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Abstract. In this paper we give some basic characterizations of minimal Markov
basis for a connected Markov chain, which is used for performing exact tests in
discrete exponential families given a sufficient statistic. We also give a necessary
and sufficient condition for uniqueness of minimal Markov basis. A general algebraic
algorithm for constructing a connected Markov chain was given by Diaconis and
Sturmfels (1998, The Annals of Statistics, 26, 363-397). Their algorithm is based
on computing Grobner basis for a certain ideal in a polynomial ring, which can be
carried out by using available computer algebra packages. However structure and
interpretation of Grébner basis produced by the packages are sometimes not clear,
due to the lack of symmetry and minimality in Grébner basis computation. Our
approach clarifies partially ordered structure of minimal Markov basis.
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1. Introduction

In performing exact conditional tests in discrete exponential families given a suf-
ficient statistic, the p values are usually calculated by large sample approximations.
However when the data are sparse, i.e., when the sample size is small compared to the
size of the sample space, large sample approximations may not be sufficiently accurate.
When the sample size and the sample space are small, an enumeration of the sample
space may be feasible with some ingenious enumeration schemes. For the case of two-way
contingency tables with fixed row and column sums, Mehta and Patel (1983) proposed
a network algorithm, which incorporates appropriate trimming in enumeration. Aoki
(2002, 2003) proposed improvement of this trimming for two-way contingency tables
and a conditional test of Hardy-Weinberg model.

For sparse data sets, where the enumeration becomes infeasible and the large sample
approximation is not adequate, approximations of the p values by Monte Carlo methods
may be the only feasible approach. For some models, random samples can be easily
generated from the conditional distribution. A primary example is decomposable log-
linear models (e.g., Section 4.4 of Lauritzen (1996)) in multi-way contingency tables. In
decomposable models, random samples can be easily generated by exploiting the nesting
structure of the conditional independence. For testing more general hierarchical log-
linear models in multi-way contingency tables, a direct generation of random samples is
difficult. In this case Markov chain Monte Carlo techniques can be used.

As an example, consider testing the null hypothesis of no three-factor interactions
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in the log-linear model of three-way contingency tables. This is the simplest case of
non-decomposable hierarchical log-linear model for multi-way contingency tables and
we want to sample from the hypergeometric distribution over three-way tables with all
two-dimensional marginal frequencies fixed. This problem is surprisingly difficult. Not
only the direct generation of random samples but also the construction of appropriate
connected Markov chain is difficult as shown in Diaconis and Sturmfels (1998). For the
special case of 3 x 3 x K tables, we gave an explicit form of the unique minimal basis
for connected Markov chain (Aoki and Takemura (2003)). After laborious derivation we
found that the minimal Markov basis for the 3 x 3 x K case consists of moves of degrees
4, 6, 8 and 10 (see Section 3 below). At present it seems very difficult to obtain explicit
forms of minimal Markov basis for general three-way tables. It should be even harder to
completely characterize minimal Markov basis for testing general hierarchical log-linear
models in m-way contingency tables.

For the case of two-way tables, it is rather simple to describe a connected Markov
chain over two-way tables with fixed one-dimensional marginals, if there are no additional
restrictions on individual cells. However if there are additional restrictions on the cell
frequencies such as structural zeros in two-way tables, description of a connected Markov
chain becomes more complicated. In our subsequent work (Aoki and Takemura (2002))
we give an explicit characterization of the unique minimal Markov basis for two-way
tables with fixed marginals and arbitrary pattern of structural zeros. See Chapter 5
of Bishop et al. (1975) for comprehensive treatments of structural zeros in contingency
tables.

In principle the Grébner basis technique proposed in Diaconis and Sturmfels (1998)
can be employed to obtain a basis for connected Markov chain over any given sample
space. See also Dinwoodie (1998) for a clear exposition of the Grébuner basis technique.
However the Grobner basis computation becomes very time consuming for large tables.
Furthermore for some problems Grobner basis computation produces large number of
redundant basis elements due to the lack of symmetry and minimality in Grébner basis.
The lack of symmetry stems from the dependence of Grobner basis on the particular
term order. For example, Sakata and Sawae (2000) reports that for 4 x 4 x 4 tables with
fixed two-dimensional marginals, their lattice based algorithm was not able to produce
the Grobuner basis after two months of the computation and the incomplete basis at that
time already contained more than 340,000 basis elements. Furthermore the resulting
Grobner basis may not be easily interpretable due to the redundant elements and the
dependence on the chosen term order. On the other hand we have recently confirmed
that there are exactly 14 types of moves, which constitute the unique minimal basis for
4 x 4 x 4 tables, using the same argument as in Aoki and Takemura (2003). Therefore
at present Grobner basis technique does not seem to be a satisfactory answer.

