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A b s t r a c t .  We invest igate incomplete  one-sided var iants  of  b inary  search trees. The  
(normed) size of each variant  is s tudied,  and convergence to  a Gauss ian  law is proved 
in each case by asympto t ica l ly  solving recurrences.  These var ia t ions axe also discussed 
within the  scope of the  contrac t ion  method  with degenerate  l imit  equat ions.  In an 
incomplete  tree the  size de termines  most  o ther  pa rame te r s  of interest ,  such as the  
height and  the in ternal  p a t h  length. 
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I. Introduction 

The binary search tree is a popular structure for data storage and for the analysis 
of algorithms. For instance, it is in common use as a data structure (see Mahmoud 
(1992)), and it underlies Quicksort, which is one of the most popular sorting algorithms 
(see Knuth (1998) and Mahmoud (2000)). 

The study of pruned variants of full trees (incomplete or one-sided trees) has recently 
been a popular subject. For instance, Prodinger (1993) analyzes various parameters of 
the incomplete trie, a one-sided version of a random digital tree, and Fill et al. (1996) 
follow up with a proof for the non-existence of limit distributions for the height of the 
incomplete trie, owing to the presence of oscillations. Itoh and Mahmoud (2003) study 
several incomplete variants of interval trees. There is also revived interest in algorithms 
to cut down trees as in the recent probabilistic analysis in Chassaing and Marchand 
(2002), an area of research begun in the work of Meir and Moon (1970). The pruning 
alluded to is one way of cutting the binary search tree down to a single branch. The 
present study is also related to the notion of ascendants and descendants in search trees, 
which was taken up in Martfnez et al. (1998). 

In this study we investigate a few one-sided variations of binary search trees. For 
each incomplete variant we study the distribution of the size of that variant. In each 
variation we shall show Gaussian tendency of the size when appropriately normed. The 
study parallels the continuous analog in interval trees, with similar results, but a discrete 
methodology instead. The results of this paper, as well as those in other sources (for 
example Sibuya and Itoh (1987) and Drmota (2002)) indicate that there might be a deep 
method of embedding binary search trees into interval trees. The two classes of random 
trees have rather disparate stopping rules. This interesting subject is noted, but not 
pursued in this paper. 
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2. One-sided binary search trees 

A binary tree is a structure of nodes each with no children, one left child, one right 
child, or two children (one left and one right). Many combinatorial algorithms, such 
as sorting, are represented and anMyzed by labeled binary trees endowed with a search 
property. Several models of randomness are often used on binary trees. In the uniform 
model all binary trees are equally likely: This is the model prevalent in formal language 
studies, compilers, computer algebra, etc. (see Kemp (1984)). 

In many practical situations trees grow from a permutation of an ordered set. If 
II,~ -- (Tq,...,Trn) is the permutation, the binary search tree grows as follows. The 
element 7h is placed in the root. If Ir2 < ~1, the element ~2 goes to the left subtree, 
where it is placed in a node adjoined to the root. Otherwise, 7r2 goes into the right 
subtree, where it is placed in a node adjoined to the root. Likewise, subsequent elements 
of the permutation are guided to the left or right subtree, according as whether they 
are not or are at least as large as ~h, and the element is then recursively inserted in the 
subtree. 

The only aspect of the permutation 1-I n that pertains to the construction of the tree 
is the relative ranking of its elements. Thus, Hn can be assimilated by a permutation of 
{1 , . . . ,  n}. The random permutation model is the probability model often assumed for 
data  structures and combinatorial Mgorithms, such as sorting. In the random permuta- 
tion probability model, the tree is assumed to be built from a random permutation of 
{1 , . . . ,  n}, where all n! permutations are equally likely. Under this model binary search 
trees are not equally likely. GenerMly, the model favors short bushy trees to tall lin- 
ear shapes. The natural balance of binary search trees under the random permutation 
model is an attractive property for fast search applications (see Mahmoud (1992)). The 
random permutation model is fairly general, as it covers, for example, the ranks of data  
taken from any continuous distribution. The random permutation probability model is 
assumed in the sequel. Under the random permutation model ties occur with probability 
zero. 

