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Abstract .  In this paper we give some basic characterizations of minimal Markov 
basis for a connected Markov chain, which is used for performing exact tests in 
discrete exponential families given a sufficient statistic. We also give a necessary 
and sufficient condition for uniqueness of minimal Markov basis. A general algebraic 
algorithm for constructing a connected Markov chain was given by Diaconis and 
Sturmfels (1998, The Annals of Statistics, 26, 363-397). Their algorithm is based 
on computing Gr6bner basis for a certain ideal in a polynomial ring, which can be 
carried out by using available computer algebra packages. However structure and 
interpretation of GrSbner basis produced by the packages are sometimes not clear, 
due to the lack of symmetry and minimality in GrSbner basis computation. Our 
approach clarifies partially ordered structure of minimal Markov basis. 
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i .  Introduction 

In performing exact conditional tests in discrete exponential families given a suf- 
ficient statistic, the p values are usually calculated by large sample approximations. 
However when the data are sparse, i.e., when the sample size is small compared to the 
size of the sample space, large sample approximations may not be sufficiently accurate. 
When the sample size and the sample space are small, an enumeration of the sample 
space may be feasible with some ingenious enumeration schemes. For the case of two-way 
contingency tables with fixed row and column sums, Mehta and Patel (1983) proposed 
a network algorithm, which incorporates appropriate trimming in enumeration. Aoki 
(2002, 2003) proposed improvement of this trimming for two-way contingency tables 
and a conditional test of Hardy-Weinberg model. 

For sparse data sets, where the enumeration becomes infeasible and the large sample 
approximation is not adequate, approximations of the p values by Monte Carlo methods 
may be the only feasible approach. For some models, random samples can be easily 
generated from the conditional distribution. A primary example is decomposable log- 
linear models (e.g., Section 4.4 of Lauritzen (1996)) in multi-way contingency tables. In 
decomposable models, random samples can be easily generated by exploiting the nesting 
structure of the conditional independence. For testing more general hierarchical log- 
linear models in multi-way contingency tables, a direct generation of random samples is 
difficult. In this case Markov chain Monte Carlo techniques can be used. 

As an example, consider testing the null hypothesis of no three-factor interactions 
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in the log-linear model of three-way contingency tables. This is the simplest case of 
non-decomposable hierarchical log-linear model for multi-way contingency tables and 
we want to sample from the hypergeometric distribution over three-way tables with all 
two-dimensional marginal frequencies fixed. This problem is surprisingly difficult. Not 
only the direct generation of random samples but also the construction of appropriate 
connected Markov chain is difficult as shown in Diaconis and Sturmfels (1998). For the 
special case of 3 x 3 x K tables, we gave an explicit form of the unique minimal basis 
for connected Markov chain (Aoki and Takemura (2003)). After laborious derivation we 
found that the minimal Markov basis for the 3 • 3 x K case consists of moves of degrees 
4, 6, 8 and 10 (see Section 3 below). At present it seems very difficult to obtain explicit 
forms of minimal Markov basis for general three-way tables. It should be even harder to 
completely characterize minimal Markov basis for testing general hierarchical log-linear 
models in m-way contingency tables. 

For the case of two-way tables, it is rather simple to describe a connected Markov 
chain over two-way tables with fixed one-dimensional marginals, if there are no additional 
restrictions on individual cells. However if there are additional restrictions on the cell 
frequencies such as structural zeros in two-way tables, description of a connected Markov 
chain becomes more complicated. In our subsequent work (Aoki and Takemura (2002)) 
we give an explicit characterization of the unique minimal Markov basis for two-way 
tables with fixed marginals and arbitrary pattern of structural zeros. See Chapter 5 
of Bishop et al. (1975) for comprehensive treatments of structural zeros in contingency 
tables. 

In principle the Grbbner basis technique proposed in Diaconis and Sturmfels (1998) 
can be employed to obtain a basis for connected Markov chain over any given sample 
space. See also Dinwoodie (1998) for a clear exposition of the Grbbner basis technique. 
However the Grbbner basis computation becomes very time consuming for large tables. 
Furthermore for some problems Grbbner basis computation produces large number of 
redundant basis elements due to the lack of symmetry and minimality in Grbbner basis. 
The lack of symmetry stems from the dependence of Grbbner basis on the particular 
term order. For example, Sakata and Sawae (2000) reports that for 4 x 4 x 4 tables with 
fixed two-dimensional marginals, their lattice based algorithm was not able to produce 
the Grbbner basis after two months of the computation and the incomplete basis at that  
time already contained more than 340,000 basis elements. Furthermore the resulting 
Grbbner basis may not be easily interpretable due to the redundant elements and the 
dependence on the chosen term order. On the other hand we have recently confirmed 
that there are exactly 14 types of moves, which constitute the unique minimal basis for 
4 • 4 • 4 tables, using the same argument as in Aoki and Takemura (2003). Therefore 
at present Grbbner basis technique does not seem to be a satisfactory answer. 

In this paper we derive some basic characterizations of minimal Markov basis for a 
connected Markov chain for sampling from conditional distributions. Our arguments are 
totally elementary. We also give a necessary and sufficient condition for the uniqueness of 
minimal Markov basis. Our approach is basically constructive and it clarifies a partially 
ordered structure of minimal Markov basis. At present our result is not powerful enough 
to completely characterize minimal Markov basis for a given problem, but with further 
refinement it might be possible to implement an alternative algorithm for constructing 
Markov basis for a connected Markov chain over a given sample space. 

In Section 2 we derive our characterization of minimal Markov basis. Relevant 
examples of discrete exponential families are studied in Section 3. 
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2. Characterization and construction of minimal Markov basis 

In this section we first give necessary notat ions and definitions. We follow the 
framework of Diaconis and Sturmfels (1998). Our nota t ion  is somewhat  different from 
theirs. Then  we state  our results on minimal Markov basis and its uniqueness. In 
Subsection 2.3 we give proofs of our  results and some addit ional  facts. 