In this paper we derive some basic characterizations of minimal Markov basis for a
connected Markov chain for sampling from conditional distributions. Our arguments are
totally elementary. We also give a necessary and sufficient condition for the uniqueness of
minimal Markov basis. Our approach is basically constructive and it clarifies a partially
ordered structure of minimal Markov basis. At present our result is not powerful enough
to completely characterize minimal Markov basis for a given problem, but with further
refinement it might be possible to implement an alternative algorithm for constructing
Markov basis for a connected Markov chain over a given sample space.

In Section 2 we derive our characterization of minimal Markov basis. Relevant
examples of discrete exponential families are studied in Section 3.
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2. Characterization and construction of minimal Markov basis

In this section we first give necessary notations and definitions. We follow the
framework of Diaconis and Sturmfels (1998). Our notation is somewhat different from
theirs. Then we state our results on minimal Markov basis and its uniqueness. In
Subsection 2.3 we give proofs of our results and some additional facts.

2.1 Notations and definitions

Let 7 be a finite set. With contingency tables in mind, an element of Z is called a cell
and denoted by @ € Z. |Z| denotes the number of cells. In the case of I x - - - x I,;, m-way
contingency tables, ¢ represents a multi-index ¢ = (i1,...,4m) and |Z| =11 x-- - xIp. A
non-negative integer z; denotes the frequency of cell 4. n =}, _; x; denotes the sample
size.

Let N = {0,1,...} denote the set of non-negative integers and let Z = {0,+1,...}
denote the set of integers. Let a(¢) € N”, ¢ € Z, denote v-dimensional fixed column
vectors consisting of non-negative integers. A v-dimensional sufficient statistic ¢ is given

by
t=> a(i)z.
icl
In the case of hierarchical model for m-way contingency tables t consists of appropriate
marginal totals.

Let the cells and the vectors a{4) be appropriately ordered. For m-way contingency
tables, we may order the multi-indices lexicographically. Let

& = {2;}iez € N7/
denote an |Z|-dimensional column vector of cell frequencies and let
A= {a(d)}iez
denote a v x |Z| matrix. Then the sufficient statistic ¢ is written as
t=Azx.

We call = a frequency vector. We also use the notation |2| = n = ), x; to denote the
sample size and the notation & > 0 to denote that the elements of x are non-negative
integers. We write £ > y if £ — y > 0. The set of x’s for a given t is denoted by

Concerning the matrix A we make the following assumption throughout this paper.

AssuMPTION 2.1. The |Z|-dimensional row vector (1,1,...,1) is a linear combi-
nation of the rows of A.

Assumption 2.1 is satisfied in the examples of Section 3. Assumption 2.1 implies
that the sample size n is determined from the sufficient statistic ¢ and all elements of F;
have the same sample size. Somewhat abusing the notation, we write n = |t} to denote
the sample size of elements of ;. Another consequence of this assumption is that each
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a(1), i € T, is a non-zero vector, because otherwise each linear combination of the rows
of A has 0 in the i-th position.

For the case of I x J contingency tables with fixed one-dimensional marginals and
with lexicographical ordering of cells, A is written as

(2.1) A=

1/I®EJ
Erol, |’

where 17 is the I-dimensional vector consisting of 1’s, E; is the J x J identity matrix
and ® denotes the Kronecker product. Similarly for I x J x K contingency tables with
fixed two-dimensional marginals and with lexicographical ordering of cells, A is written
as

1II®EJ®EK
(2.2) A=|E 01, 0Eg
EiQ Ey® 1%

An |Z|-dimensional vector of integers z € Z\Z! is called a move if it is in the kernel
of A:
Az =0.

Adding a move z to & does not change the sufficient statistic
t=Ax = A(z + z).

Therefore z can be interpreted as a move within F; for any t. By definition the zero
frequency vector z = 0 is also a move, although it does not move anything. For a move
z, the positive part zt and the negative part z~ are defined by

z§ = max(2;,0), z; = —min(z;,0),
respectively. Then z = 27 — z~. Note that if z is a move, then —z is also a move with
(—z)* =z~ and (—z)~ = z*. Note also that non-zero elements of z* and z~ do not
share a common cell. The positive part z* and the negative part 2~ have the same
value of sufficient statistic £ = Azt = Az~. The sample size of 2+ (or 27) is called the
degree of z and denoted by

degz = |zt =|z7|.

Occasionally we also write |2]| = ), |2i| = 2deg 2.
We say that a move z is applicable to x € F; if € + z € Fy, i.e., adding z to & does
not produce a negative cell. Since

z+z=xz+2zt -z,
z is applicable to « if and only if

(2.3) x>z .

Note also that z is applicable to x if and only if —z is applicable to x + z.
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Let B = {z1,...,z1} be a finite set of moves. Let ¢,y € F;. We say that y is
accessible from x by B and denote it by

z~y (mod B),

if there exists a sequence of moves z;,,...,2z;, from B and ¢; = £1, j =1,...,k, such
that y = « + Z?zl €;2;; and

h
(2.4) T+ €z, €F, h=1,...k—1,

J=1

i.e., we can move from z to y by moves from B without causing negative cells on the
way. Obviously the notion of accessibility is symmetric and transitive:

z~y=>y~z (mod B),

Ty~ Ty, Ty~ T3 =T~ 3 (mod B).