We shall interchangeably use the terms incomplete trees and one-sided trees. Dif- 
ferent variants pursuing various pruning polices will be investigated. We shall discuss 
five incomplete variations in this paper: 

�9 Left preference. 
�9 Min preference. 
�9 Max preference. 
�9 Proportionate preference. 
�9 Uniform (or no) preference. 
The left preference search tree develops only the left subtree. The min (max) one- 

sided variant always derives a one-sided tree from what would be the subtree of the 
smaller (larger) size in the full binary search tree. This is a way of speeding up (slowing 
down) the incomplete tree construction. In proportionate preference, one of the two 
sides is chosen with probability proportionate to the size of the subtree. The uniform 
preference policy simply chooses one of the two subtrees with equal probability, regardless 
of their size in the binary tree. The rest of the paper is organized in sections. Each of 
the following sections is dedicated to one particular one-sided variation. In each of these 
sections, a more precise statement of the construction algorithm is given. 

The size is random in each variation and we shall determine its limiting distribution, 
when appropriately normed. We shall show that in each variation the (normed) size 



ONE-SIDED VARIATIONS ON BINARY SEARCH T R E E S  887 

exhibits Gaussian tendency. The size in one-sided variants determines almost every 
property of interest. For example, while in a binary search tree knowledge of the size is 
not sufficient to determine the height, in an incomplete tree we have a simple connection: 
the size is the height plus 1. 

We use the following notation. Within each section Sn will refer to the size of the 
particular one-sided flavor discussed in that section, and Cn(t) will denote the moment 
generating function. For brevity, the notation S,~ and r will be reused in a different 

way in each section. The symbols ~ =, 7 ,  and P stand respectively for equality in 
distribution, convergence in distribution, and convergence in probability, and Af(#, ~2) 
will represent a normally distributed random variable with mean # and variance a 2. 
Because of the discrete nature of the incomplete search trees, some distributions that will 
appear in the study are conveniently given in terms of the rood notation of programming 
languages. The notation n rood k will assume the integer value of the remainder in the 
integer division of n by k. The indicator 1E is a function that assumes the value 1 if 
event g occurs, otherwise the indicator is 0. 

3. Left preference incomplete search trees 

In this variation only the left side is developed. A left preference incomplete tree 
Tn arising from a random permutation of {1 , . . . ,  n} is the binary search tree with each 
right subtree replaced by an empty tree. The algorithm for this construction operates as 
follows. The first element of the permutation, say Rn, is placed in the root of the tree. 
Each subsequent element of the permutation exceeding Rn is thrown out (resulting in 
an empty right subtree), and each subsequent member not exceeding Rn is taken into 
the left subtree, where recursively the tree TR~-I is attached on the left side as the 
only subtree of the root. Note that if the permutation IIn is stripped of the elements 
{Rn, R~ + 1 , . . . ,  n}, the order of the remaining elements (all less than Rn) forms a random 
permutation on {1 , . . . ,  Rn - 1}. The construction in TR~-I continues recursively until 
To, an empty subtree, is to be attached on the left. 

The size Sn of the tree satisfies the recurrence 

(3.1) S n = I + S R ~ - I ,  for n > l ,  

with the boundary condition So -- 0. Let Cn(t) be the moment generating function 
E[eS~t]. Under the random permutation model, the root label Rn is uniformly dis- 
tributed on {1 , . . . , n} .  Then for n > 1, 

Cn(t)  = E[e  (l+SR~-l)t]  
n 

= e t E E [ e S R ~ - l t l R n = r ] P { R n = r }  
r : l  

et n 

= - -  E C r _ l ( t ) .  
n 

r = l  

Difference a version of the last telescoping recurrence, with n - 1 replacing n, from the 
version with n to obtain 

- = 
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This recurrence can be iterated to produce the exact distribution: 

n + e  t - 1 
Cn(t) -- Cn-l(t)  

n 

(n + et - 1)(n + et - 2) r ] 
n ( n -  1) 

( n  + e t - 1 ) ( n  + e t - 2 ) . .  e t 
~ !  " r  

Using the boundary condition So -- 0, we can represent the solution in a Gamma function 
form suitable for asymptotics. 

