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A b s t r a c t .  We apply nonparametric regression to current status data, which often 
arises in survival analysis and reliability analysis. While no parametric assumption 
on the distributions has been imposed, most authors have employed parametric mod- 
els like linear models to measure the covariate effects on failure times in regression 
analysis with current status data. We construct a nonparametric estimator of the re- 
gression function by modifying the maximum rank correlation (MRC) estimator. Our 
estimator can deal with the cases where the other estimators do not work. We present 
the asymptotic bias and the asymptotic distribution of the estimator by adapting a 
result on equicontinuity of degenerate U-processes to the setup of this paper. 
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1. Introduction 

Current status (or case 1 interval censored) data often arises in survival analysis 
and reliability analysis where we sometimes cannot observe a failure time directly and 
we only know whether or not it is in an interval given by an examination time. 

Suppose that we observe (]I, C, X) a n d  w e  are interested in 9('), where (Y, C, X) is 
defined by 

(1.1) !2 = g ( X )  + e and Y = I{12 _< C}, 

where 12 is an unobserved failure time, C is a random examination time, X is a random 
covariate, e is a random error, and I{} stands for an indicator function. We can also 
deal with monotone-transformed failure times, for example, 

(1.2) log 12 = g ( X )  + e and Y = / { l o g  12 _~ log C}. 

No parametric assumption on the distributions is imposed on X, C, and c. However, we 
assume that  (C, X) and e are independent as in assumption A1 below. 

So far parametric forms have been assumed for g(.) in the literature of statistics, 
for example, a linear function. In this paper we do not specify any parametric forms for 
g(.) and estimate g ( x )  - g ( x o )  by assuming that the covariate X has a pivotal point or 
standard point z0. Plotting the estimates of g ( x )  - g ( x o )  for various values of x with 
x0 fixed will help us specify a parametric form of g(.) or inspect the goodness of fit of a 
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parametric form of g(.). We state the reasons why we estimate g(x) - g(xo) later in this 
section. Hereafter we write 0 for the assumed pivotal point or standard point x0. 

Current status data can be thought of as binary response data in econometrics and 
a lot of work has been done in econometrics and statistics because of the importance. 

In econometrics, a lot of authors have studied semiparametric binary choice models. 
They have considered parametric regression functions except for Horowitz (2001). 

Han (1987) proposed the maximum rank correlation (MRC) estimator for linear 
models and proved its consistency. Sherman (1993) showed the asymptotic normality of 
the MRC estimator for linear models by using a result on equicontinuity of degenerate 
U-processes. According to Sherman (1993), the MRC estimator for linear models is 
not efficient. We construct our estimator from the MRC estimator. Cosslett (1987) 
calculated efficiency bounds for linear models. He showed that when g(-) is a linear 
function with a constant term, the information of the constant term vanishes under the 
assumption of zero-median error. But  he also showed the information is positive when 
the error term is known to have a symmetric distribution. As for efficient estimators, 
Klein and Spady (1993) ingeniously constructed an efficient estimator for parametric 
regression functions in a general setup. Their estimator requires auxiliary bandwidth 
selection and trimming. 

The estimator in Horowitz (2001) can be applied to the problem of estimating 
g(x) - g ( O )  of this paper. The estimator is constructed by estimating the derivative of 
g(.) and numerically integrating the estimated derivative. However, it is impossible to 
apply the estimator if we have observed no covariate X on an interval between 0 and x. 

Recently Chen (2000a, 2000b) considered binary choice models, where g(-) is a linear 
function with a constant term and the error is known to be symmetrically distributed. 
The estimator of Chen (2000a) attains the efficiency bound, but  it requires smoothing 
parameter selection. The estimator of Chen (2000b) does not require smoothing pa- 
rameter selection, but it does not attain the efficiency bound and needs a preliminary 
estimator of the slope parameter. 

In statistics, several authors have considered linear regression with no constant term 
with current status data. For example, van der Laan et al. (1997) considered the case 
of discrete covariates and suggested a nonparametric regression procedure in the case of 
continuous covariates. Murphy et al. (1999) considered a penalized ML estimator and 
proved that it is efficient. Their penalized ML estimator requires smoothing parameter 
selection. Abrevaya (1999) studied the asymptotic properties of the estimator similar to 
the MRC estimator. Li and Zhang (1998) constructed an efficient estimator based on 
U-statistics. Their estimator also requires smoothing parameter selection. Shen (2000) 
studied linear regression with a constant term by assuming that the error term has zero 
mean. In Shen (2000) an efficient estimator is constructed based on the random sieve 
likelihood and the asymptotic properties are derived by using the results of Shen (1997) 
and so on. Andrews et al. (2001) also deals with linear regression with a constant term 
by introducing generalized location parameters. 

Some authors studied current status data in other setups. For example, Huang 
(1996) studied the Cox model. Van der Laan and Robins (1998) considered the esti- 
mation of smooth functionals of the distribution function of failure times. See Huang 
and Wellner (1997) for other references. Some fundamental results on nonparametric 
ML estimation for current status data with no covariate are given in Groeneboom and 
Wellner (1992). They studied the estimation of the mean of the failure time ]P in the 
case of no covariate. They proved the v/-n-consistency and derived the asymptotic dis- 
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tribution under the compact support assumption in Section II.5.5 of Groeneboom and 
Wellner (1992). Note that the estimator of the mean is efficient. See also Section II.l.1 
of Groeneboom and Wellner (1992), Example of 7.4.3 of van de Geer (2000), and Huang 
and Wellner (1995). 

Van der Laan et al. (1997) suggested the following nonparametric regression esti- 
mator when the support of failure times is contained in that of examination times: We 
carry out nonparametric ML estimation of the distribution function of the failure time 
from the observations whose covariate is around x and calculate the mean of the ML 
estimate of the distribution function. However, they gave no theoretical analysis. Let- 
ting h be the bandwidth, from the results of Huang and Wellner (1995), we conjecture 
that this estimator has the variance of O((nh ) - l ) .  The bias will be O(h2). The same 
kind of remarks will apply to the estimator in Andrews et al. (2001) when we apply it to 
nonparametric regression. The estimating procedure in Shen (2000) is another promis- 
ing candidate to apply to nonparametric regression. However, we do not know how to 
analyze the procedure theoretically when it is applied to nonparametric regression. 

In this paper we construct an estimator of g(x) - g(O) by localizing Han's MRC 
estimator to the observations whose eovariate is around 0 or x. By estimating 9 ( x ) -  9(0), 
we can alleviate the restriction that the support of failure times must be contained in 
that of examination times. For example, let us consider the case of log-transformed 
failure times. When assumption A4 below holds and the support of examination times 
is ( -oc ,  a)(a > 0), we are able to carry out nonparametric inference for any smooth 
regression function and we do not have to care about the possible heavy tails of the 
distribution of failure times. See assumption A5 below. 

