser of G (8). We split the proof into several lemmas. Lemma
3.1 below follows easily from condition (1.3) and the proof of Lemma 3 of Hsing (1999).

LEMMA 3.1. The marginal density of £ is positive and continuous at zero.

LeEMMA 3.2. Let u and v be real numbers. For 0 < ¢ < 1, ju+v|? < |u|? + |v|9.
Further for 1 < g < oo, Ju+v|? < 297 (|u|? + |v|?) and

[l + v|? = Jul® = o] < Jul[o}?™" + [u]?7u].

Proor. The first two inequalities follow from Lemma 2.7.13 of Samorodnitsky and
Taqqu (1994). The last one follows from the inequalities

u+ ] < (Jul + o])|u+ 0] < (jul + o)) (ju?" + o]0
and
fu+vl? > (Juf = ol (el = [0 > ffuf = fv]] x [u+ 0?7

LEMMA 3.3. Let pi(z,y) be the joint density of (e1,&:) for t > 1. It holds that
sup; 2 pt(0,0) < co.
Proor. Note that the characteristic function of (e1,€;41) is

ft1,ta) = Eet(tier+tae;t1)

=F {exp {’1, (tl chzl_k + 1o chZj+1—k) }]

k=0 k=0
00 -1
=F exp iZ(tlck + t20k+]‘)Z]_k +1 Z t2c1+jZ1_l
k=0 l=—3

00 -1
= exp{ — Z ’tlck + t20k+j}a — Z ’t201+j|a
k=0 I=—j
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We consider the case o € (0,1] first. By the inverse formula and Lemma 3.2, the
density function p;1;1(0,0) is equal to

1
lin%) —{P(e1 < x,€j41 < ) — P(e1 < z, €541 < 0)

T— $2

—P(€1 < O,€j+1 < .’L') +P(61 < O,Ej+1 < 0)}

1 . : A
= a;hi% W //{e—z(tla:-{»tzz:) _ i1z _ ity + 1}f(t1,t2)dt1dt2

00 -1
< //O([tll)O(thDGXp - Z |tlck; +t26k+]‘|a - Z |t2€l+]‘|a dtldt2
k=0

I=—j

< / / O(t1)O(Ita]) exp —gmalcm

-1

S Il leki M = Y [ta]lere | p dtrdty
k=0 I=—j
S/0(|t1|)€XP{—ltllaZICkla}dtl
k=0
Jj—1 oo
‘/O(ltﬂ)exp —eal® [ D lenl* = el | p dte.

k=0 =3

Note that (1.3) implies
7-1 oo 0o
0< ) erl* =Y lal* <D ekl
k=0 1=j k=0

for all large j's. Hence there exists jo > O such that sup;5;, pj+1(0, 0) < oo.
When « € (1,2), the required inequality can be derived from

Itrckl®

[tick + tack4;|™ > — |tack+4]*

in a similar manner and the above relation is implied by Lemma 3.2. This completes the
proof of Lemma 3.3.

LEMMA 34. Asn — oo, E{R(0)} — 0.

PROOF. Let d; = 672, /vnh. Without loss of generality, we may assume that

d; > 0. Then
31 {|Yy = 6Tz/Vnh| - Y]} K,

= KV > d) — 1Yy < dy) — I(Y7 > 0) + I(Y" < 0)}

+de{I(Y] < de) — I(Yy > di)}]
= 2K Y710 <Y < dy)
+ KLY, S0)+ 10 < Y, <di) = (Y} > 0) + 10 < ;' < dy)}
= —di K:D(Y]) + 2K (dy — Y7)I(0 < dy — YY) < dy).
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Note that (C2) implies dy — 0 as n — oco. We have
B{(d: = Y)I0 < di = ¥ < do)} = p(O)dE {1 + o(1)}.
Combining the above equation with (3.1) we have
E{(Yy - 672/Vnh| - Y| + d.D(Y;) K} = p(0)Kedi {1 + o(1)}.
Thus

E {0(9) + zn:dtD(Yt*)Kt} = p(0) id?Kt{l +o(1)}

= p(0) [ (01 4 8K ) = pO)O} + 6303,

— o0

since nh — oo. This completes the proof of the lemma.
LEMMA 3.5. Asn — oo, R(8) converges to 0 in probability.
ProoF. Note that R(0) = > " | Tt — p(0)(87 + 0202) with
Ty = KJ|Y, — 072/ Vh| — Y7 + 672 D(Y;") Vb,

It follows from Lemma 3.4 that we only need to prove that > 1 ,(T; — ET) £ 0. Note

that
P{ > e}

n n—1
1 2 .
<5 Y E(T; - ET;)* + = Zl(n —i){E(T1T;41) — ET\ET; 1 }.
From (3.1) we have

n

> (T; - ETy)