PROPOSITION 3.1. Let S~ be the size of a random left preference incomplete search 
tree grown from a random permutation of  {1, . . . , n } .  The exact moment  generating 
function of Sn is given by 

r ( n  + e t) 
r = r(e~)r(n + 1)" 

The exact (and consequently asymptotic) first two moments of Sn can immediately 
be computed from the exact distribution of Proposition 3.1 by  taking derivatives with 
respect to t (at t -- 0). The computation of the variance is a bit lengthy, but remains 
straightforward. The computation of the mean recovers an old result of Arora and Dent 
(1969); the variance can be found in Martfnez et al. (1998). These papers considered the 
size of the left preference incomplete search tree in the context of the length of the so- 
called left arm of a random binary search tree (the depth of the node containing 1). For 
completeness we present these results. The result is compact when written in terms of 

n n the first and second degree harmonic numbers Hn = E j = I  1/ j ,  and H (2) = Ej=I 1/J 2" 

COROLLARY 3.1. 

E [ & ]  = g n  ~ l n ~ ,  

Var[Sn] -- Hn - H(~ 2) ~ Inn. 

The limit distribution for an appropriately normed Sn can be found from Gamma 
function asymptotics and local expansions. Let t = v/lv/]-ff-~, for fixed v, and eventually 
let n --~ oc. By the Stirling approximation of the Gamma function we can rewrite the 
exact result in Proposition 3.1 in the form 

= nexp vj 
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A s  n - ~  co ,  

ev2/2. 
~ v ) j  - 

The right-hand side is the moment generating function of N'(O, 1), and we have conver- 
gence in distribution by L~vy's continuity theorem. 

THEOREM 3.1. Let Sn be the size of a left preference incomplete search tree grown 
from the random permutation {1 , . . . ,  n}. As n ~ co, 

Sn - Inn 
-~ fir(0, 1). 

The asymptotic distribution of Theorem 3.1 as well as the exact and asymptotic 
mean and variance of Corollary 3.1 can also be obtained from the theory of records in 
the manner discussed in Devroye (1988) in the context of recursive trees. 

4. Min incomplete search tree 

The min strategy is meant to speed up the construction of the incomplete search 
tree. In this strategy only the subtree with minimal size in the binary search tree 
is recursively developed. If the two sides are of equal size, we can arbitrarily choose 
either one. We shall stick to a left choice in breaking ties, but all other flavors are 
mathematically equivalent from the point of view of parameters such as the probability 
distribution of the size of the incomplete tree. 

A rain incomplete search tree Tn is grown from a permutation of {1 , . . . ,  n} by first 
allocating a root for Ru, the first element in the permutation. Let Zn = min{Rn - 
1, n - Rn}. If Zn = Rn - 1, the right subtree remains empty, and the left grows a 
tree Tzn recursively on the permutation {1 , . . . ,  R,~ - 1}. Else, Zn = n - Rn, and the 
left subtree remains empty; the right grows a tree Tz,, recursively on the permutation 
{Rn + 1 , . . . ,  n}. The size Sn of the min tree satisfies the recurrence 

(4.1) S n = I + S z ~ ,  for n > l ,  

with the boundary condition So = 0. Let r be the moment generating function of 
Sn. We shall develop asymptotic relations for Cn(t) by conditioning on Zn. The variable 
Zn "almost" has a uniform distribution. That is, its distribution on {0,.. 1 ., [ 5 ( n -  1)]} 
is uniform except for a possible perturbation at the upper end of the distribution. More 
precisely, Fz,~ (z), the distribution function of Zn, is given by 

F z , , ( z ) =  I -  P{Zn  > z } =  I -  P { R n -  I > z , n -  Rn > z}. 