Therefore accessibility by B is an equivalence relation and each F; is partitioned into
disjoint equivalence classes by moves of B. We call these equivalence classes B-equivalence
classes of F;. Since the notion of accessibility is symmetric, we also say that  and y are
mutually accessible by B if € ~ y (mod B). Let & and y be elements from two different
B-equivalence classes of F;. We say that a move

z=x—y

connects these two equivalence classes. Diaconis et al. (1998) gives results on properties
of a B-equivalence class from an algebraic viewpoint.
Particular sets of moves we consider below are

Bi={z|t=Az" = Az7},
which is a set of moves z with the same value of the sufficient statistic ¢ = Az*, and
B, ={z|degz <n},

which is a set of moves with degree less than or equal to n.

A set of finite moves B = {2z;,...,2.} is a Markov basis if for all t, F; itself
constitutes one B-equivalence class, i.e., for every t and for every =,y € F;, y and
x are mutually accessible by B. Logically important point here is the existence of a
finite Markov basis, which is guaranteed by the Hilbert basis theorem (see Section 3.1 of
Diaconis and Sturmfels (1998)). In fact Diaconis and Sturmfels (1998) gave an algorithm
to produce a finite Markov basis. A Markov basis B is minimal if no proper subset of B is
a Markov basis. A minimal Markov basis always exists, because from any Markov basis,
we can remove redundant elements one by one, until none of the remaining elements can
be removed any further. From the definition, a minimal Markov basis is not symmetric,
i.e. for each z € B, —z is not a member of B when B is a minimal Markov basis.

It should be noted that a Markov basis B is common for all ¢. Suppose that a data
frequency vector  is given and we are concerned only with connecting frequency vectors
of F; for the given ¢ = Az. Then we may not need all of the moves from B. It is a



6 AKIMICHI TAKEMURA AND SATOSHI AOKI

subtle problem to determine which moves of B are needed for connecting F; for a given
t from the viewpoint of minimality. We discuss this point further in Subsection 3.2. We
also investigate this problem for the case of two-way contingency tables with structural
zeros in our subsequent work (Aoki and Takemura (2002)).

Having prepared adequate notations and definitions, we now proceed to characterize
structure of the minimal Markov basis.

2.2 Main results
For each t, let n = |t| be the sample size of elements of F; and let B, _; be the set
of moves with degree less than n. Write the B,,_y-equivalence classes of F; as

(2.5) Fe=FeaU---UFk,-
Let ;€ Fy;,j =1,..., Ky, be representative elements of the equivalence classes and
Zj1,52 = Tj — Tjy, 5 # J2

be a move connecting F; ;, and F; ;,. Note that we can connect all equivalence classes
with K¢ — 1 moves of this type, by forming a tree, where the equivalence classes are
interpreted as vertices and connecting moves are interpreted as edges of an undirected
graph. Now we state our main theorem. The following result is already known to
algebraists. See Theorem 2.5 of Briales et al. (1998).

THEOREM 2.1. Let B be a minimal Markov basis. For each t, BN By consists of
K; — 1 moves connecting different By _;-equivalence classes of Fy, in such a way that
the equivalence classes are connected into a tree by these moves.

Conversely choose any K; — 1 moves z1,...,2¢,k,—1 connecting different Byy_;-
equivalence classes of Fi, in such a way that the equivalence classes are connected into
a tree by these moves. Then

(2.6) B= U {260, s 2601}

t:K¢22

is @ minimal Markov basis.

Note that no move is needed from F; with K; = 1, including the case where F; is a
one-element set. If 7; = {&} is a one-element set, no non-zero move is applicable to x,
but at the same time we do not need to move from x at all for such a ¢.

In principle this theorem can be used to construct a minimal Markov basis from
below as follows. As the initial step we consider t with the sample size n = [¢| = 1.
Because B, consists only of the zero move By, = {0}, each point £ € F, |t| = 1, is
isolated and forms an equivalence class by itself. For each t with |t| = 1, we choose
K, —1 degree 1 moves to connect K; points of F; into a tree. Let B, be the set of chosen
moves. B is a subset of the set B; of all degree 1 moves. Since every degree 1 move can
be expressed by integer combination of chosen degree 1 moves, it follows that B; and By
induce same equivalence classes for each F; with |t| = 2. Therefore as the second step
we consider B;-equivalence classes of Fy for each £ with |t| = 2 and choose representative
elements from each equivalence class to form degree 2 moves connecting the equivalence
classes into a tree. We add the chosen moves to B; and form a set By. We can repeat
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this process for n = |t| = 3,4,.... By the Hilbert basis theorem there exists some ng
such that for n > ng no new moves need to be added. Then a minimal Markov basis B of
(2.6) is written as B = B,,,. Obviously there is a considerable difficulty in implementing
this procedure. We will discuss this point further in Subsection 3.2.