=1

=1

zn:ETf = i4p(0)Ki%?{l +0(1)}
=1 i=1
- %p(o)\/% /(91 + 02u)° K (w)duf{1 + o(1)} — 0,

(BT = Y pO)K?dH1+0(1)

i=1

- p2(0)% / (01 + 0,0) K2 (w)du{l + o(1)} — 0,

and
n—1

> (n—i)|ETyTipq]
=1
n—1
= (n—)pit1(0,0)K1di Kiyad?, {1 + o(1)}
=1
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n—1

< S‘ippj-Fl(Oa O)nKidi Y Kipadi {1+ 0(1)}
izl i=1

< supp;j+1(0,0)Ch~ 1K (1_/_nh;§) /(91 + 0ou)2K (u)du{l + o(1)}.

Jj21

Note that by (C2)
K((1/n—x - 1/(nh))/h) = 0

as n large enough. Hence by (C2) and (C3)

_— (1/nh— x) (R /n = o)/t) = K(n =2 = VORI ¢ gy —

Thus by Lemma 3.3

n-—1

> (n—i)ETiTipy — 0.

i=1
By the same arguments as above we have

n—1
<n Z |[ETVET; 41|
i=1
n—1
=nY_ pH0O)KidiKi1dl {1+ 0(1)} — 0.

i=1

n—1

ZE:(n~—i)ETEEﬂ}+1

i=1

Hence the lemma is proven.

LEMMA 3.6. If Y12, |a|*/? < oo, then

ll—lglo E{D(e1) — D(e1,)}* = 0.

PrOOF. Let W7 =€, and Wy = &1 — Wi. Then W; and W, are independent. It
follows from the symmetric distributions of £; and € that

E{D(e1) — D(El’l)}2 =2P(e; > 0,61, < 0).

Let gw, and Gw, denote the density of W7 and the distribution of W, respectively.

Then
0

Py > 0,61, < 0) = / aw, (0)[1 ~ G (~)dy.

—00

Note that

-1/a
Gw,(y) =P 21 < <Z |Cj|a) y

§>1
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and gw, is uniformly bounded (see Lemma 3 of Hsing (1999)). Hence by Potter bounds
(see Geluk and de Haan (1987))

—é

1]
Pley > 0,61, <0) = /_ gw, (Y)[1 — Gw, (~y)]dy + /_59W‘ )1 — Gw, (y)ldy

o

-1/
=0|1-PLZ > (E|cj|a) + 0(5).

>l
Therefore the lemma follows by letting | — oo first, and then 6 — 0.

LEMMA 3.7. If Y 1%, la|®/? < oo, then

TZ El)Ki — N(0,0’%)

where )
1 n
= lim F{ — D(e; ) K;
Jim { = ; (€ig) }
exists and is finite.
PRrROOF. Let F_o; be the o-field generated by {Z;,7 <1}. Note that

)

i/n—zx

Z (e))K; - ZD e )K; = Z{D(si) - D(ei,l)}mz(

[n(z+h)] [n(z+h)] oo
= Y {DE)-DE)tKi= > Y KU,
i=[n(z—h)] i=[n{z—h)] j=1

where

Uiji = {E(D(€i) | F-coi-j) = E(D(&3) | Fooo,i-(j+1))}
~{E(D(gi1) | F-oo,i-j) = E(D(€i1) | Fooo,i—+1))H (G < 1).

Then the lemma follows from Lemma 3.7, the boundedness of K; and the proof of
Theorem 1 of Hsing (1999).

LEMMA 3.8. Suppose c;/j =P — bg >0 as j — oo, where 3 € (a”1,1). Then there
exists 6o > O such that for any 6, > 0

n

> Ki(I(e; < 7) — Ple; < ) + p(x)ei)

i=1

P {sup(nh)‘”ﬁ_l/"‘

> 51} = O((nh)~%).

ProoF. It is similar to the proof of Theorem 2.1 in Koul and Surgailis (2001) by
replacing [(—s1 < j < n) and 0 (1A (t - §)7P*+7) in Lemma 4.3 of Koul and
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Surgailis (2001) by I(—s1 < j <m)nhand 37, (LA (t = )P I([n(z - h)) <t <
[n(z + h)]), respectively.

LEMMA 3.9. Suppose c;/j™® — by as j — oo, where 8 € (a”!,1). Then
(nh)~1=1/a+B 5" K.D(e;) converges in distribution to a stable law with characteristic

Sfunction
exp {—|t|°‘(2p(0)b0)a /_: (/-11 K(u)(u— U)_ﬁdu>adv} .