In the range z 0, 1,. .  1 = ., [~(n - 1)] - 1 this yields 

Fzn(z)  = 1 -  P { z  + l < Rn < n - z }  

= 1 - P { z + 2 < R n  < _ n - z - l }  
n - 2 z - 2  

- 1  
n 

= + 1 )  
n 
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We thus have 

P{Zn=z}:Fzn(z)-Fz, , (z-I)  2 if z C { I ,  [ ~ ( n - 1 ) ] - l }  
n 

This expression is also valid at the uppermos t  point  1 [~(n  - 1)], if n is even. However 
1 if n is odd, the range z + 2 to  n - z - 1 is empty  at z = [~(n  - 1)J. Instead, we have 

Fz~(L�89 1)J) = 1, and it follows tha t  

P { Z n :  [~(n-1)J} =1. 

Using the r o o d  nota t ion  we have 

2 1 
P{Z~  = z} - ( nmod2) l{== t � 89  

n n 

range n = { 0 , . . . ,  [ l ( n  - 1)J}. We can now formulate  a recurrence by in the entire 
conditioning on Zn: 

 n(t) = E l e  

L�89 
=et E E[eZa~tlZn=zlP{Z~=z} 

z=O 

et t�89 

= n E C z ( t ) ( 2 -  (nmod2) l{z=[ �89  
z=0 

[�89 et  
- -  2etn E Cz(t) -- n ( r t m o d 2 ) r 1 8 9  

z=0 

We can get rid of the telescoping sum by differencing. If n is even, this yields 

h e n ( t )  - (n  - 1 ) r  = e t r 1 8 9  

and if n is odd, the differencing yields 

nCn(t) -- (n -- 1 ) r  = etr189 

For all parit ies of n, we get the recurrence 

(4.2) g tCn( t  ) -- ( ? ' t -  1 ) • n _ l ( t  ) = etCL�89 (t) .  

The  asymptot ics  of the solution in the left preference incomplete  tree come from Stirling 
approximat ion to gamma  function. This  suggests an asympto t ic  solution for the present  
recurrence. For fixed t, we can t ry  the asympto t ic  form 

Cn(t) c(t)ng(t) ( l + Kt ( -~ ) )  = - - + 0  as n-+oo, 
n 

for functions c(t), g(t), and K~ tha t  depend only on t. T h e  constant  in O must  also 
depend on t. Wha teve r  they  are, g(t) ,  Kt and the O constant  must  all approach 0, as 
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t ~ O, and c(t) ~ 1, as t ~ O, to meet the requirement 0n(t) --+ 1, as t --+ O, for all 
n _> 1. Indeed, this can be a unique asymptotic solution if 

c( t )n  g(t)+l 1 + - -  + 0 -- c(t)(Tt--  1) g(t)+l 1 + 
n n - 1  

etc,,ll,  1,1 (1+ ) 
[ ~ ( n - 1 ) J  + O ( ~ )  

In expanded form, this relation is 

1 

where 

LEMMA 4.1. As t - ~  O, 

When simplified, this reads 

(9(t) + 1)n 9(t) + O(n g(t)-I 

This is possible if g(t) is the solution to the equation 

2g(t)(g(t) + 1) = e t. 

This implicit equation is similar but not identical to that which appeared in Itoh and 
Mahmoud's (2003) investigation on min incomplete interval trees. The solution to this 
equation can be expressed in terms of the unique principal branch of Lambert 's function, 
which satisfies: 

W ( x ) e  w(x )  = x .  

Lambert 's function is closely related to the tree function T(x),  which appears often in 
the enumeration of classes of trees, in fact T(x)  = - W ( - x ) .  In our case, 

g(t) = 1 -~W((21n2)e t )  - 1. 