We evaluate the asymptotic bias of the estimator in Section 2 and examine the 
asymptotic distribution by following Sherman (1993) in Section 3. Then we need to 
modify a result on equicontinuity of degenerate U-processes of de la Pefia and Gin~ 
(1999) to apply it to the setup of this paper. 

When the covariate X is discrete, our estimator will not reduce to an efficient 
estimator since the MRC estimator is not efficient. However, the estimator does not 
require any additional bandwidths. It requires only one bandwidth for the covariate 
X. Most of the other semiparametric estimators will need auxiliary bandwidths and 
parameters for trimming when they are applied to nonparametric regression. 

Some other authors considered nonparametric regression in survival analysis, for 
example, Fan and Gijbels (1994) considered nonparametric regression with censored 
data. 

We assume X is one-dimensional for simplicity of presentation. Before we define 
the estimator of g(x) - g(O), we give some definitions and notations. We define Z~ and 
2~ by 

(1.3) Z~ = (C.i, X~, el) and 2~ = (C~, X~), 

respectively. We assume that {Zi} are i.i.d, in this paper. See also Y/ and Y/ in (1.1). 
We state assumptions A1-2. We do not allow e to depend on X. 
A1. (Ci, Xi) and ei are mutually independent. We allow only Ci to depend on Xi.  
A2. The unknown regression function g(') is twice continuously differentiable around 

0 and x. 
Writing h for the bandwidth tending to 0 as the sample size n + o% we have from 
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the Taylor expansion that 

oXi  h 2 , , + O X , ( ~ )  2 
(1.4) 9(Xi)  -- 9(0) - /32 --~ + ---f9 ~ i i) 

and 

(1.5) g(Xj )  = g(z)  - /30 x + --~-9"(x + rlj(Xj - x)) X j ~  x , 

where/3 o = -hg'(O) and/3o = -hg ' ( x ) .  Putting 

/3o = 9 ( x )  - 9(o), 
we write/30 for (/3o, ~o ~0~T R 3. ~'2, ~'3J �9 Note that/30 -+ (/30, 0, 0) T as n ~ oc. 

By using the local linear approximation to g(.) in (1.4) and (1.5) and modifying the 
MRC estimator, we estimate/30 by maximizing 

1 ,10, x) 

X I{Yi > Yj}Z Ci-~/31 +/32~ > Cj ~ - /33T  ~ 

+ I { Y ~ < Y j } I  G + / 3 1 + / 3 2 h - - A ~ < C j + 3 a  ~ , 

where/3 = (/31,/32,/33) T and K(.)  is a kernel function satisfying assumption A3. We do 
not care about  = in the indicator functions in (1.6) since the probability of equality is 
zero under technical assumptions. 

Aa. K ( . )  has compact support containing [-1, 1] and K(.) is non-negative, bounded, 
and symmetric. In addition f K ( t )d t  = 1. 

Since Fn(') in (1.6) usually has multiple maximum solutions, we should choose one 
among them by some rule. We write/3 for the chosen maximum solution. The results of 
this paper are independent of the rule for choosing r For example, the sample median 
is not uniquely determined when the sample size is even, and the asymptotic properties 
are independent of the definition of the sample median. 

Theorems 2.1 and 3.1 in this paper show the well-known trade-off between the bias 
and the variance in nonparametrie regression. We can define the asymptotically optimal 
bandwidth theoretically and the order is O (n-1/5) when the eovariate is one-dimensional. 
However, it seems to difficult to estimate it from the observations or to give an automatic 
selection rule like cross validation. Thus we give the result of a simulation study to see 
the effect of the bandwidth and how the estimator works. In the simulation study Fn(.) 
in (1.6) is maximized by using grid search. 

Remark 1.1. We focus on local linear approximation in this paper. However, we 
can construct an estimator based on local constant approximation by considering the 
Taylor expansion of first order instead of (1.4) and (1.5). Then we do not have/~2 and 
/33 in (1.6) and Fn(/3) is reduced to 

X [/{Y/ > Yj}I{Ci -~-/31 > Cj} -[- I{Yi < Yj} I {Ci  +/31 < Cj}]. 
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The maximum solutions usually form an interval or intervals. The estimator is consistent 
and has the bias of O(h 2) and the asymptotic normality as in Theorem 3.1. The proofs 
for the consistency and the asymptotic normality need no significant modification. As 
for the bias, we describe the necessary modifications in Remark 2.1 below. The local 
constant estimator may be better  for computational purpose especially when we do not 
have so many observations. 

We investigate the bias of the estimator and prove the consistency of the estimator 
in Section 2. The asymptotic normality is established in Section 3. The result of the 
simulation study is given in Section 4. Technical proofs are confined to Section 5. 

2. Bias and consistency of the estimator 

Putting 

we define ~3m by 

where /3m m m m T = , Z 2  ) �9 

r ( z )  = E{rn(z)},  

~m = argmax F03), 
~3cR 3 

F(.) and t3,~ depend on h. Fn(.) usually has multiple 
maximum solutions. However,/3m is deterministic and uniquely determined. In Theorem 
2.1 we prove the uniqueness of ~m and evaluate/~m - t30, which corresponds to the bias 
term since we show the asymptotic normality of ~ - t3m later in Section 3 by using 
theorems in Sherman (1993). 

The consistency, 
I~ -/301 ~ 0 in probability, 

where I" I denotes the Euclidean norm, is established in Theorem 2.2. We write Mi 
for positive constants independent of h and n. The values of Mi differ from section to 
section. Note that  arguments in this paper hold as n tends to c~. 

We introduce several assumptions and notations. As for the bandwidth, we only 
assume that h tends to 0. Suppose assumptions A1 7 hold throughout this paper. 

A4. c1 has the bounded density function f~ on R. f~ is positive on R and continuous. 
F~ stands for the distribution function. 

A5. C2 - C 1  has the positive density function around /31 ~ -- g(x) - g(O), where 
C1 ~ f c (  I 0), C2 ~ re(" I x), and fc(" IX)  denotes the conditional density function of 
C o a X .  

Remark 2.1. 1~ is usually nonnegative. When we deal with Y, not with logl  ~, 
assumptions A4 and A5 should be replaced with A4' below. These assumptions are 
necessary for (5.2) in Section 5. We assume assumptions A4 and A5 for simplicity 
of presentation. When assumption A4 holds and the support of C2 - C1 is ( -c~ ,  c~), 
assumption A5 holds automatically and we can deal with any smooth regression function. 
Assumption A4' below looks complicated. However, it just means that the intersection 
of the support of C1 given X1 = 0, that of Y1 given X1 = 0, that  of C2 + g(0) - g(x) 
given X2 = x, and that of !I2 + g(O) - g(x) given )(2 = x is not empty. 