2.1 Notat ions and definitions 
Let :Y be a finite set. Wi th  cont ingency tables in mind, an element of:Y is called a cell 

and denoted  by i r :Z-. III denotes the  number  of cells. In the case o f /1  •  x Im m-way 
contingency tables, i represents  a mult i - index i = ( i i , . . . ,  ira) and I:/:1 = I1 x - - -  x Ira. A 
non-negative integer x / d e n o t e s  the frequency of cell i- n = Y]/ez xi denotes the sample 
size. 

Let  N = {0, 1 , . . . }  denote  the set of non-negative integers and let Z = {0, + 1 , . . . }  
denote  the set of integers. Let  a(i)  E N' ,  i E 2;, denote  L,-dimensional fixed column 
vectors consisting of non-negat ive integers. A ~-dimensional sufficient stat ist ic t is given 
by 

t =  E a ( i ) x i .  
i E I  

In the case of hierarchical model  for m-way contingency tables t consists of appropr ia te  
marginal  totals.  

Let  the cells and the vectors a(i)  be appropr ia te ly  ordered.  For m-way cont ingency 
tables, we may order the multi-indices lexicographically. Let  

x - -  { x i } i e ~  E N Izl 

denote  an [:/I-dimensional column vector  of cell frequencies and let 

d = { a ( i ) } i e z  

denote  a v x IZI matrix.  Then  the sufficient statist ic t is wr i t ten  as 

t = A x .  

We call a~ a frequency vector. We also use the no ta t ion  txl = n = ~ i  xi  to denote  the 
sample size and the nota t ion  x > 0 to  denote  tha t  the elements of x are non-negative 
integers. We write x > y if x - y > 0. The  set of x ' s  for a given t is denoted  by 

~-t = { x  > O l A x  = t } .  

Concerning the mat r ix  A we make the following assumption th roughout  this paper .  

ASSUMPTION 2.1. The  [Z[-dimensional row vector  (1, 1 , . . . ,  1) is a l inear combi- 
nat ion of the rows of A. 

Assumption 2.1 is satisfied in the examples of Section 3. Assumpt ion  2.1 implies 
tha t  the sample size n is de termined  from the sufficient statist ic t and all elements of 9vt 
have the same sample size. Somewhat  abusing the notat ion,  we wri te  n = Itl to  denote  
the sample size of elements of 9ft. Another  consequence of this assumption is tha t  each 
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a(i) ,  i E 2-, is a non-zero vector,  because otherwise each linear combina t ion  of the rows 
of A has 0 in the  i - t h  posit ion. 

For the  ease of I x J cont ingency tables  wi th  fixed one-dimensional  margina ls  and  
wi th  lexicographical  ordering of cells, A is wr i t t en  as 

(2.1) A ---- [ EI  @ Yj ' 

where l r  is t h e / - d i m e n s i o n a l  vector  consist ing of l ' s ,  E j  is the J x J ident i ty  m a t r i x  
and  | denotes  the  Kronecker  product .  Similarly for I x J x K cont ingency tables  wi th  
fixed two-dimensional  marginals  and wi th  lexicographical  ordering of cells, A is wr i t t en  
as 

[ I ~ | 1 7 4  

(2.2) a = / E I  | l'j | EK I "  

[ E I |  E j |  I'K J 

An 12-I-dimensional vector  of integers z E zlZl is called a move if it is in the  kernel 
of A: 

A z  = O. 

Adding  a move z to x does not  change the sufficient s ta t is t ic  

t = A x  = A ( x  + z ) .  

Therefore  z can be in te rpre ted  as a move wi th in  ~ct for any t. By  definit ion the zero 
f requency vector  z = 0 is also a move, a l though it does not  move anything.  For a move 
z,  the posi t ive pa r t  z + and the negat ive pa r t  z -  are defined by 

z + = max(z / ,  0), z~- = - min(z i ,  0), 

respectively.  T h e n  z = z + - z - .  Note  t ha t  if z is a move,  then  - z  is also a move with  
( - z )  + = z -  and  ( - z ) -  = z +. Note  also t ha t  non-zero e lements  of z + and z -  do not  
share a c o m m o n  cell. The  posi t ive pa r t  z + and the negat ive pa r t  z -  have the  same  
value of sufficient s ta t is t ic  t = A z  + = A z - .  The  sample  size of z + (or z - )  is called the 
degree of z and  denoted  by 

d e g z  = Iz+l = I z - I -  

Occasional ly  we also write [z I = Y]~i Izil = 2deg  z. 
We say t ha t  a move z is applicable to x r 5rt if x + z r Ut, i.e., adding z to x does 

not  p roduce  a negat ive  cell. Since 

x-V z = x + z + -  z - ,  

z is appl icable  to  x if and only if 

(2.3) x _> z - .  

Note  also t h a t  z is appl icable  to x if and  only if - z  is appl icable  to  x + z.  
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Let  B = { z l , . . . ,  ZL} be a finite set of moves. Let  x ,  y �9 bet. We say tha t  y is 
accessible from x by B and denote  it by 

x N y (mod B), 

if there  exists a sequence of moves z h , . . .  , z i  k from B and ej = +1,  j = 1 , . . .  ,k,  such 
k and tha t  y = x + ~ j = l  e j z i j  

h 

(2.4) x + E e J z i 5  �9 ~ t ,  h = 1 , . . . , k  - 1, 
j=l 

i.e., we can move from x to y by moves from B wi thout  causing negative cells on the 
way. Obviously the notion of accessibility is symmetr ic  and transitive: 

x ~ y ~ y ,-~ x ( m o d  B ) ,  

X l  '~  X2,  X2 r.~ X3 ==~ 3}1 ~.. ~g3 (mod B). 