The asymptotic distribution is developed from local expansions. 

t 2 
g(t) = gl t  + g2-~ + O(t3), 

1 
gl = l + l n 2 '  

1 
g 2 -  (1+1n2)  a" 

= et/"rig(t) 
~ 29(t) 

+ o ( n g ( t ) - l ) )  . 

ng(,)+l + K~ng(~) + O(n~(,)-l) _ [~(,)+1 _ (9(t) + 1)n~(0 + O(n~")-l)] 

•  

=et [(nh g(t) O(ltg(t)-l)] <1 2Kt 
' ~ '  + + n + 0 ( ~ ) ) .  
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PROOF. See Itoh and Mahmoud (2003). [] 

Let t approach 0 at an appropriate rate, by taking t = v/lx/Yn--~, for fixed v, as 
n ~ co.  So,  

E exp Sn ~ c 

Using the second-order local expansion of g(t) as in Lemma 4.1, we have 

[ { v }] ( @ n ~ )  /" lnn  g2v 2 ( _ . ~ ) )  
E exp S n ~  ,',~c e x p ~ g l v - ~ n ~ + - - ~ - - + O  . 

It follows that,  as n -+ oo, 

JJ  e~V2/2- 

This convergence can also be discussed rigorously within the scope of the emerging 
contraction method (see the Appendix). 

THEOREM 4.1. Let S,~ be the size of a min incomplete search tree grown from a 
random permutation of {1 , . . . ,  n}. As n --~ cxD, 

1 
S~ - -  lnn  

1 + 1 n 2  ~ N  0, ln2) a . 
( 1 +  

COROLLARY 4.1 .  

1 
E[Sn] ~ - -  lnn ~ 0.5906161091nn, 

1 + l n 2  
1 

Var[Sn] -- (1 + ln2) 3 Inn ~ 0.20602307481nn. 

Note that  the average size of the min incomplete search tree is smaller than that of 
the left preference incomplete search tree, as a result of acceleration. 

5. Max incomplete search trees 

The max variant reverses the accelerating policy followed in the min tree. The max 
variant slows down the development. To obtain the max tree from the binary tree, at 
each node the smaller of the two sides is replaced by an empty subtree, the larger is 
recursively further grown. 

The mathematical development is mutatis mutandis similar to the min tree case, 
with max mirror images of rain. Therefore, we shall only sketch both description and 
analysis. A max incomplete tree T~ grows from a permutation of {1 , . . . ,  n}. Firstly, a 
root is allocated for Rn, the first element of the permutation. Let Z~ = m a x { R n -  1, n -  
Rn}. A tree Tan is grown recursively along the side corresponding to the larger of the 
two subtrees in the full binary tree, the other side is voided. 
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The size S~ of the max tree satisfies the recurrence 

S n = l + S z n ,  for n > l ,  

with the boundary  condition So = 0. Let Cn (t) be the moment  generating function of S~. 
We shall develop asymptot ic  relations for r by conditioning on Zn. The  distr ibution 

1 . . . ,  1}, with the possible exception of a pari ty of Zn is uniform over {[~(n  -- 1)], n -- 
per turbat ion at the lowest point of the distribution. Similarly to developments in the 
min case, one finds 

F o r n >  1, 

P { Z .  = z }  - 
2 1 
n n (n m ~  2)ltz=[�89 }" 

Cn(t )  = E[e (l+Sz")t] 
n-1  

: et E 

z=[�89 

2e t n-1 

- n 
z=F�89 

E[eSznt I Z .  = z lP{Zn  = z} 

e t 
4~z(t) - n ( n m o d 2 ) ~ b [ ] ( n _ l ) ]  (t). 

Jus t  like in the case of min trees, going through the routine of differencing and arguing 
for all parities of n, one obtains the recurrence 

nCn(t) - (n - 1)r  = 2etOn-l( t )  -- etqb[�89 (t). 