A4'. The following relation holds for the support for the conditional distribution of 
C. 

{c I f c (c  I 0) > 0} n {e I f c ( c -  g(O) § g(x) I x) > 0} N {Y I f~(~)- g(0)) > 0} r ~b. 



54 TOSHIO HONDA 

A6. X1 has the positive and continuous density function f x  around 0 and x. 
A7. The conditional density function of C, f c ("  ] X), and the derivative with respect 

to C, f~ ( - [  X), are uniformly bounded from above around 0 and x. Ifc(" I X ) I  and 
If~(" I X)I are uniformly bounded by an integrable function around 0 and x. fb( .  IX)  
is uniformly Lipschitz continuous with respect to C around 0 and x. In addition we have 
that 

lira fc (c  I ~) = Ic(c  I o) 5c---,0 and lira f c ( c  I:~) = f c ( c  Ix) for any c. 
~----+x 

We state Theorems 2.1 and 2.2. Then we prove Theorem 2.1, give a remark on the 
local constant estimator defined in Remark 1.1, and present an explicit expression of 
9m - 00. Theorem 2.2 is verified at the end of this section. 

THEOREM 2.1. I f  h ~ O, 9m is unique and the bias 9,~ - 00 is writ ten as 

1 OF 
(2.1) 9,~ - 00 = - A -  ~ ( 9 o )  + o(h2), 

where A is a negative definite matrix  and 

OF 
a-~ (00) = O(h2). 

THEOREM 2.2. I f  h --+ 0 and nh  --+ oo, we have 

12 - 9o[ --+ 0 in probability. 

PROOF OF THEOREM 2.1. We define two auxiliary random variables Y/* and Y;. 

(2.2) 

(2.a) 

~o X i  
y/. = 1, Ci - g(O) +/J2 --s ei > 0 

0, otherwise 

1, 
Y ] =  0, 

X j - x  c~ - g( . )  + 9 ~ -~ ~j > o 

otherwise. 

By replacing Y/ and Yj in Fn(9) with Y/* and Y; ,  we define Fn(9) and f'(fl). 

(2.4) 

(2.5) 

x) 
X 1{5"  > Y]} I  Ci-}-91 q-02 > Cj -~/33 T 

-~I{Yi* < Y;}I{Ci4-91 ~-92~ < Cj q - 9 3 ~ }  ], 

r(9)  = E{~n(9)} .  
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We prove Theorem 2.1 by comparing F(-) and F(-). (1.1) and assumption An imply 

(2.6) / { K  (~-~/) > 0} P(Y/* r Yi [ 2/) = O(h 2) uniformlyinZi=(Ci,Xi) 
and 

> 0 r Yj I uniformly in Zj = (Cj, Xj). 

By considering the conditional expectations of F,~(3) and f'n(3) on {2i} and using 
(2.6) and (2.7), we can easily show that  

(2.8) F(3) = f'(3) + O(h 2) uniformly in 3- 

The remainder of the proof consists of three steps, to prove that I'(.) is uniquely 
maximized at 3o, to verify (2.14) below, and to establish (2.23) below which leads to the 
expression of 3,,~ -/3o in the theorem. 

Step 1. We prove that F(.) is uniquely maximized at 3o by noting that 

(2.9) P(Y/* > Y; [ Zi,Zj) >P(Y/* < Y; I Zi,Zj) 
oX, > 3oXj- c~ + 3  o + 3 2 ~ - < c ~  + 

We define F(Z1,22; 3) by 

(2.10) F(21,22;3) = h--ffK ( ~ )  K (X2 - x)  

• > v,J 1 21, 22) 
{ { #4021 oN2 - x  } 

x I C1 -[- 3~ @ p,2 --~.- > C2 -[- 33 h 

-- I{C1-]-31At-t~2-~- ~ C2-[-33X2~ x}} 
+ P(YI* < Y~ I Z,, 22) 

• I c,+A~ <c2+3~~ 

{ Xl 3322 - x}} ]  - - I  C1 -[- 31 -[- 32 ~ -  < C2 -[- h " 

Then we can represent F(30) - I'(3) as 

(2.11) 

(2.9) implies 

(2.12) 

when 

I ~ C, + 3 o 
( 

F(3o) - f '(3) = E{F(21 ,22 ;  3)}. 

F(Z1,22; 3) < 0 a.e. 

-[- 32 ~ > C2 t P3 fi r I C1 -[- 31 "[- 32 > C2 -[- 33 �9 
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Combining assumptions A5 and A6 and (2.11) and (2.12), we have 

(2.13) F(no) > F(n) for any n #/30. 

We have established that F(n) is uniquely maximized at no. 
Step 2. We show that 

(2.14) Ino - nml < M l h  for some M1. 

(2.14) is proved if we show that for any M2, there exists a positive number Ms such 
that 

(2.15) F(n) < F(no) - M2h 2 for 113 - no[ > M3h. 

Indeed (2.8) and (2.15) imply that 

F(no) > F(n) + (M2 - O(1))h 2 for In - nol > M3h. 

We should choose a sufficiently large M2. We postpone the proof of (2.15) to Section 5. 
Step 3. We evaluate nm - n o  more accurately by considering the Taylor expansion 

of F(/3) at no and the derivatives of F(n) at ~o. Besides we prove the uniqueness of nm 
and give an expression of n m -  no. 

We rewrite F(/3) and F(n) by writing T1 and T2 for X 1 / h  and ( X 2 -  x) /h ,  respec- 
tively. 

(2.16) F(n) = . /K(T1)K(~ '2 ) fx (T lh ) fx (x  + T2h) 

x E{F~(C1 - g(0) +/~~ (1 - F~(C2 - g(x) + n~ 

x I{C1 + nl -~- n2T1 > 62 + ~3T2} 

+ (1 - F~(C, - g(O) + ~~ - g(x) + n~ 

• I{C, +n,  +Z2T1 < C2 +n3i~2}lTl,r d~2 

(2.17) F(n) = . f  K ( T 1 ) K ( T 2 ) f x ( T l h ) f x ( x  + T2h) 

x E{Fr - g(Tlh))(1 - F~(C2 - g(x + T2h))) 

• I{C1 + n~ + n2T~ > C2 + n3T2 } 

+ (1 -- Fe(C1 - g(Tlh)))Fe(C2 - g(x + T2h)) 

• I{C, + nl + n2T~ < C2 + n3T2} I T~, ~2}dT~d~2. 