Therefore  accessibility by B is an equivalence relat ion and each ~ t  is par t i t ioned into 
disjoint equivalence classes by moves of B. We call these equivalence classes B-equivalence 
classes of )ct. Since the notion of accessibility is symmetr ic ,  we also say tha t  x and y axe 
mutual ly  accessible by B if x ~ y (mod B). Let  x and y be elements from two different 
B-equivalence classes of $r't. We say tha t  a move 

z = x - - y  

connects these two equivalence classes. Diaconis et al. (1998) gives results on propert ies  
of a B-equivalence class from an algebraic viewpoint.  

Par t icu lar  sets of moves we consider below are 

Bt = { z  [ t = A z  + = A z - } ,  

which is a set of moves z with the same value of the sufficient s tat is t ic  t -- A z  +, and 

Bn = {z I deg z < n}, 

which is a set of moves with degree less than  or equal to  n. 
A set of finite moves B = { Z l , . . . , Z L }  is a Markov  basis if for all t ,  ~ t  itself 

const i tutes  one B-equivalence class, i.e., for every t and for every x,  y C ~'t, Y and 
x are mutual ly  accessible by B. Logically impor tan t  point  here is the existence of a 
finite Maxkov basis, which is guaranteed  by the Hilber t  basis theorem (see Section 3.1 of 
Diaconis and Sturmfels (1998)). In fact Diaconis and Sturmfels  (1998) gave an algori thm 
to produce  a finite Markov basis. A Maxkov basis B is minimal  if no p roper  subset of B is 
a Maxkov basis. A minimal Maxkov basis always exists, because from any Maxkov basis, 
we can remove redundant  elements one by one, until  none of the remaining elements can 
be removed any further.  From the definition, a minimal  Maxkov basis is not  symmetr ic ,  
i.e. for each z E B, - z  is not a member  of B when B is a minimal  Maxkov basis. 

It  should be noted  tha t  a Markov basis B is common for all t .  Suppose tha t  a d a t a  
frequency vector  x is given and we are concerned only with connect ing frequency vectors 
of 5 t  for the given t = A x .  Then  we may not need all of the moves from B. It  is a 
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subtle problem to determine which moves of /3  are needed for connect ing $-t for a given 
t from the viewpoint  of minimality. We discuss this point  fur ther  in Subsection 3.2. We 
also investigate this problem for the case of two-way cont ingency tables with s t ructural  
zeros in our subsequent work (Aoki and Takemura  (2002)). 

Having prepared adequate  notat ions  and definitions, we now proceed to characterize 
s t ruc ture  of the minimal Markov basis. 

2.2 Main results 
For each t, let n = Itl be the sample size of elements of Jut and let Bn-1 be the set 

of moves with degree less t han  n. Write  the Bn_l-equivalence classes of ~'t as 

(2.5) ,,~t = .~'t,1 U ' "  U -~"t,Kt- 

L e t  Ir, j E J~t , j ,  j = 1 , . . . ,  Kt ,  be representat ive  elements of the equivalence classes and 

Z j l , j 2  = W j l  -- X j2 ,  j l  # j2 

be a move connecting Yztj1 and ~t52- Note tha t  we can connect  all equivalence classes 
with Kt - 1 moves of this type,  by forming a tree, where the equivalence classes are 
in terpre ted as vertices and connect ing moves are in terpre ted  as edges of an undirected 
graph.  Now we s ta te  our main theorem.  The  following result  is already known to 
algebraists. See Theo rem 2.5 of Briales et al. (1998). 

THEOREM 2.1. Let 13 be a minimal Markov basis. For each t, /3 A/3t consists of 
Kt  - 1 moves connecting different Bltl_l-equivalence classes of ~t ,  in such a way that 
the equivalence classes are connected into a tree by these moves. 

Conversely choose any Kt  - 1 moves z t , l , . . . ,  zt,tc~-i connecting different/31tl-1- 
equivalence classes of ~t ,  in such a way that the equivalence classes are connected into 
a tree by these moves. Then 

(2.6) 13= U {Zt'l'''''Zt,Kt-1} 
t :Kt>2 

is a minimal Markov basis. 

Note tha t  no move is needed from ~-t with Kt = 1, including the case where ~'t is a 
one-element set. If $-t = {x} is a one-element set, no non-zero move is applicable to  x ,  
bu t  at the same t ime we do not  need to move from x at all for such a t .  

In principle this theorem can be used to construct  a minimal  Markov basis from 
below as follows. As the initial step we consider t wi th  the sample size n = It] = 1. 
Because /30 consists only of the zero move /30 = {0}, each point  x E 5ut, It] -- 1, is 
isolated and forms an equivalence class by itself. For each t wi th  Itl -- 1, we choose 
Kt - 1 degree 1 moves to connect  Kt points of $-t into a tree. Let  B1 be the set of chosen 
moves. B1 is a subset of the set/31 of all degree 1 moves. Since every degree 1 move can 
be expressed by integer combinat ion  of chosen degree 1 moves, it follows that /~1 and B1 
induce same equivalence classes for each 5rt with It] = 2. Therefore  as the second step 
we consider/~l-equivalence classes of ~ t  for each t with It I = 2 and choose representat ive 
elements from each equivalence class to form degree 2 moves connect ing the equivalence 
classes into a tree. We add the chosen moves to/31 and form a set/32- We can repeat  
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this process for n = Itl = 3 , 4 , . . . .  By the Hilbert basis theorem there exists some no 
such tha t  for n _> no no new moves need to be added. Then a minimal Markov basis B of 
(2.6) is wri t ten as B =/~no- Obviously there is a considerable difficulty in implementing 
this procedure. We will discuss this point further in Subsection 3.2. 