PrROOF. Define ¢; = 0 if j < 0. Note that

(k)18 S K,D(e:) = (uh) 1/ 52k, (Icei <0)- %) ,

i=1 i=1

n oo n
(k)™ =1/o*0 S " p(0) Kiei = (nh) 7ot S N 9p(0)Kici—; 5,

=1 j=—o00 i=1

i <("h)_1_1/a+ﬂ i QP(O)K161~j>

i=1

= Z ((nh)—l_lla+5Zn:Qp(O)KiCi—j)

{<nz—bénh i=1

n o
+ Z ((nh)—l-l/a+ﬁ Z 2p(O)KiCi_j>
I>nz—bénh =1

= Ay + A

It is easy to check that for any 6 > 1

A1 — (2p(0)bo)° /_ : ( [ 11 K () (u — v)_ﬂdu)a dv

and

nx+nh 00 @
Ay < Z (2p(0)(nh)‘1“1/°‘+5 sup K(z) Z cj| —0.

l=nx—bnh 7=0

Hence the limiting characteristic function of (nh)~1=1/a+8 3"  9p(0)K;e; is

exp {—|t|°‘(2p(0)b0)°‘ /_: (/_11 K(u)(u - v)"ﬁdu>a dv} .

Thus Lemma 3.9 follows from Lemma 3.8.

LEMMA 3.10. Suppose c;/j™? — by as j — oo, where B € (1,2/a). Let G denote
the distribution function of ;. Then there exists 8o > 0 such that for any 6; > 0

P{sup
x

(knh)"l/("‘/’)) iK’ (I(e,; <z)-G(x)

i=1
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o o]

- (Gz—b;Z) EG’(:):—ijzv)))

Jj=1

> 61} = O{(nh)~%}.

Proor. It is similar to the proof of Lemma 2.3 of Surgailis (2002).

LEMMA 3.11. Suppose c;/j =P — by as j — oo, where B € (1,2/a). Let G denote
the distribution function of €;. Then

(nh)~1/(@B) Z K;D(z,;) < c+L:ﬁ + ¢ L g,
=1

where ¢* and LY, are defined in Theorem 2.1(iii).

ProoF. It follows from Lemma 2.4 of Surgailis (2002) and Theorem 3.1 of Kasa-
hara and Maejima (1988) that

“1/(a - > d -
(nh) =/ ﬁ)ZKi Z{G(—cjzi)—EG(-cjzi)}a&L;ﬂJrc L,
i=1 j=1

Hence Lemma 3.11 follows from Lemma 3.10 and the fact that

iz:; K.D(&;) =2 zn: K, (I(gi <0)- %) ,

PrOOF OF THEOREM 2.1. Since R(6) il 0, the convex function

G(0) — (nh)™120T > 2 D(Y)K,

1<i<n

converges to p(0)(02 +6352). By the convexity lemma (Pollard (1991)), the convergence
is uniform on compact sets in R?. Using the arguments of Pollard ((1991), p. 193) we
can show that the difference between the minimiser of 6 of G(8) and the minimiser of

—\/T_heT 2; 2z D(Y{)K; + p(0)(6? + 6352

converges to 0 in probability. This implies that
1 n
(3.2) vVah{m(z) —m(z)} = ———— ) D(Y;)K; + 0,(1).
(=)} 2v/nhp(0) ; ( »l

We may assume that 7(z) > 0. Then
DY) = D(eg) + 2I{0 < —&; < m(z)(2: — 2)%/2 + o(h?)},
and

E(I{0 < —&; < mfz)(zs — 2)%/2 + o(h®)}) = p(0)i(z)(z, — 2)2/2{1 + 0(1)}.
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Hence
— ;KtE(I{O < —eu S () (e — 2)/2}) - Z()p(0)

Let W; = K;1(0 < —¢; < (x)(z; — x)%/2). Then

‘( 6)

ZE (W; — EW;)? T 2h6 Z(n N B(W Wiy1) — EW1EW,iy).
Note that EW; = K;p(0)n(z)(z; — z)?/2. We have

1 n
— Z(Wi — EW)| >

e —
- 62n2h6

s EW)? = LS oK) E D e o))

_ p(0)*m’(z) Z 2h2Kh( —D)*{1+0(1)}

4n?
- ) ( [ Kt 1 +o} — o

Similarly,

n_zlh_e ;EW? = n21h6 Z K2p(0)rin(z)(z; — 2)/2{1 + o(1)}
= p___(O)m (z) (/ K*(u) 2du) {1+0(1)} -0,

2nh3
and ey
n—zlh_ﬁ Z(n — ) EW1 EW;q
= $1 Tiy1 — x)°
= i 2 K 0,0() S BTy
< suple(O 0) (x) (—) - (/ K(u)quu) {1+o0(1)}

—+O.

The last limit was ensured by Lemma 3.3. Combining all the above arguments together,
we have that

Vnh {m(ac) m(z) — —h200m(a:)} 2\/_10(0 ZD €i)Ki + 0,(1).

Now the theorem follows from Lemma 3.7, Lemma 3.9 and Lemma 3.11 immediately.
The proof is completed.
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