F(n) and F(n) are twice continuously differentiable from the above expressions and 
assumption AT. In addition, (2.6), (2.7), assumption A7, and these expressions imply as 
in (2.8) that 

0~ or  
(2.18) ~ ( n )  = ~--~(n) + o(h2) and 

uniformly in/3- 
We have from (2.13) and (2.18) that 

o~ (2.19) --(no) = 0 and 
On 

02~ 02F 
anon~ (n) - onon~ (n) + O(h 2) 

~(no)  =O(h2). 
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We have from (2.16) and assumption A7 that 

0~ 
(2.20) limoo 0 3 0 3  T (30) = A, 

where A is a 3 x 3 matrix and we give an expression of it later in this section. Besides 
(2.15) means 

(2.21) A is negative definite 

and (2.16), (2.18), and assumption A7 imply that 

02F 
(2.22) 0 3 0 3  T (3) = A + o(1) as 13 - 30[ -+ 0 and h --+ 0. 

r( .)  is strictly concave around 30 from (2.21) and (2.22) and we can represent F(3) 
on { [ 3 -  30[ < Mlh} as 

T 0 F  2(3 3o)r(A+o(1))(3 30). (2.23) V(3) = r (3o)  + (3 - 30) ~9-/~(3o) + - 

(2.23) is uniquely maximized by (2.1) on { 13-30[ < Mlh}. Hence the proof is complete. [] 

Remark 2.2. We can prove that the estimator based on the local constant approx- 
imation has the bias of O(h 2) by assuming that fc has the bounded continuous derivative 
and that f x  is continuously differentiable around 0 and x. We can show that the bias 
is O(h) as in the proof of Theorem 2.1. Then we use (2.23) on {13 - 301 < Mh} for 
sufficiently large M. If ~7~ (3o) = O(h2), the bias is also O(h2). We can verify that  

dr (no) = O(h 2) by refining the evaluation in (2.26) and (2.27) below and using the 
symmetry of the kernel function. 

We give an expression of the right-hand side of (2.1). We omit tedious calculations. 
At first we deal with A. A can be written as 

02I'oo 
(2 .24)  A = O30e r ((e ~ o, O)r), 

where 

r o b ( e )  = fx(O)fx(x) 
x Eoo[F~(C1 - g(0))(1 - F~(C2 - g(x)))I{C1 + 31 q- 32T1 ) C2 -1- 33T2} 

+ (1 - y ~ ( c 1  - g ( 0 ) ) ) F ~ ( c 2  - g ( x ) ) I { c 1  + 31 + 32T1 < C2 + / 3 3 T 2 ) ]  

and Eoo{G(C1, C2, T1, T2)} in the above expression is defined by 

E~ {a(Cl, C2, T1, T:) } 

J G(C1, C2, 7'1, T2)fc(C1 ] O)fc(C2 [ x)K(Ta)K(T2)dC~dC2dTldT2. 

Next we deal with 1 0P {~ h~ ~ t~'0J by exploiting the fact that 

1 OF 1 P -  
h~ ~(eo )  - h2 O(-b-hF) (30). (2.25) 
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To evaluate the difference between (2.16) and (2.17), we use the following expressions. 

(2.26) Fr - g ( T l h ) ) ( 1  - Fe (C2  - 9 ( x  + T2h))) 
0 - Re(C1  - g(O) + / 3 2 T 1 ) ( 1  - Re(C2  - g ( x )  + ~3~ 

= - f e ( C 1  - g(O))(1 - F~(C2 - g ( x ) ) ) 2 T } h 2 g " ( O  ) 

+ I t ( C 2  - g ( x ) ) F e ( C 1  - g ( O ) ) 2 ~ ' 2 h 2 g " ( x  ) + o(h 2) 

(2.27) (1 - F~(C1 - g ( T l h ) ) ) F e ( C 2  - 9 ( x  + 2P2h)) 

- (1 - Fc(C1 - 9 (0 )  + / 3 ~  -- g ( x )  + t3~ 

= r e ( c 1  -- g ( O ) ) F e ( C 2  - g ( x ) ) l T 2 h 2 g " ( O )  

- f~ (C2  - g(x))(1 - Re(e l  - g ( O ) ) ) l x r 2 h 2 g " ( x )  -{- o(h2). 

Then from (2.16), (2.17), (2.25), (2.26), and (2.27), we obtain  the following expres- 
sion of i oF 

(2.28) 

where 

a ( ~ )  - 

1 OF 0f~ 
h2 ~ ( 9 o )  = 5 5 ( ( ~ ~  0, 0) ~) + o(1), 

f~(O)fx(~) 
2 

x Eoo[{-f~(C1 - g(0))(1 - Fr  - g ( x ) ) ) T } 9 " ( O )  

+ f , ( C 2  - g ( x ) ) F , ( C l  - g ( O ) ) T ~ g " ( x ) }  

x I { C 1  + ~1 +/~2T1 > C2 + ~3T2} 

+ { L ( c ,  - g ( 0 ) ) F ~ ( C 2  - g(x))T~9"(O) 

- fe(C2 -- 9(x))(1 -- Fe(C1  -- g ( O ) ) ) T e 2 g " ( x ) }  

x I{Cl + ~1 + ~2T1 < C2 + r 

and E ~ { . }  is defined jus t  below (2.24). 
Finally we prove Theorem 2.2 which deals with the  consistency of ~. 

PROOF OF THEOREM 2.2. We can establish in the same way as in Lemma 5.1 
below that  if n h  --* oo, 

(2.29) sup Irn(Z) - r(9)l -~ 0 in probabil i ty  as n ~ oc. 
]3ER 3 

Combining (2.8) and (2.29), we have 

(2.30) sup ]Fn(fl) - F(Z)] ~ 0 in probabil i ty.  
t i E R  a 

We can prove in the same way as (2.15) that  for any 51 > 0, there exists a positive 
number  52 such that  

(2.31) F(~o) - -  51 > P(fl) for 1/3 -Go[  > fi2. 

Theorem 2.2 follows from (2.30) and (2.31). [] 
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3. Asymptotic normality of the estimator 

We establish the asymptotic normality of v/-n-h(/~ - 9m) by applying Theorems 1 
and 2 in Sherman (1993). Suppose that  nh ~ oc and h ~ 0 and that assumptions A1-7 
hold in this section, too. Then 

T H E O R E M  3.1.  

, /~(;~ - 9m) ~ N(0,a-lrA-1),  

D 
where ~ means convergence in law. The 3 x 3 matrix E is given by 

r~ = f ~ ( o ) f x ( x )  

x E 0 f t2K2dt  O f x ( x ) f ~ ( C l  + 9~ ] x) 

0 0 0 

x {I{g(0) + el < C1}(1 - Fe(C1 - 9(0))) 2 -~- I{g(0) + el > C1}F2e(C1 - g(0))} 

+ o o f ~ ( o ) f ~ ( c ~  - 9 01 o) 

0 0 f t2K2dt  

1 

x { I {g (x )  + e2 > C2}F2~(C2 - g(x))  + I {g(x )  + e2 < C2}(1 - F~(C2 - g(x)))2}/ 

J 
where C, ~ f c  (" I O) and C2 '~ fc("  Ix).  