Theorem 2.1 clarifies to what  extent minimal Markov basis is unique. If an equiv- 
alence class consists of more than  one element, then any element can be chosen as the 
representative element of the equivalence class. Another  indeterminacy is how to form 
a tree of the equivalence classes. In addit ion there exists a trivial indeterminacy of a 
Markov basis B in changing the signs of its elements. We say tha t  a minimal basis is 
unique if all minimal bases differ only by sign changes of the elements. In the following 
we identify a move z wi th  its sign change - z  for brevity of s tatements.  Considering 
the indeterminacies and in view of Lemma 2.3 below, we have the following corollary to 
Theorem 2.1. 

COROLLARY 2.1. Minimal Markov basis is unique i f  and only i f  for each t,  ~ t  
itself constitutes one Bjt[_ 1-equivalence class or ~ t  is a two element set. 

In this corollary, the two cases are not necessarily exclusive, namely, there are cases 
where 5~t is a two element set forming a single Bltl_l-equivalence class. In this corollary 
the importance of two element set ~'t -- {x, y} is suggested. When  5r = {x, y} is a 
two element set, then we call z = x - y an indispensable move. Now we state another  
corollary, which is more convenient to use. 

COROLLARY 2.2. The unique minimal Markov basis exists i f  and only i f  the set of 
indispensable moves forms a Markov basis. In this case, the set of indispensable moves 
is the unique Markov basis. 

From these corollaries it seems tha t  minimal Markov basis is unique only under  
special conditions. It is therefore of great interest tha t  minimal Markov basis is unique 
for some s tandard  problems in m-way (m > 2) contingency tables with fixed marginals. 
On the other hand for the simplest case of one-way contingency tables, minimal  Markov 
basis is not unique. These facts will be confirmed in Section 3. 

2.3 Proofs and some additional facts 
Here we give a proof of Theorem 2.1 and its corollaries. We also state some lemmas, 

which is of some independent  interest. 

LEMMA 2.1. I r a  move z is applicable to at least one element of .~t, then 

(2.7) d e g z  _~ ttl, 

where the equality holds i f  and only i f  t = A z  + = A z - .  

PROOF. Let z be applicable to x E 9ft. Then by (2.3) x~ > z~-, Vi E 27. Summing 
over 27 yields (2.7). 

Concerning the equality, if z be applicable to x E ~ t  and the equality holds in (2.7), 
then x~ = z~-, Vi E 27 and 

t =  A x  = ~ a ( i ) x ~  = ~ - ~ a ( i ) z ;  = A z - .  
iEZ i E I  
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Conversely if t -- A z  + = A z - ,  then  deg z = Itl by the definition of deg z and  It]. [] 

L e m m a  2.1 implies t ha t  in considering mutua l  accessibility be tween x ,  y E ~ t ,  we 
only need to consider moves of degree smaller  t han  I tl or moves z wi th  t = A z  + = A z - .  

For a f requency vector  x = {xi}iesr, define its support s u p p ( x )  by 

s u p p ( x )  =- {i I xi  > 0}, 

which is the set of posi t ive cells of x .  L e m m ~  2.1 also implies the  following s imple  bu t  
useful fact. 

LEMMA 2.2. Suppose that ~ t  = {x ,  y }  is a two-element set and suppose that the 

supports of x and y are disjoint. Then K t  = 2 and x ,  y are Blti_l-equivalence classes 
by themselves. Furthermore z = y - x belongs to each Markov basis. 

PROOF. Suppose  t ha t  y is accessible f rom x by  ]3it I_1. T h e n  there  exists  a non-zero 
move z wi th  deg z < It] - 1 such t ha t  z is appl icable to x.  If  x + z = y,  then  z = y - x 
and  d e g z  = It] because  the suppor t s  of x and y are disjoint. Therefore  x + z ~ y and  
)ct contains a th i rd  element  x + z,  which is a contradict ion.  Therefore  y and  x are in 
different Blt l_l-equivalence classes, implying t ha t  y and  x are Blt l_l-equivalence classes 
by  themselves .  

Now consider moving  f rom x to y.  Since they  are Blt l_l-equivalence classes by 
themselves ,  no non-zero move z of degree deg z < Itl is appl icable to x.  By  L e m m a  2.1, 
only moves z wi th  t = A z  + = A z -  are appl icable to x. If  any such move is different 
f rom y - x ,  then  as above ~-t contains  a th i rd  element.  I t  follows tha t  in order  to move 
f rom x to y,  we have to move by  exact ly  one s tep using the move z = y - x.  Therefore  
z has to belong to any Markov  basis. [] 

Define m i n ( x ,  y) ,  the  m i n i m u m  of x and  y,  elementwise 

(2.8) m i n ( x ,  y ) /  = min(x i ,  y/) .  

L e m m a  2.2 can be slightly modif ied to yield the  following result  for the  case, where  
suppor t s  of x and  y are not  necessari ly disjoint. 

LEMMA 2.3. Suppose that ,~t = {x ,  y }  is a two-element set. Then z = y - x 
belongs to each Markov basis. 

PROOF. I f  the  suppor t s  of  x and  y are disjoint, then  the  result  is a l ready conta ined 
in L e m m a  2.2. Otherwise  let v = m i n ( x ,  y)  and consider y - v and  x - v.  T h e n  the  
suppor t s  of  y - v and  x - v are disjoint and by L e m m a  2.2 again 

z = ( y  - v )  - ( x  - v )  = y - 

belongs to each Markov  basis. [] 

The  following l e m m a  concerns replacing a move by  series of moves.  