Theorem 2.1 clarifies to what extent minimal Markov basis is unique. If an equiv-
alence class consists of more than one element, then any element can be chosen as the
representative element of the equivalence class. Another indeterminacy is how to form
a tree of the equivalence classes. In addition there exists a trivial indeterminacy of a
Markov basis B in changing the signs of its elements. We say that a minimal basis is
unique if all minimal bases differ only by sign changes of the elements. In the following
we identify a move z with its sign change —z for brevity of statements. Considering
the indeterminacies and in view of Lemma 2.3 below, we have the following corollary to

Theorem 2.1.

COROLLARY 2.1. Minimal Markov basis is unique if and only if for each t, F;
itself constitutes one Bjy|_1-equivalence class or Fy is a two element set.

In this corollary, the two cases are not necessarily exclusive, namely, there are cases
where Fy is a two element set forming a single B|;j_;-equivalence class. In this corollary
the importance of two element set F; = {x,y} is suggested. When F; = {x,y} is a
two element set, then we call z =  — y an indispensable move. Now we state another
corollary, which is more convenient to use.

COROLLARY 2.2. The unique minimal Markov basis exists if and only if the set of
indispensable moves forms a Markov basis. In this case, the set of indispensable moves
is the unique Markov basis.

From these corollaries it seems that minimal Markov basis is unique only under
special conditions. It is therefore of great interest that minimal Markov basis is unique
for some standard problems in m-way (m > 2) contingency tables with fixed marginals.
On the other hand for the simplest case of one-way contingency tables, minimal Markov
basis is not unique. These facts will be confirmed in Section 3.

2.3 Proofs and some additional facts
Here we give a proof of Theorem 2.1 and its corollaries. We also state some lemmas,
which is of some independent interest.

LEMMA 2.1. If a move z is applicable to at least one element of Fy, then
(2.7) deg z < |t],
where the equality holds if and only if t = Azt = Az~.

ProoF. Let z be applicable to £ € ;. Then by (2.3) z; > z;7, Vi € Z. Summing
over T yields (2.7).

Concerning the equality, if 2 be applicable to € F; and the equality holds in (2.7),
then z; = 2, Vi € 7 and

t=Ax = Za(i)x.,; = Za(i)zi_ =Az".

i€l i€l
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Conversely if t = Azt = Az~ then deg z = |t| by the definition of deg z and |¢t|. (O

Lemma 2.1 implies that in considering mutual accessibility between x,y € F;, we
only need to consider moves of degree smaller than |¢| or moves z with t = Azt = Az~
For a frequency vector = {z;}icz, define its support supp(z) by

supp(z) = {i | z; > 0},

which is the set of positive cells of . Lemma 2.1 also implies the following simple but
useful fact.

LEMMA 2.2. Suppose that Fy = {x,y} is a two-element set and suppose that the
supports of & and y are disjoint. Then K; = 2 and x,y are Bjy_1-equivalence classes
by themselves. Furthermore z = y — x belongs to each Markov basis.

PROOF. Suppose that y is accessible from x by Bj;|—;. Then there exists a non-zero
move z with deg z < |t| — 1 such that 2 is applicableto z. If z+z =y, thenz =y -z
and deg z = |t| because the supports of  and y are disjoint. Therefore ¢ + z # y and
F: contains a third element & + z, which is a contradiction. Therefore y and z are in
different B);_1-equivalence classes, implying that y and x are Bj;|_;-equivalence classes
by themselves.

Now consider moving from  to y. Since they are Bj;_j-equivalence classes by
themselves, no non-zero move z of degree deg z < |¢t| is applicable to . By Lemma 2.1,
only moves z with ¢t = Azt = Az~ are applicable to z. If any such move is different
from y — x, then as above F; contains a third element. It follows that in order to move
from x to y, we have to move by exactly one step using the move z = y — . Therefore
z has to belong to any Markov basis.

Define min(x, y), the minimum of £ and y, elementwise
(2.8) min(z, y); = min(z;, ¥i)-

Lemma 2.2 can be slightly modified to yield the following result for the case, where
supports of & and y are not necessarily disjoint.

LEMMA 2.3. Suppose that F; = {x,y} is a two-element set. Then z = y —
belongs to each Markov basis.

ProoOF. If the supports of & and y are disjoint, then the result is already contained
in Lemma 2.2. Otherwise let v = min(z,y) and consider y — v and £ — v. Then the
supports of y — v and & — v are disjoint and by Lemma 2.2 again

z=(y—-v)—(z-v)=y~-=
belongs to each Markov basis. [
The following lemma concerns replacing a move by series of moves.

LEMMA 2.4. Let B be a set of moves and let zg ¢ B be another non-zero move.
Assume that zaL is accessible from z5 by B. Then for each x, to which zq is applicable,
T + z¢ is accessible from x by B.
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This lemma shows that if zé’ is accessible from z; by B, then we can always replace
z¢ by a series of moves from B.