Theorems 2.1 and 3.1 imply that when X is one-dimensional, we can estimate g ( x ) -  
g(0) in the order of n -2/5 by taking h = cn -1/5. The optimal c, which is denoted by 
Co, depends on the unknown parameters in the theorems. It is possible to theoretically 
calculate Co. However, it may be difficult to estimate the parameters at present. A 
simulation study is presented in Section 4 to see the effect of the bandwidth. 

PROOF OF THEOREM 3.1. Theorem 3.1 follows from Theorems 1 and 2 in Sherman 
(1993) with n replaced with nh if all the conditions for the two theorems are satisfied. 
We will check all the conditions. In Section 3 we proved that A is negative definite and 
that I/3 -/3,~] ~ 0 in probability. All we have to do is to establish (3.1), (3.8), and 
(3.9) below. (3.1) corresponds to ( i ) in  Theorem 1, (3.8) corresponds to the asymptotic 
normality of Wn in Theorem 2, and (3.9) corresponds to (ii) in Theorem 1 and (4) in 
Theorem 2. 

From the fact that 19m - 9ol --* 0 and (2.22), we have 

(3.1) r ( 9 )  - r ( g m )  _< - M 1 1 9  - 9ml 2 

when I/3- 9.~1 is sufficiently small. 
We need two lemmas to establish (3.8) and (3.9). We introduce some notations and 

definitions for the lemmas. 
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Defining T(i,  j;/3) by 

(3.2) 
1 X 

X [I{Yi > gj}I{Ci -~-~1-~-~2~ > C j - [ -~3~}  

-4-'{Yi <Yj} I {Ci -~-~ l -~ -~2~-~  < C j ~ - ~ 3 ~ - } ] ,  

we represent rn(~)  as 

1_ 1) h T(i '  Fn(~) - n(n  ~ J; ~)" 

We define IIn(~) and U(i , j ;~ )  by 

(3.3) IIn(fl) = h(Fn(~) - Fn(~m)) and U(i , j ;~ )  = T ( i , j ; ~ )  - T ( i , j ;~m) ,  

respectively. Then the Hoeffding decomposition of Hn (13) is written as 

(3.4) 

(3.5) 

nn(Z) = E{H.(~)}  
1 n 

+ - E [ E { U ( i , j ;  13) I Zi} - E{IIn(Z)}] 
n 

i = 1  

1 n 
+ - E [ E { U ( i , j ; ~ ) I Z j }  - E{IIn(~)}] 

n j=l 
1 

+ n ( n -  1) E i V ( i ' J ; ~ )  - E { U ( i ' J ; Z ) I Z i }  
i#j 

- E{U( i , j ;Z )  I Zj}  + E{Hn03)}]. 

Putt ing (3.4) = Q(~), i.e., 

(3.6) 
n 

1 
E [ E { U ( i , j ; ~ )  ] Zi} - E{1-In(Z)}] 

Q(/~) = n 
i = 1  

1 n 
+ - E [ E { U ( i , J ; ~ )  I Zj}  - E{H~(~)}] 

n 
j = l  

we present Lemma 3.1. 

LEMMA 3.1. 

(3.7) 

and 

(3.8) 

I f  nh ~ o% h ---* O, and [~ - ~m [ ---* O, we have 

TOQ 
Q(Z) = (~ - Zm) - ~ ( Z m )  + op(hfZ - Zml ~) uni fo~ly  in 

n OQ 
V ~ - - ~  (13m) ~ N(0, E). 
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We prove Lemma 3.1 later in this section. Lemma 3.2 deals with (3.5). 

LEMMA 3.2. I f  nh  ~ oc, h ~ O, and ]3 - 3rot ---* O, we have 

1 (1)  
n ( n -  l) E [ U ( i ' J ; 3 )  - E{U( i , j ; /3 )  I Z i}  - E{U( i , j ; /3 )  ] Zj} + E{H~(3)}] = Op i~j 

unifo~nly in 3.  

We prove Lemma 3.2 in Section 5 by adapting the argument in the proof of Theorem 
5.3.7 of de la Pefia and Gin5 (1999) to the setup of this paper. Lemma 3.2 corresponds to 
Theorem 3 of Sherman (1993) and is related to equicontinuity of degenerate U-processes. 
What is crucial to the proof of Lemma 3.2 is that 

and 
{1~ (~) g (X2f x) { yl 

> II2}1 {C1 +/31 

< Y2}I {C1 ~- 31 

X1 X2x} } 
+32-ff>C2+33 ~ J 3 e R 3 

X1 X2-x} } 
+32 T < C 2 + 3 3  f~ 13 c n 3 

are VC-subgraph classes and the VC-indices are independent of h. 
Combining the Hoeffding decomposition of Hn(/3), (2.22), (3.3), Lemmas 3.1 and 

3.2, we have established that if nh ~ co, h ~ O, and 13 -/3-~] ~ 0, 

(3.9) Fn(3) - Fn(3m) 

= (3 - 3m)T(A + Op(1))(/3 - 3m) 

/3~) b-~ ~ .~ j  + op(13 - 3~1 ~) + o.  

uniformly in 3- Hence the proof is complete. [] 

We prove Lemma 3.1. 

PROOF OF LEMMA 3.1. 

TOQ (3.10) Q(3) = (3 - 3.~) - ~ ( 3 m )  

We should show that 

(3.11) 

and that 

1 02Q {~.~ o(i) 
(3.12) ~ 03(,)3 T ~ ) = 

We consider (3.12) and then we go on to (3.11). 

Consider the Taylor expansion of Q(3) at/3m, 

02Q 
+ ~(3 - 3m)~O303T (3*)(3 -- 3m)- 

n O Q  
V~-~-5-fi(3.~) ~ N(O,r.) 

uniformly in 3 as 13 -/3m] --* O. 
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One of the conditional expectations in Q(/3) is written as 

(3.13) E{T(i,j;/~) ] Zi} 

r -  

• [I{Yi = 1} 

• (1 - F~(Cj - g(Xj)))  

+ I{Y~ = 0} 

/{/7 • F ~ ( G  - g ( x j ) )  
i+f~l +~2Xi/h-jSa( Xj - x) /h 

We deal with only (3.1a) since the other term can be treated in the same way. 
Assumptions A4 and At,  the definition of U(i,j;/3) in (3.a), and (3.1a) imply 

i o ~ z d ]  ~ ( ~ )  (3.14) h O~Ofl T[E{T(i ' j; /3) [ Zi} - E{T(i 'J;~)  I -< M2 [/3- rll' 

where ]-Ioo denotes the sup norm in R 3xa. 
Noting that there is no term related to E{T(i,j;/3m)} in (3.12), we have from (3.14) 

that 

I ~ 02 E{iin(/3,)}] oo (3.15) ~-h i=10/30JsT[E{U(i 'J ; /3*)IZi}-  

M3 ~ K  _< I/3" - (/31~ 0FJT~ 

/144 1 ~ 02 Jr- ~ i----1 C~/3C~/3T [E{T(i, j; (Zl 0, 0, 0) T) I Zi} 

- E{H,~(03 ~ 0, 0)r)}] . 