LEMMA 2.4. Let B be a set of moves and let Zo ~ B be another non-zero move. 
As sume  that z + is accessible f rom z o by B. Then for  each x ,  to which Zo is applicable, 
x + Zo is accessible f rom x by B. 
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This lemma shows tha t  if z + is accessible from z o by/3,  then  we can always replace 
z0 by a series of moves f rom/3.  

PROOF. Suppose tha t  z0 is applicable to x.  Then  x - z o _> 0 by (2.3). By 
the definition of accessibility (cf. (2.4)), we can move from z o to z + by moves from B 
without  causing negative cells on the way. Th en  the same sequence of moves can be 
applied to x wi thout  causing negative cells on the way, leading from x to x + z0. [] 

Now we are ready to prove Theorem 2.1 and its corollaries. 

PROOF OF THEOREM 2.1. Let 13 be a minimal Markov basis. For each z E/3n - 

(/3 n/3n), z + is accessible from z- by/3 n/3n, because no move of degree greater than 

n is applicable to z + as stated in Lemma 2.1. Considering this fact and Lemma 2.4, it 
follows that/3n and/3 N/3n induces the same equivalence classes in Jet, [t[ = n + I. Fix 

a par t icular  t. Write 

{Z1,...,ZL} = /3N/3t. 

For any j = 1 , . . . , L ,  let 
= z + ,  = z ; .  

If x and y are in the same Bltl_l-equivalence class, then  by Lemma 2.4, z j  can be 
replaced by a series of moves of lower degree from B and B - {z j}  remains to be a 
Markov basis. Here " - "  stands for the set difference. This  contradicts  the minimali ty  of 
B. Therefore  z + and z~- are in two different Bit I _l-equivalence classes connect ing them.  
Now we consider an undirected graph,  whose vertices are Bltl_l-equivalence classes of 
.7"t and whose edges are moves Z l , . . . ,  ZL. Considering tha t  B is a Markov basis, and no 
move of degree greater  than  It[ is applicable to each element of )rt as s ta ted in Lem m a  
2.1, this graph is connected.  On the other  hand  if the graph contains a cycle, then  there  
exist z j ,  such tha t  z + and z~- are mutual ly  accessible by B -  {z  j} .  By L e m m a  2.4 again, 
this contradicts  the minimali ty  of B. It follows tha t  the graph is a tree. Since any t ree  
with Kt  vertices has Kt  - 1 edges, L = Kt  - 1. 

Reversing the above argument ,  it is now easy to see tha t  if K t  - 1 moves z t , 1 , . . . ,  
Zt,Kt_ 1 connect ing different Bltl_l-equivalence classes of P t  are chosen in such a way 
tha t  the equivalence classes are connected into a tree by these moves, then  

/ 3 :  U {Zt'l ' ' ' ' 'Zt 'Kt-1} 
t:Kt>_2 

is a minimal Markov basis. [] 

PROOF OF COROLLARY 2.1. From our a rgument  preceding Corollary 2.1, it fol- 
lows tha t  if minimal  Markov basis is unique then  for each t, $'t itself const i tu tes  one 
Bltl_l-equivalence class or $ct is a two element set {xt,1, xt,2},  such tha t  xt,1 7 ~ xt,2 
(mod Bltl_l).  Therefore  we only need to prove the converse. Suppose tha t  for each t,  
$ct itself const i tutes  one Bltl_l-equivalence class or $'t is a two element set. By  Lem m a  
2.3, for each two-element set ~ct = {x, y} the move z = y - x belongs to each Markov 
basis. However by Theorem 2.1 each minimal Markov basis consists only of these moves. 
Therefore  minimal  Markov basis is unique. [] 
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PROOF OF COROLLAI~Y 2.2. By Lemma 2.3, indispensable moves belong to each 
Markov basis. Therefore if the set of indispensable moves forms a Markov basis, then it 

is the unique Markov basis. 
On the other hand if the set of indispensable moves do not constitute a Markov 

basis, then there is a term with Kt > 3 in (2.6) and in this case a minimal Markov basis 

/~ is not unique as discussed after Theorem 2. i. 
From these considerations it is obvious that if the unique Markov basis exists, it 

coincides with the set of indispensable moves. [] 

Finally we derive an addit ional  lemma,  which is of some independent  interest.  For 
some set $" of frequency vectors,  define its suppor t  by 

supp(S=) = U supp(x)  = {ilxi > 0 for some x C ~'}. 
xE~- 

Then  we have the following lemma. 

LEMMA 2.5. Consider the Bltl_l-equivalence classes o/ (2.5). The supports of the 
equivalence classes supp(~'t,1), �9 �9  supp(Yt,K,)  are disjoint. 

PROOF. Suppose tha t  there  exist x E ~t01,  Y E ~-t,j2, j l  # j2, such tha t  the 
suppor ts  of x and y are not  disjoint. Let  v = ra in(x ,  y)  and consider y - v and x - v. 
Because v is a non-zero vector,  the sample size becomes smaller 

I x -  vl = l y -  vl < n - -  rzl = lyl. 

Then  
. = y - = ( y  - v )  - - v) 

has degree deg z = I ac - v i < n. Now y = m + z is accessible from x by a single move z .  
This is a contradict ion,  because x and y belong to different Bn_l-equivalence classes. [] 

3. Examples and some discussions 

In this section we verify Theo rem 2.1 for various problems. First  we investigate 
s tandard  contingency tables with fixed marginals.  Th en  we investigate some other  rood- 
els including a simple case of Poisson regression model  and the Hardy-Weinberg  model.  
Finally we give some discussions. 