PROOF. Suppose that zo is applicable to . Then =z — z; > 0 by (2.3). By
the definition of accessibility (cf. (2.4)), we can move from z; to z¢ by moves from B
without causing negative cells on the way. Then the same sequence of moves can be
applied to & without causing negative cells on the way, leading from x to € + zp. U

Now we are ready to prove Theorem 2.1 and its corollaries.

PrOOF OF THEOREM 2.1. Let B be a minimal Markov basis. For each z € B,, —
(BN B,), z* is accessible from z~ by BN B, because no move of degree greater than
n is applicable to z* as stated in Lemma 2.1. Considering this fact and Lemma 2.4, it
follows that B, and BN B, induces the same equivalence classes in F, |t| = n + 1. Fix
a particular ¢t. Write

{Zl,...,ZL} = BN B;.

Forany j=1,...,L, let
x = zj, Yy = zj_.

If x and y are in the same Bj;_;-equivalence class, then by Lemma 2.4, z; can be
replaced by a series of moves of lower degree from B and B — {z;} remains to be a
Markov basis. Here “—” stands for the set difference. This contradicts the minimality of
B. Therefore zj and z; are in two different Bj;_;-equivalence classes connecting them.
Now we consider an undirected graph, whose vertices are Bjy_1-equivalence classes of
Fi and whose edges are moves 24, ..., z;. Considering that B is a Markov basis, and no
move of degree greater than |t| is applicable to each element of F; as stated in Lemma
2.1, this graph is connected. On the other hand if the graph contains a cycle, then there
exist z;, such that zj+ and z; are mutually accessible by B—{z;}. By Lemma 2.4 again,
this contradicts the minimality of B. It follows that the graph is a tree. Since any tree
with K vertices has Ky — 1 edges, L = Ky — 1.

Reversing the above argument, it is now easy to see that if K; — 1 moves 24 1,...,
2t k,—1 connecting different Bj;_;-equivalence classes of F; are chosen in such a way

that the equivalence classes are connected into a tree by these moves, then

B: U {Zt,l7"‘;zt,K¢—1}

t:KgZ?

is a minimal Markov basis. OJ

Proor orF COROLLARY 2.1. From our argument preceding Corollary 2.1, it fol-
lows that if minimal Markov basis is unique then for each t, JF; itself constitutes one
B¢ -1-equivalence class or F; is a two element set {1, 2}, such that &, 2% @49
(mod Bjyj-1). Therefore we only need to prove the converse. Suppose that for each t,
Ft itself constitutes one By, _;-equivalence class or F; is a two element set. By Lemma
2.3, for each two-element set 7y = {x, y} the move z = y — « belongs to each Markov
basis. However by Theorem 2.1 each minimal Markov basis consists only of these moves.
Therefore minimal Markov basis is unique. [
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ProoF or COROLLARY 2.2. By Lemma 2.3, indispensable moves belong to each
Markov basis. Therefore if the set of indispensable moves forms a Markov basis, then it
is the unique Markov basis.

On the other hand if the set of indispensable moves do not constitute a Markov
basis, then there is a term with K; > 3 in (2.6) and in this case a minimal Markov basis
B is not unique as discussed after Theorem 2.1.

From these considerations it is obvious that if the unique Markov basis exists, it
coincides with the set of indispensable moves. [

Finally we derive an additional lemma, which is of some independent interest. For
some set F of frequency vectors, define its support by

supp(F) = U supp(z) = {i | z; > 0 for some = € F}.
zeF

Then we have the following lemma.

LEMMA 2.5. Consider the Bjy—1-equivalence classes of (2.5). The supports of the
equivalence classes supp(F¢ 1), .. .,supp(F.x,) are disjoint.

PROOF. Suppose that there exist © € Fy;,, ¥y € Fij,, J1 # Jo, such that the
supports of @ and y are not disjoint. Let v = min{«, ) and consider ¥ — v and = — v.
Because v is a non-zero vector, the sample size becomes smaller

lz —v| = |y - v] <n=lz|=y|

Then

z=y-z=(y—v)-(z-v)
has degree deg z = [x — v| < n. Now y = = + 2 is accessible from z by a single move z.
This is a contradiction, because & and y belong to different B, _1-equivalence classes. [

3. Examples and some discussions

In this section we verify Theorem 2.1 for various problems. First we investigate
standard contingency tables with fixed marginals. Then we investigate some other mod-
els including a simple case of Poisson regression model and the Hardy-Weinberg model.
Finally we give some discussions.

3.1 Ezamples
3.1.1 One-way contingency tables

We start with the simplest case of one-way contingency tables. Let = (x;) be I
dimensional frequency vector and A = 1. In this case, t is the sample size n. This
situation corresponds to testing the homogeneity of mean parameters for I independent
Poisson variables conditional on the total sample size n. See also the example of Poisson
regression below. In this case, a minimal Markov basis is formed as a set of I — 1 degree
1 moves, but is not unique. A minimal Markov basis is constructed as follows. First
consider the case of n = |t| = 1. There are I elements in F; as

F ={(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}.
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Each element © € F; forms an equivalence class by itself. To connect these points into
a tree, there are I’=2 ways of choosing I — 1 degree 1 moves by Cayley’s theorem (see
e.g. Chapter 4 of Wilson (1985)). One example is

B={(1,-1,0,...,0/,(0,1,—1,0,...,0),...,(0,...,0,1,-1)"}.