The first term on the right-hand side tends to 0 in probability uniformly in /3 since 
I/3" - 050,0,0)TI tends to 0 in probability uniformly as I/3-/3,,~1 -+ 0. As for the 
second term, we can prove that it tends to 0 in probability by evaluating the second 
moment. The details are omitted since the calculation is standard one in the literature 
on nonparametric regression. Hence (3.12) is proved. 
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Next we deal with (3.11). Since 

ff~ E{IIn(fi~)} = h~E{r(~m)} = o, 

1 c~Q ( ~  we can represent ~-5~t~'mJ as 

(3.16) h - ~ ( ~ )  = ~ E{T(i,j;/~,O l Zi } + f i  E{r(i,j;fim) ] Zj} . 
i=1 j = l  

We examine only the first term closely since the second term can be treated in the 
same way. The summand of the first term can be written as 

(3.17) (~--~E{T(i,j;~m) i Zi}) T 

x [ I {Yi= l }S( l ,  Xih, X'hX) 

x (I-F~(Ci+.~+J.~-..XJ-~ -x g(X,))) 

( ., x..) 

-,.) 
- I { Y i  = 0 }  1,  h ' /~ 

( X~ ~ ,  x ) • c i + ~ r + ~ ; ~ - h - - 9  2 ~- g(xj) 

( ~x~ mXj-x ) 

Assuming that nh --~ oo and h --* 0, we can verify (3.11) by evaluating the second 
and third moments of (3.17) and appealing to the Lyapounov CLT, for example, on 
p. 362 of Billingsley (1994). We omit the details since this kind of argument is standard 
one in the literature on nonparametric regression. The covariance matrix E is defined in 
Theorem 3.1. [] 

4. Simulation study 
We present the result of a simulation study to see the effect of the bandwidth and 

how the proposed procedure works. We have no automatic bandwidth selection rule like 
cross validation at present. 
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The data is generated by 

X ~ Unif(-1.5,  1.5), 

C ~ N(0, 4), 

~ N(0, 0.3), and 

Y = x + x 2 + c .  

We estimate g(1) - g(0) = 2 and g( -1)  - g(0) -- 0 by the local constant estimator 
in Remark 1.1 and the local linear estimator defined by (1.6). The kernel is the uniform 
kernel on [-1, 1]. The sample size is 500 and the tables are based on 200 repetitions for 
each entry. 

In the above setup the covariate X, the censoring time C, and the error term 
are mutually independent. The censoring time C has a large variance compared to the 
error term. The censoring time and the error term take the values in ( -co,  co). This 
means that we are considering cases like that  of log-transformed failure times. Note that  
assumption A5 hold for any g(-). All the other assumptions are satisfied, too. 

We maximize the objective functions by grid search. For the local constant esti- 
mator, the grid width is 0.05. For F,~(.) in (1.6), the grid search is carried out in two 
steps. At first the gird width is 0.1 for every/3i. Then we do the second step around the 
maximum solution of the first step. The gird width is 0.05 for every ~i. 

As we mentioned in Section 1, the maximum solutions are not unique. We choose 
the average of the maximum solutions as the estimate of g ( x )  - g(O). 

We try 0.2, 0.25, and 0.3 for the bandwidth. SPLUS is used for the study on a 
personal computer. Tables 1 and 2 present the means and MSEs for the local constant 
estimator and the local linear estimator, respectively. 

There is no significant difference between the local constant estimator and the local 
linear estimator. The maximization is complicated for the local linear estimator than 
for the local constant estimator. If the maximization and the choice of the estimate do 
not work for the local linear estimator, the performances of the local linear estimator 

Table 1. Means  and  M S E s  of the  local c ons t a n t  e s t ima to r .  

h 0.20 0.25 0.30 

x = 1.0 Mean  1.99 1.98 1.93 

M S E  0.094 0.097 0.073 

x : - 1 . 0  Mean  - 0 . 0 4  0.01 - 0 . 0 2  

M S E  0.065 0.054 0.044 

Table 2. Means  and  M S E s  of the  local l inear es t imator .  

h 0.20 0.25 0.30 

x = 1.0 Mean  2.00 2.02 2.00 

MSE 0.085 0.078 0.064 

x = - 1 . 0  Mean  - 0 . 0 4  0.00 - 0 . 0 2  

M S E  0.063 0.048 0.040 
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will be worse. Since there is no significant difference, maximization by grid search and 
the choice of the estimate seems to work well. 

The effect of the variance is much more serious than that  of the bias. Larger 
bandwidths may be recommended. 

5. Technical proofs 

In this section we prove (2.15) and Lemma 3.2. 

PROOF OF (2.15). We establish that  for any M1, there exists a positive number 
M2 such that  

f'(/3) < f'(/3o) -- M l h  2 for [/3 -/30[ > M2h. 

We need to evaluate the difference between P(YI* > Y~ [ Z1, Z2) and P(YI* < Y2 t [ 
21, Z2). From the definition of the conditional probability, we have 

(5.1) P(W > YJ 1 21,22) - P(YI* < Y~ [ Zl, Z2) 
' ~~ {1-  (c~-  +/3~ } = < ( q  - g(O)..~ T )  < 9(~) 

X1 
/ 

( C 2  - + 

for small 6. 

(5.2), and assumption A4 imply that  there exist M3, M4, and M5 which 
of n, X1/h,  and (X2 - x) /h  and satisfy 

> Yt21ZI,Z2)- P(YI* < Y2*121,22)1 

and I C I [ < M h }  

By the Taylor expansion, we have 

(5.2) Fc(z)(1 - Fc(z + 5)) - (1 - F~(z))F~(z + 5) ..~ - f~(z)6  

Then (5.1), 
are independent 

(5.3) IP(Y~* 

C1 X1 0 X2 -- X _> Ma - C2 +/30 +/30 ~ _/33 -----ff-- 

{ C 1 - C 2 + / 3 ~ 1 7 7 1 7 6  ~ o X 2 - x  on T t-'2--~- - - ~ ' 3 ~  < M4 

(5.3) is crucial to the proof of (2.15). 
We deal with two cases where [/31 -/3o] > M2h/9 and where [/31 - / 3  ~ _< M2h/9 

separately. 
When/31 -/31 o > M2h/9, we have that  

1(_/31 _/32~.~1 ~_/33X2hX / _ ( _ / 3 0 - o X l  oX2-x I] M2h 
-/32-h-+/3~ h i >- 9 

0 on ({/32 ~ /320 ,X1 ~ 0} U {/32 ~ fl2,Xl ~ 0}) 
n ({/33 _~ /330, X2 ~ x} U {/33 _~ /330, X2 > g}). 