3.1 Examples 
3.1.1 One-way contingency tables 

We star t  with the simplest case of one-way cont ingency tables. Let  x -- (xi) be I 
dimensional f requency vector  and A -- 15. In this case, t is the sample size n. This 
s i tuat ion corresponds to test ing the homogenei ty  of mean  parameters  for I independent  
Poisson variables condit ional  on the to ta l  sample size n. See also the example of Poisson 
regression below. In this case, a minimal  Markov basis is formed as a set of I - 1 degree 
1 moves, but  is not  unique. A minimal  Markov basis is const ructed as follows. First  
consider the case of n = I tl = 1. There  are I elements in ~'t as 

.Tt = { ( 1 , 0 , . . . , 0 ) ' ,  (0, 1 , 0 , . . . , 0 ) ' , . . . ,  ( 0 , . . . , 0 , 1 ) ' } .  
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Each element x C 5ct forms an equivalence class by itself. To connect these points into 
a tree, there are I x-2 ways of choosing I - 1 degree 1 moves by Cayley's theorem (see 
e.g. Chapter  4 of Wilson (1985)). One example is 

/3 = { ( 1 , - 1 , 0 , . . . , 0 ) ' , ( 0 , 1 , - 1 , 0 , . . . , 0 ) ' , . . . , ( 0 , . . . , 0 , 1 , - 1 ) ' } .  

It is easily verified tha t  no move of degree larger than  1 is needed. 
3.1.2 Two-way contingency tables 

Next example is a s tandard  two-way contingency table with fixed row and column 
sums. As is already seen, x = {xij } and 

A =  [ I ~ |  
E1 | 1~ 

This is an elementary example of test ing the hypothesis tha t  the rows and the columns 
are independent.  In this case, it is well known tha t  the set of degree 2 moves displayed 
a s  

is a Markov basis. In addition, this is the unique minimal Markov basis from the discus- 
sion in the previous section. Indeed, for every t with It[ = 2, except for a trivial ease of 
one-element set r = 1, there are only two elements in 5rt and the above move is the 
difference of these two elements. 
3.1.3 Three-way contingency tables with fixed two-dimensional marginals 

Next we consider three-way contingency tables with fixed two-dimeusional 
marginals. As we have seen in Section 2, x = {x~jk} is the frequency vector of I x J x K 
contingency table with lexicographical ordering of cells and A is wri t ten as 

A :  | E , |  | / . 
[EIQEj| 

This corresponds to testing no three-way interactions of the log-linear model. As is al- 
ready stated, it is surprisingly difficult to construct a connected Markov chain. Although 
an algebraic algorithm to calculate a Markov basis is given by Diaconis and Sturmfels 
(1998), any explicit characterization of a Markov basis is not known at present, ex- 
cept for some special cases. For the case of 2 x J x K tables, an explicit form of a 
Markov basis is given in Diaconis and Sturmfels (1998). Their basis is a set of degree 
4, 6, . . . ,  2 x min{J, K} moves, where a typical degree 2n move is the following 2 x n x n 
move displayed as 

i+i0 1+o o11 +1 - I  0 0 --i +I 0 

�9 . " "  " .  . 

+1 --1 0 - 1  +1 

0 0 -I-1 1 0 0 - . .  0 --1 

1 0 0 0 +1[  +1 0 - . .  0 0 

All the other degree 2n moves are obtained from this by permutat ions  of indices or axes. 
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For the case of 3 x 3 x K tables, Aoki and Takemura  (2003) proves tha t  a Markov 
basis is given as a set of the following four types of moves (and pe rmuta t ion  of their  
indices and axes). 

degree 4 move: 

degree 6 move: 

degree 8 move: 

degree 10 move: 

i +-i - 1  0 0 0 
+1 0 0 0 
0 0 0 0 

+I  --i 0 0 0 

I 0 +I 0 0 

+I --I 0 0 

+ , o o o  fio o oil --1 0 0 0 0 0 0 
0 0 0 0 0 0 0 

_,+1oo o I F o o oil 1 0 --1 0 0 0 0 0 
-I +I o o 0 o 0 

+1_1ooo :oiO ioo li+x lOil 
+1 0 0 0 1 0 0 - 1  0 --1 0 +1 
0 0 0 0 0 - 1  +1 0 0 +1 --1 

+1 - 1  0 0 0 -+i 0 +1 0 ~1  i +1  - 1  0 i 
I +I 0 -I +i 1 0 0 0 -I 0 +I 

0 0 +i -- 0 --I 0 i 0 +I -1 

It  is observed tha t  ~'t is a two element set for each t = Az of the above moves z 
for the 2 • J x K case and for the 3 x 3 x K case. Hence these moves cons t i tu te  the 
unique minimal  basis for respective cases. 
3.1.4 Three-way contingency tables with fixed one-dimensional marginals 

We now consider general  three-way tables with fixed one-dimensional  marginals.  
This  corresponds to test ing the independence model  for three-way tables. Recent ly  Dobra  
and Sullivant (2002) gave a general const ruct ion of Markov basis for decomposable  and 
reducible models. The  three-way independence model  is a special case of decomposable  
models  and can be t r ea ted  in the  framework of Dobra  and Sullivant (2002). However our  
main concern here is the quest ion of minimali ty of the Markov basis given in Proposi t ion 
3.1 below�9 

Wi th  lexicographic ordering of indices, the mat r ix  A is wr i t ten  as 

[ i~ 0 i~ | EI< 

A =  /1;| | 1~ 
LE~r | 15 | lk- 

In this case, we construct  a minimal  Markov basis as follows. 
There  are two obvious pa t te rns  of moves of degree 2. An example of moves of type  

I is 

Z l l l  ~ Z222 ~ 1, Z 2 1 1  ~-  Z122 ~ - - 1 ,  

with  other  elements being 0. For the  case of 2 • 2 x 2 table, this move can be displayed 
as follows 

All the other  moves of type  I are obta ined by pe rmuta t ion  of indices or the axes. 
An example  of moves of type  II is 

Z l l l  ---- Z122 ---- 1~ Zl12 ---- Z121 ~--- --1~ 
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with other  elements being 0. For the case of 2 x 2 x 2 table, this move can be displayed 
as follows 

All the other  moves of type  II are obta ined by pe rmuta t ion  of indices or the axes. Let  B* 
be the set of type  I and type  II degree 2 moves. Then  we have the following proposit ion.  