It is easily verified that no move of degree larger than 1 is needed.
3.1.2 Two-way contingency tables

Next example is a standard two-way contingency table with fixed row and column
sums. As is already seen, = {z;;} and

A= 1}®EJ
Er®1)

This is an elementary example of testing the hypothesis that the rows and the columns
are independent. In this case, it is well known that the set of degree 2 moves displayed
as

+1 -1
-1 +1

is a Markov basis. In addition, this is the unique minimal Markov basis from the discus-
sion in the previous section. Indeed, for every ¢ with |¢| = 2, except for a trivial case of
one-element set #F; = 1, there are only two elements in F; and the above move is the
difference of these two elements.
3.1.3 Three-way contingency tables with fixed two-dimensional marginals

Next we consider three-way contingency tables with fixed two-dimensional
marginals. As we have seen in Section 2, & = {z;;;} is the frequency vector of I x J x K
contingency table with lexicographical ordering of cells and A is written as

T ®E;®FEk
A= |E®1,;®Ek
Er®@E;® 1%

This corresponds to testing no three-way interactions of the log-linear model. As is al-
ready stated, it is surprisingly difficult to construct a connected Markov chain. Although
an algebraic algorithm to calculate a Markov basis is given by Diaconis and Sturmfels
(1998), any explicit characterization of a Markov basis is not known at present, ex-
cept for some special cases. For the case of 2 x J x K tables, an explicit form of a
Markov basis is given in Diaconis and Sturmfels (1998). Their basis is a set of degree
4,6,...,2 x min{J, K} moves, where a typical degree 2n move is the following 2 x n xn
move displayed as

+1 -1 0 0 --- 0O —1+1 0 0 --- 0
0 1 -1 0 --- 0 0 -1+41 0 --- 0
0 +1 -1 0 0 -1 41 0
0 0 -~ 0 +1 -1 0 0 --- 0 —1+1
-1 0 --- 0 0 41 |41 0 -~ 0 0 —1

All the other degree 2n moves are obtained from this by permutations of indices or axes.
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For the case of 3 x 3 x K tables, Aoki and Takemura (2003) proves that a Markov
basis is given as a set of the following four types of moves (and permutation of their
indices and axes).

+1 -1 0 0 O -1 41 0 0 0 00 0 00
degree 4 move: -1+1 0 0 © +1 -1 0 0 O 00 0 00O
0 0 0 0 O 0 0 0 0 O 00 0 0O
+1 -1 0 0 O -1 41 0 0 O 00 0 0O
degree 6 move: -1 0 41 0 O +1 0 -1 0 O 00 0 0O
0 +41 -1 0 O 0 -1 +41 0 O 00 0 0O
+1 -1 0 0 O -1 0 +1 ¢ O 0+4+1 -1 00
degree 8 move: -1 41 0 0 0O +1 0 6 -1 O -1 0 410
0 0 0 0 O 0 0 -1+1 0 00 41 -10
+1 -1 0 0 O -1 0 +1 0 0 041 -1 0 O
degree 10 move: -1 41 0 -1 +1 +1 0 0 0 -1 |0 -1 0 +10
0 0 0 41 —1 0 0 -1 0 +1 00 +1-10

It is observed that F; is a two element set for each t = Az of the above moves z
for the 2 x J x K case and for the 3 x 3 x K case. Hence these moves constitute the
unique minimal basis for respective cases.

3.1.4 Three-way contingency tables with fized one-dimensional marginals

We now consider general three-way tables with fixed one-dimensional marginals.
This corresponds to testing the independence model for three-way tables. Recently Dobra
and Sullivant (2002) gave a general construction of Markov basis for decomposable and
reducible models. The three-way independence model is a special case of decomposable
models and can be treated in the framework of Dobra and Sullivant (2002). However our
main concern here is the question of minimality of the Markov basis given in Proposition
3.1 below.

With lexicographic ordering of indices, the matrix A is written as

17921, ® Ex
Erol, ol

In this case, we construct a minimal Markov basis as follows.
There are two obvious patterns of moves of degree 2. An example of moves of type
Iis
Z111 = 2222 =1, 2011 = 2122 = —1,
with other elements being 0. For the case of 2 x 2 x 2 table, this move can be displayed
as follows

+1 0 -1 0
0 -1 0 +1f

All the other moves of type I are obtained by permutation of indices or the axes.
An example of moves of type II is

Zi11 = z122 = 1, Zz112 = z121 = 1,
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with other elements being 0. For the case of 2 x 2 x 2 table, this move can be displayed
as follows

+1 -1 00
~1 +1 0 of

All the other moves of type II are obtained by permutation of indices or the axes. Let B*
be the set of type I and type II degree 2 moves. Then we have the following proposition.