(5.4) 

Combining (5.3) and (5.4), we obtain 

(5.5) f'(/3) _< I'(/3o) - M2M6h 2 for some M6 
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by integrating F(Z1, Z2;/3) in (2.10) on 

{ c1 - c2 1 - A - /32 ~ + & < c1 - c2 < -/3~ _/32 -s +/3o____h___ �9 

The case where/31 -/31 o < -M2h/9 can be treated in the same way. 
When [/31 - /3~ _< M2h/9 and/32 - /3o  > 6M2h/9, we have that 

, ~ X2-  x'~ (_/30 RoX1 fqoX2- xX~ > 2M2 h (5.6) ( -A - & x-2 + ~3---U-) + . 5  h . 3 - - - - f i - - - ]  - 

on >_ n ({& >/33,x2 < x }  u {& <_ f l ~  >_ x}).  

Combining (5.3) and (5.6), we obtain 

(5.7) F(fl) <_ F(flo) - M2MTh 2 for some M7 

by integrating F(Z1, Z2; fl) in (2.10) on 

{ ~ -~___ _~oXl ~oX2-~} 
C1 - 62 I -/31 -/32 -~-f13 < C1 - C2 < - n  0 ~ J 2 y  @ / - ' 3 T  " 

The other cases can be treated in the same way. 
The proof is finished by taking a sufficiently large/1//2 in (5.5), (5.7) and so on. [] 

Next we prove Lemma 3.2. 

PROOF OF LEMMA 3.2. We should prove what is similar to (5.3.11)' in the proof 
of Theorem 5.3.7 of de la Pefia and Gin6 (1999) with k = 2 (see (5.16) below) and that 

(5.8) lim limsup sup E{(T(1, 2;/3) - T(1, 2; tim)) 2} = 0. 
~ 0  ,~--*oo I~-fl~l<,~ 

(5.8) is established from the definition of T(i,j;/3) in (3.2) and assumption A7 by con- 
sidering the conditional expectations on {Xi} of 

(5.9) I{Clq-/3i q-/32-X-~, ~ C2q-/33Xk-x } 

- I  c1+/3~ h 

and the other analogous terms. We omit the calculation. 
Now we go on to the proof of (5.16) below. Recalling the definition of U(i,j; fl) in 

(3.3), we define V(i,j;/3) for symmetry with respect to Zi and Zj by 

1 U (5.10) V(i , j ; f l )  = 5{ (i,j;/3) + U (j, i; /3) }. 

We adopt the notations of de la Pefia and Gin6 (1999) since we follow and adapt the proof 
of (5.3.11)' of de la Pefia and Gin6 (1999), which addresses equieontinuity of degenerate 
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U-processes. In the proof of (5.3.11)' the class of kernels is fixed and the envelope 
function H satisfies 

lim E[H2I{H > M}] = 0. 
M---* oo 

However, neither of them holds in the setup of this paper. Thus we must modify the 
arguments of de la Pefia and Gin6 (1999). The proof of (5.23) below is different from 
that of de la Pefia and Gin~ (1999). The other parts of the proof of (5.16) below are 
essentially the same as on pp. 244-246 of de la Pefia and Gind (1999). However, it is 
very important to make sure that the varying kernel classes do not affect the arguments. 

We define 7r2, 711, and Un (2) for W(., .) by 

(5.11) 

(5.16) 

where 

712W(Zl, Z2) ~- W(Zl, Z2) - E{W(Z1, Z2) I Zl} 
- E{W(Z1, Z2) ] Z2} + E{W(Z1, Z2)} 

7rlW(Zl) = E{W(Z1, Z2) ] Zl} - E{W(Z1, Z2)} 

d2(~l, ~2) =- E{(V(Z1, Z2; 111) - -  Y ( Z l ,  Z 2 ;  ~ 2 ) ) 2 } .  

If (5.16) is established, (5.8) implies the lemma since V(Z1, Z2;/3m) = 0. What is 
essential to the proof is that the covering number of 

{V(Zl,Z2;/3) l /3 E R 3} 

has an upper bound independent of h. The bound is due to the following two facts. 
1) {1{61 +/31 +/32)~ --1 > C2 +/33xz~ =------xx } ]/3 �9 R 3} is a VC-subgraph class with the 

VC-index no more than 6 from Example 3.7.4c of Geer (2000). 
2) The proof of Lemma 2.6.18 (vi) of Vaart and Wellner (1996) implies that mul- 

tiplying the class in 1) by K(-~)K(-~-)I{Y1 > II2} increases the VC-index of the 
function class in 1) by at the most only one. It is because no subset of two points can 
be shattered on the set where M1 the functions vanish. 

Refer to Vaart and Wellner (1996) for the definitions of covering number, enve- 
lope function, VC-subgraph class, and VC-index. The other three classes of functions 
appearing in the definition of V(Z1, Z2;/3) can be treated in the same way. 

(5.12) 
and 

1 ~ W(Zi, Zj) (5.13) U(2)W = n(n- 1) . . 

and U(na)W for W(.) by 
n 

1 E W(Zi).  ( 5 . 1 4 )  U(1)W = 
i=1  

By using the above notations, the left-hand side of the expression of Lemma 3.2 is 
written as 

(5.15) U(2)~r2V(r/) with/3 replaced by r/. 

We sometimes use % r/l, and r/2 instead of/3 to avoid confusion. Then we have to prove 

l iml imsupE [ sup n]U(2)(Tr2(V(rh)- V(r/2)))[] = 0 ,  
6 ---~ 0 n---* oo [d(rtl ,r/2) <5  
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We put  

(5.17) 

and the envelope function is given by 

(5.18) H(Z1, Z2) ~K (~_~1)K (X2 h x) 

TOSHIO HONDA 

+ I ~ K  ( X l f  X)  K(_~_~) . 

By Applying Theorem 2.6.7 of Vaart and Wellner (1996) to the classes of func- 
tions appearing in the definition of V(Z1, Z2; ~) and combining the upper bounds from 
Theorem 2.6.7, we obtain the following upper bound of the covering number of Gh, 
N ( ~h, dp, ellHllp), 

(5.19) N(Gh, dp, ~IIHHB) ~ Ms(c -M9 V 1), 

where P is an arbitrary probability measure and for p > 1, 

dp(fl,A)= ( f  rfl- AI pdP) 

Equivalently we have 

and IIHllp : HPdP �9 

(5.20) g(6h ,  dp, ~) <_ Ms V 1. 