PROPOSITION 3.1. ]3* is a Markov basis for three-way contingency tables with fixed 
one-dimensional marginals. 

PROOF. In this problem it is obvious tha t  no degree 1 move is applicable to any 
frequency vector. Fur thermore  it is easy to verify tha t  every degree 2 move is ei ther 
of type  I or type  II. It remains to verify tha t  for It] _> 3, Yt itself const i tu tes  one B*- 
equivalence class. We can now apply the same argument  used for 3 x 3 x K tames with 
fixed two-dimensional  marginals in Aoki and Takemura  (2003). Suppose tha t  for some 
t,  Set consists of more than  one B*-equivalence classes. Let  .7"1, be2 denote  two different 
B*-equivalenee classes. Choose x C bCl, y E )r2 such tha t  

Izl  = Ix  - = Z Ix , jk  - Y skL 
i , j ,k  

is minimized. Because x and y are chosen from different B*-equivalence classes, this 
min imum has to be positive. In the following we let z n l  > 0 wi thout  loss of generality. 

Case 1. Suppose tha t  there exists a negative cell Zioll < 0, i0 _> 2. Th en  because 
~j ,k  Ziojk = 0, there  exists (j, k), j + k > 2, with Z~ojk > 0. Th en  the four cells 

(1, 1, 1), (io, 1, 1), (io,j, k), (1 , j ,  k) 

are in the positions of ei ther type I move or type  II move. In ei ther  case we can apply 
a type  I move or a type II move to x or y and make [zl = Ix - Yl smaller, which is a 
contradict ion.  This argument  shows tha t  z can not  contain bo th  positive and negative 
elements in any one-dimensional slice. 

Case 2. Now we consider the remaining case, where no one-dimensional  slice of z 
contains bo th  positive and negative elements. Since ~j ,k  Zljk = 0, there  exists ( j l ,  kl) ,  
j l , k l  >_ 2, such tha t  zljlkl < 0. Similarly there exists ( i l ,k2) ,  il,k2 _> 2, such tha t  
zil lk2 < 0. Then  the four cells 

(1, j l ,  kl),  (1, 1, kl) ,  (il ,  l ,  k2), ( i l , j l ,  k2) 

are in the positions of a type  II move (if kl = k2) or a type  I move (if kl r k2) and 
we can apply a degree 2 move. By doing this I zl = I x - Y l may  remain the same, but  
now znk i  becomes negative and this case reduces to Case 1. Therefore  Case 2 itself is a 
contradict ion.  [] 

We show in the following tha t  B* is not a minimal Markov basis. Let  z be a degree 2 
move and let t = Az +. If z is a type  II move, it is easy to  verify tha t  ~-t is a two-element 
set {z +, z - } .  Therefore  degree 2 moves of type  II belong to each Markov basis. On the 
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other hand, if z is a type I move, 5rt is a four-element set. For the 2 • 2 • 2 case, let 
t = (Zl.., z2.., zq., z.2., z..1, z..~)' = (1, 1, 1, 1, 1, 1)'. Then  it follows 

�9 T(1,1,1,1,1,1)' : - { ~  [~, ~---~ ~ ,  F~-~ ~ ,  ~-~ ~ } "  

To connect these elements to a tree, only three moves of type I are needed. In the 2 • 2 • 2 
case, there are 44-2 = 16 possibilities, such as 

or 

and so on. From these considerations, a minimal Markov basis for I x J • K tables 
consists of 

degree 2 moves of type I and 

degree 2 moves of type II. 
3.1.5 Poisson regression 

Here we consider a simple example of Poisson regression discussed in Diaconis et al. 
(1998). Let x = (x0, X l , . . .  ,x4) '  and 

A =  [ ~ 1  1 1 1] " 1 2 3 4  

Diaconis et al. (1998) states tha t  the set of degree 2 moves, 

= { ( 1 , - 1 ,  - 1 ,  1, 0)', ( 1 , - 1 ,  0, - 1 ,  1)', (0, 1, - 1 , - 1 ,  1)', 

(1, - 2 ,  1, 0, 0)', (0, 1, - 2 ,  1, 0)', (0, 0, 1, - 2 ,  1)'} 

enables a connected chain. Indeed, the above basis is a minimal Markov basis but  is not 
unique. To see this, consider ~ t  with Itl = 2. There  are 9 possible values of t as 

t' = (2,0) ,  (2, 1 ) , . . . ,  (2 ,8) .  

For the case of t '  = (2, 0), (2, 1), (2, 7), (2, 8), there is only one element in $-t and we need 
not any move. For the case of t '  = (2, 2), (2, 3), (2, 5), (2, 6), there are two elements in 
.Tt, but  for the case of t '  = (2,4) there are three elements in -Tt as 

~-(2,4), = {(1,0,0,0,  1)', (0, 1,0, 1,0)' ,  (0, 0,2, 0, 0)'}. 