PROPOSITION 3.1. B* is a Markov basis for three-way contingency tables with fized
one-dimensional marginals.

ProOF. In this problem it is obvious that no degree 1 move is applicable to any
frequency vector. Furthermore it is easy to verify that every degree 2 move is either
of type I or type II. It remains to verify that for || > 3, F; itself constitutes one B*-
equivalence class. We can now apply the same argument used for 3 x 3 x K tables with
fixed two-dimensional marginals in Aoki and Takemura (2003). Suppose that for some
t, F; consists of more than one B*-equivalence classes. Let Fy, Fo denote two different
B*-equivalence classes. Choose & € F1, y € F5 such that

2| = |z —y| = Z lxijk — Yijk|

©,5,k

is minimized. Because & and y are chosen from different B*-equivalence classes, this
minimum has to be positive. In the following we let 2177 > 0 without loss of generality.

Case 1. Suppose that there exists a negative cell z,,11 < 0, i9p > 2. Then because
Z%k Zigjk = 0, there exists (j,k), j +k > 2, with 2;,;x > 0. Then the four cells

(1717 1)a (i07 17 1)7 (i07j7k)a (17ja k)

are in the positions of either type I move or type II move. In either case we can apply
a type I move or a type II move to  or y and make |z| = | — y| smaller, which is a
contradiction. This argument shows that z can not contain both positive and negative
elements in any one-dimensional slice.

Case 2. Now we consider the remaining case, where no one-dimensional slice of 2
contains both positive and negative elements. Since Z k 215k = 0, there exists (1, k1),
J1,k1 > 2, such that 25,5, < 0. Similarly there ex1sts (¢1,k2), i1,k2 > 2, such that
Zij1k, < 0. Then the four cells

(1,41, k1), (1,1, k1), (i1, 1, k2), (i1, J1, k2)

are in the positions of a type II move (if k1 = k) or a type I move (if k1 # k2) and
we can apply a degree 2 move. By doing this |z| = | — y| may remain the same, but
now 211%, becomes negative and this case reduces to Case 1. Therefore Case 2 itself is a
contradiction. [J

We show in the following that B* is not a minimal Markov basis. Let z be a degree 2
move and let t = Az*. If z is a type Il move, it is easy to verify that F; is a two-element
set {z, 27 }. Therefore degree 2 moves of type II belong to each Markov basis. On the
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other hand, if z is a type I move, F; is a four-element set. For the 2 x 2 x 2 case, let
t=(21.,22..,21,22,2.1,2.2) =(1,1,1,1,1,1)". Then it follows

r __Ji1o) [o0] [o1] [oo] [oo] [01 oo} 10
(LLLLLY = 3Yloo| o1 {oo| {10 |1o| loop |o1] |oo|f"

To connect these elements to a tree, only three moves of type I are needed. In the 2x2x2
case, there are 442 = 16 possibilities, such as

+1 -1 0 0 0 +1 0 -1 0 0 -1 +1
0 0 -1 417 -1 0 +1 of +1 -1 0 0
or
+1 -1 o 0 +1 0{ (0 -1 +1 0O -1 0
0 0 -1 417 -10 0 +1f 0 -1 0 +1

and so on. From these considerations, a minimal Markov basis for I x J x K tables

consists of
3 NN/ (K
2/\2/\2
degree 2 moves of type I and

1(2)(2) G (E) ) G)

degree 2 moves of type II.
3.1.5 Poisson regression
Here we consider a simple example of Poisson regression discussed in Diaconis et al.

(1998). Let = = (zo,21,...,%4)" and
A 11111 .
01234
Diaconis et al. (1998) states that the set of degree 2 moves,

B = {(17 —1’ _17 1’ 0)/’ (17 -1a OJ _]-7 1)Ia (07 1; "17 _17 1),7
(17 —21 1) O’ O)’7 (07 la _27 17 O)Ia (07 07 1) —2a 1),}

enables a connected chain. Indeed, the above basis is a minimal Markov basis but is not
unique. To see this, consider F; with [t| = 2. There are 9 possible values of ¢ as

t'=(2,0),(2,1),...,(28).

For the case of ' = (2,0),(2,1),(2,7),(2,8), there is only one element in F; and we need
not any move. For the case of ' = (2,2),(2,3),(2,5),(2,6), there are two elements in
Fi, but for the case of ' = (2,4) there are three elements in F; as

}—(2,4)’ = {(17 0,0,0, 1),a (07 1,0,1, 0),7 (07 0,2, 0, 0)/}

The elements of the above B corresponds to the difference of the two elements in F;,
t'=1(2,2),(2,3),(2,5),(2,6), and {(1,-1,0,-1,1)",(0,1,-2,1,0)}, which connects the



MINIMAL MARKOV BASIS 15

three elements in F(y 4) into a tree. This is not the only pair of moves to connect the
three elements in F5 4) to form a tree. There are three possibilities, i.e.,