We just give the necessary modifications and do not reproduce the arguments of de 
la Pefia and Gin~ (1999) in this paper. 

Defining e2~,2,2(V, W) and On,2(5) for Y(.,-) and W(., .) as in de la Pefia and Gin~ 
(1999) by 

en,~,~(V, W )  = n ~ ) - - : . {~2 (V - W)(Zi, Z j ) }  ~ 
i<j 

and 

(5 .22)  Dn'2((~) : I,/•lsup"2 e2n'2'2(V(T]l)' V(~]2)) 

_ n 2 E{(Tr2(V(r]l ) -- V(7]2))) 2} 

we prove in Lemma 5.1 below that  

> 22262}, 

(5.23) lim P(Dn,2(5)) = 0 for any 6 > 0. 
n - - - + o o  

The proof of (5.23), which corresponds to Lemma 5.3.6 of de la Pefia and Gin~ (1999), 
is different from that  of the lemma. 

We also need to show that  

(5.24) U(2)H 2 - E{H 2 } ---* 0 in probability 

and 

Gh -- {V(Zl,  Z2; Z) I Z c n 3} 
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(5.25) 1 ~ E { H 2 ( Z i  ' Z,+I) I Zi} - E {H 2} ~ 0 in probability. 
n 

i= t  

These can be proved by appealing to Hoeffding's inequality on p. 165 of de la Pefia and 
Gin6 (1999) if nh --, cx~ and h --+ 0. Besides we have 

2 

(5.26) h---~olim E{H2} = 2fx(O)fx(x) ( /  K2(t)dt ) 

Since the arguments on pp. 244-246 of de la Pefia and Gin~ (1999) are valid with 
(5.19), (5.20), (5.23)-(5.26), and minor modifications, the proof is complete. [] 

Lemma 5.1 corresponds to Lemma 5.3.6 of de la Pefia and Gin6 (1999). We cannot 
apply the proof of the lemma to the setup of this paper since we do not have 

lim E[H2I{H > M}] = 0, 
M----* (x) 

where H is the envelope function of ~h. We have to go back to Theorem 5.2.2 and modify 
the proof of the theorem. 

LEMMA 5.1. For any 5 > O, we have 

(5.27) P(Dn,2(5)) --~ 0 as nh --+ c~ and h --~ O. 

PROOF. 

(5.2s) 
We prove that 

sup ]Un(2)(rr2(V(~l) - V(7/2))) 2 - E{(Tr2(V(~h) - V(r/2)))2}l 
r/1 ,rD 

--~ 0 in probability. 

This is equivalent to Lemma 5.1. We define 7-/h by 

(5.29) "~"/h = {(Tr2(V(Zl ,  Z2; '/']1) - V ( Z l ,  Z2; ~]2))) 2 [ ?~1,/']2 e R3} .  

Letting {~i} be independent Rademacher variables, we have from the argument on 
pp. 226-227 of de la Pefia and Gin6 (1999) that 

(5.30) n--,cx)limEIsupl(n-2)!EgiW(Zi'ZJ) } (  Wcnh n] i•j 

(5.31) 

(5.32) 

(5.33) 

= 0  

I (n- zA E{W}) } o lira E sup - = 

n~lim E~l. We~hsup [U(2)W-E{W}[}=O 

sup IU(2)W - E{W}I = 0 in probability. 
W C ~ h  
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Therefore we prove (5.30). 
e,,,1 for V(., .) and W(-, .) by 

(5.34) 

and 
(5.35) 

As in de la Pefia and Gin6 (1999), we define e,,,1 and 

i 

( V , W ) =  1 ~ 1  1 n W)(Zi ,Zj)  
/ = I  I ~- 1 E (V - j=l,j#i 

en,1 (V~ W) = u~)(IV- Wl). 

(5.36) 

(5.37) 

(5.38) 

Taking a ~--dense set 7[h,. r in 7-/h with respect to en,1, we have 

/ } E sup y~iW(Z,,Zj) I{Z,}  

L 

{ } _ < ~ + E  sup ~ ~,W(Z~,Z~) I { Z d  �9 
WET"~h'n i#j 

Then (5.2.8) of de la Pefia and Gin6 (1999) implies 

E{ sup (n- 2)' w(Zi'Zj) } worth,,, nT E gi I{Zi} ~r 

- 2 ~ ! ( n  _< M10 ~ [log 2 + log N(~h, en,1,7)] 1/2 

{~-~ ( ~ ) 2 / 1 / 2  
• sup W(Zi, Zj) . 

WETlh,n i=1 j=l,j~i 

Replacing W in the last term in (5.37) with the envelope function H, we obtain 

E / sup ~ (j=I,j~#iW(Zi,Zj)) 2} 
( WG?'~h,~ i=1 

< n 1 K x )  
_ MllZ(i~=l{j ~l, jr ( ~ ) ( X j ~  

<_ --h-4- h(nh + n2h 2) <_ M13 -~ + �9 
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(5.30) follows from (5.36)-(5.38) if we establish that for any 7- > 0, 

(5.39) 1 (E{ log  N(~]-~h, ~n l  T)}) 1/2 ~- 0. 
n l i ~  (7th)1/2 ' ' 

Since en,,(', ") <- en,l(', "), we have 

(5.40) N(7-lh, en,1, T) <_ N(7[h, en,1,7-). 

(5.40) implies that (5.39) follows if (5.41) below is verified. 

(5.41) limsup E{logN(?-/h, en,1,7-)} < (X) 
n---~ oo 

for any 7 > 0 .  

(5.42) 

We evaluate en,1 to prove (5.41). Since 

en,1 ((Tr2(Y(r]l) - V(?-]2))) 2, (Tr2(V(O1) -- Y(02)) )  2) 

( M14U(n2)(lT~2(V(fll ) -- V(l]2)) - 7"r2(V(O1) -- V(O2))l ) 
- h 

< M14 
- h (en,l(Tr2V(l~l),Tr2V(O1)) 4- en,l(Tr2V(r12),Tf2V(02))), 

we have 

(5.43) 

where 

N(~[h,en,1 ,  T) ~ N 2 ~h, ena, 

(5.20) implies that 

Oh - ( 2v(v) Iv e R3}. 

(5.44) 

_<81ogMs+2Mglog 1 + ~  n ] +2Mglog 1 + ~  ] 

2M1---A1  _E{H(Zi, I . 
+4M91og 1+  hT n i = l  

We have from Jensen's inequality that 

(5.45) E logN 2 6h, ena, <81ogMs 

Since h-IE{H} is bounded from above, (5.41) follows from (5.43)-(5.45). 
lemma is proved. [] 

+ 8M9 log (1 + 2 h - ~ E { H } )  �9 

Hence the 
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