The elements of the above B corresponds to the difference of the  two elements in J:t, 
t '  = (2, 2), (2, 3), (2, 5), (2, 6), and { (1 , -1 ,  0, - 1 ,  1)', (0, 1 , - 2 ,  1, 0)'}, which connects the 
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three elements in 5(2,4), into a tree. This is not the only pair of moves to connect the 
three elements in 5~(2,4), to form a tree. There are three possibilities, i.e., 

B* = { ( 1 , - 1 , - 1 ,  1,0)', ( 1 , - 1 ,  O , -1 ,  1)', (0, 1 , - 1 , - 1 ,  1)', 

(1, -2 ,  1, O, 0)', (1, O, -2 ,  O, 1)', (0, O, 1, -2 ,  1)'} 
and 

B** = { (1 , -1 ,  - 1 ,  1, 0) p, (1, 0, 2, 0, 1)', (0, 1, - 1 ,  z1 ,  1)', 

(1, - 2 ,  1, 0, 0)', (0, 1, - 2 ,  1, 0)', (0, 0, 1, - 2 ,  1)'} 

are also minimal Markov bases. 
3.1.6 Hardy- Weinberg model  

Consider the case of 

X ~ ( X l l ,  X 1 2 ,  �9 �9 �9 , Xl I ,  X 2 2 ,  x 2 3 ,  �9 �9 � 9  X2I,X33,  - - - , x I I )  I 

and t = ( t l , . . . , t i )  p defined as 

ti = 2xii  + E x i j '  i = 1 , . . . , I ,  
j#i  

where x i j  = x j i  for i > j .  In this case, A is wri t ten as 

A = (A• A I - 1  "'" A1) ,  Ak  = (Ok•  B~)', 

where Bk is the following k • k square matr ix  

B k  = 

2 1  1 - . - 1 -  

O1 0 - - - 0  

O0 1 0 

: : " . .  : 

0 0 - - .  0 1 

This corresponds to the conditional test of the Hardy-Weinberg proportion. For this 
problem, Guo and Thompson (1992) construct  a connected Markov chain. Their basis 
consists of three types of degree 2 moves, namely, type 0, type 1 and type 2. Here the 
term type refers to the number  of nonzero diagonal cells in the move. The examples of 
the moves are displayed as 

lil  111 i type 0: 0 o 0 +1 type 2: 0 1 ' type 1: 0 ' 

4 - 1  0 - 2  0 

~176 i 4 - 1  " 

We show in the following tha t  their  basis is not minimal,  and a minimal basis is not 
unique. Consider 5rt wi th  Itl = 2 for the above three types of moves. If t = A z  + = A z -  

for moves z of type 1 or type 2, there are two elements in $'t and the move of type 1 
or type 2 is the difference of these two elements. But  if t = A z  + = A z -  for a move 
z of type 0, there are three elements in 5ft. Then to connect these three elements to 
form a tree, we can choose two moves to construct a minimal Markov basis. (There are 
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three ways of doing this.) For example, consider the case of I = 4 and t = (1, 1, 1, 1) ~. 
)~'(1,1,1,1)' i s  written as 

To connect these three elements to a tree, any two of the following type 0 moves of degree 
2, 

0 +1  --1 0 +1 0 1 0 0 --1 
0 0 --1 0 --1 O 0 +1 1 

0 +10 0 +01 ' 0 

can be included in a minimal Markov basis. Accordingly, I ( I  ~ 1 ) ( I -  2 ) ( I - 3 ) / 1 2  moves 
of type 0, I ( I  - 1)(I - 2)/2 moves of type 1 and I ( I  - 1)/2 moves of type 2 constitute 
a minimal Markov basis. The basis by Guo and Thompson (1992) is not minimal in 
the sense that  all of I ( I  - 1)(I - 2)(I - 3)/8 moves of type 0 are used in the algorithm 
proposed by them. 

3.2 S o m e  d i s c u s s i o n  

In the examples above we saw that  for some problems minimal Markov basis is 
unique and for other problems it is not unique. Clearly this depends only on the prop- 
erties of matrix A. But it seems very difficult to give a simple necessary and sufficient 
condition on A such that  minimal Markov basis is unique. In integer programming 
literature (e.g. Schrijver (1986)), an important condition is the total unimodularity of 
the matrix A. We have seen that in the case of two-way contingency tables minimal 
IV[arkov basis is unique and it is well known that A in (2.1) is totally unimodular. How- 
ever in the simplest case of one-way tables minimal Markov basis is not unique and yet 
A = (i,..., i) is obviously totally unimodular. This shows that total unimodularity is 
not directly related to uniqueness of minimal Markov basis. We should also mention 
that A for three-way tables with fixed two-dimensional marginals in (2.2) is not totally 
unimodular in general. In fact we have found a submatrix of A in (2.2) with determinant 
2 by simple computer search. 

As mentioned in Subsection 2.2, Theorem 2.1 is conceptually constructive, build- 
ing up a minimal Markov basis from below. However it is computationally difficult to 
characterize the Bltl_l-equivalence classes of F't for large lit as discussed in Diaconis 
et al. (1998). If we could easily select representative elements from Biti_1-equivalence 
classes ~-t for each t, then a minimal Markov basis could be constructed as described 
in Theorem 2.1. Another question is to find a theoretical upper bound for no such that 
.Tt itself constitutes one Bltl_l-equivalence class for all t with Itl >_ no. By the Hilbert 
basis theorem existence of such an no is guaranteed, but if we do not know some upper 
bound for n0 we can not actually stop forming/31ti_l-equivalence classes of Jr- t. 

As mentioned at the end of Subsection 2.1 it is a subtle question to determine which 
moves of a minimal Markov basis B are needed for connecting Ft for a given t. Obviously 
we only need those elements of/3, that are applicable to at least one frequency vector 
of Ft. However the set of these move may not be minimal for connecting .T t for a given 
t. See the discussion on corner minors for two-way tables in Section 3 of Diaconis et al. 

(1998). We study this question on two-way tables with structural zeros in our subsequent 
work (Aoki and Takemura (2002)). 
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