B* = {(1,-1,-1,1,0)',(1,-1,0, -1, 1),(0,1,-1,-1, l)/,
(17 —27 1) 07 0)/) (1a 07 _2a 07 1)/’ (0707 17 _27 1)/}

and .
B** = {(]‘7 _]'a —17 170)/7 (17072a0a 1)/7 (07 1) _17 —17 1)/7

(1,-2,1,0,0)",(0,1,-2,1,0),(0,0,1,-2,1)"}

are also minimal Markov bases.
3.1.6 Hardy-Weinberg model
Consider the case of

4
= ($11,IE12, <oy T11,X22,%235 ..., L21,T33, - - - ,2711)

and t = (t1,...,t;) defined as

ti:2xii+z$ij7 i=1,...,1,
J#i

where z;; = z;; for i > j. In this case, A is written as

A= (Ar Ar-r --- A1),  Ap = (Okxu-x) By),

where By is the following k x k square matrix

[21 1 -1
010 ---0
B,=1001 t]
[ 00 --- 0 1]

This corresponds to the conditional test of the Hardy-Weinberg proportion. For this
problem, Guo and Thompson (1992) construct a connected Markov chain. Their basis
consists of three types of degree 2 moves, namely, type 0, type 1 and type 2. Here the
term type refers to the number of nonzero diagonal cells in the move. The examples of
the moves are displayed as

0+1 -1 0 +1 -1 -1 0 +10 ~20

40 0 -1 . 0 +10 . 000

type O: o 41p type 1: o op type 2: +10f
0 0 0

We show in the following that their basis is not minimal, and a minimal basis is not
unique. Consider F; with |¢| = 2 for the above three types of moves. If t = Azt = Az~
for moves z of type 1 or type 2, there are two elements in F; and the move of type 1
or type 2 is the difference of these two elements. But if t = Azt = Az~ for a move
z of type 0, there are three elements in F;. Then to connect these three elements to
form a tree, we can choose two moves to construct a minimal Markov basis. (There are
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three ways of doing this.) For example, consider the case of I =4 and ¢t = (1,1,1,1)’.
F(1,1,1,1) Is written as

0100| [0o10] [coo1

000 001 010

Faanay = 0 1] oop 00
0 0

To connect these three elements to a tree, any two of the following type 0 moves of degree
2,

0+1 -1 0 041 0 -1 00 -1 +1
0 0 -1 0 -1 0 0 +1 -1

0 +1¢ 0 +17f 0 0

0 0 0

can be included in a minimal Markov basis. Accordingly, I(I —1)(I —2)(I —3)/12 moves
of type 0, I{I — 1)(I —2)/2 moves of type 1 and I(I — 1)/2 moves of type 2 constitute
a minimal Markov basis. The basis by Guo and Thompson (1992) is not minimal in
the sense that all of I(I — 1)(I — 2)(I — 3)/8 moves of type 0 are used in the algorithm
proposed by them.

3.2 Some discussion

In the examples above we saw that for some problems minimal Markov basis is
unique and for other problems it is not unique. Clearly this depends only on the prop-
erties of matrix A. But it seems very difficult to give a simple necessary and sufficient
condition on A such that minimal Markov basis is unique. In integer programming
literature (e.g. Schrijver (1986)), an important condition is the total unimodularity of
the matrix A. We have seen that in the case of two-way contingency tables minimal
Markov basis is unique and it is well known that A in (2.1) is totally unimodular. How-
ever in the simplest case of one-way tables minimal Markov basis is not unique and yet
A= (1,...,1) is obviously totally unimodular. This shows that total unimodularity is
not directly related to uniqueness of minimal Markov basis. We should also mention
that A for three-way tables with fixed two-dimensional marginals in (2.2) is not totally
unimodular in general. In fact we have found a submatrix of A in (2.2) with determinant
2 by simple computer search.

As mentioned in Subsection 2.2, Theorem 2.1 is conceptually constructive, build-
ing up a minimal Markov basis from below. However it is computationally difficult to
characterize the Bjs_1-equivalence classes of F, for large |t| as discussed in Diaconis
et al. (1998). If we could easily select representative elements from B4/ 1-equivalence
classes F; for each t, then a minimal Markov basis could be constructed as described
in Theorem 2.1. Another question is to find a theoretical upper bound for ng such that
F¢ itself constitutes one Bj;_1-equivalence class for all ¢ with |t] > ng. By the Hilbert
basis theorem existence of such an ng is guaranteed, but if we do not know some upper
bound for ng we can not actually stop forming Bj,—;-equivalence classes of ;.

As mentioned at the end of Subsection 2.1 it is a subtle question to determine which
moves of a minimal Markov basis B are needed for connecting F; for a given ¢. Obviously
we only need those elements of B, that are applicable to at least one frequency vector
of F;. However the set of these move may not be minimal for connecting F; for a given
t. See the discussion on corner minors for two-way tables in Section 3 of Diaconis et al.
(1998). We study this question on two-way tables with structural zeros in our subsequent
work (Aoki and Takemura (2002)).
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