By arguments  tha t  parallel the min tree case, one sees tha t  d(t)n n(t) (1 + A t / n  + O(n-2) )  
is an asymptot ic  solution for fixed t, if 

(5.1) h(t) + 1 = et(2 - 2-h(t)), 

and if h(t),  At ---* O, and d(t) ---* 1, as t --~ 0, and the hidden constant  in O is also 
a function of t tending to 0, as t --* 0. The function h(t) tha t  solves the functional 
equation must  then  have the local expansion 

t 2 
h ( t )  = h i t  + + O ( t 3 ) ,  as t --~ O, 

with 

1 

h i  - -  _ _  

i -- In2' 

1 - 2 In 2 2 
h2- 

(1 - ln2) 3" 

The general idea of the proof is to develop the coefficients hi = h'(0), and h2 = h"(0) 
from functional equation for h'(t) and h"(t) tha t  can be obtained by taking the first and 
second derivative of the implicit equation (5.1). The details of this proof are omit ted,  
and the reader can refer to I toh and Mahmoud  (2003) for a more detailed discussion of 
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a similar result. This convergence can also be discussed rigorously within the scope of 
the emerging contraction method (see the Appendix). 

By a development parallel to the asymptotic procedure in the min incomplete search 
tree (with g(t) replaced by h(t)), we obtain the following. 

THEOREM 5.1. Let S n be the size of a max incomplete search tree grown from a 
random permutation of {1 , . . . ,  n}. As n ~ ~ ,  

1 
Sn - -  lnn  

1 - ln2 N'(O, 1-21n 22 
�9 

COROLLARY 5.1. 

1 
E[Sn] ~ 1 - ln-----~ lnn  ~ 3.2588913531nn, 

1 - 2 In 2 2 
Var[Sn] - (1 - ln2) 3 inn  ~ 1.3530674461nn. 

Note that the average size of the max incomplete search tree is larger than that 
of the left preference incomplete search tree, which is to be expected in view of the 
deceleration in the algorithm. 

6. Proportionate preference incomplete interval trees 

The proportionate preference incomplete search tree develops one of the two subtrees 
with probability proportionate to its size. More precisely, the construction algorithm 
operates as follows. The first element Rn is placed in the root. A subtree is chosen with 
a particular probability to be further developed, the other remains empty. The random 
choice of the subtree is obtained through the mechanism of an independent random 
variable Vn uniform on the set {1, . . .  , n -  1}; if Vn < Rn the left subtree is developed, 
the right is truncated, otherwise Vn >_ Rn, and the right subtree is developed, the 
left is truncated. The selector Vn chooses the left subtree with conditional probability 
( R n - 1 ) / ( n - 1 ) ,  or chooses the right subtree with conditional probability ( n - R n ) / ( n - 1 ) ,  
given R n. A subtree is grown recursively on the random permutation belonging to the 
size of the selected subtree. 

The size Sn of the tree satisfies the recurrence 

Sn  z 1 + I{V,~<_Rn_I}SR,_ 1 + I{V.>_R,}Sn_R, , for n > 1, 

where Sj is distributed like Sj, for each j ,  and Sk and Sj are independent, for every j and 
k. It is important to note that SR.-1 and Sn-Rn are only conditionally independent, 
given Rn, otherwise without the knowledge of R,~ they are dependent through their 
joint dependency on Rn. The boundary condition is So = 0. Let r be the moment 
generating function of Sn. For n > 1, 

Cn(t) = E[e (l+l{v-<-R--'ISm'-~+ltV">-'~-m,I$"-R-)t] 
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= et [ f i ~  E[e S~ l t ] p { R n = r } P { V n = v  } 
l r = l  v= l  

}] + Z = rIP Vn = v 
r = l  v = r  

n ( n - -  1) (r  - 1 ) r  + ~-~(n - r)r  
r = l  

Changing the second summat ion  variable r to n - r  + 1 renders the second summat ion  
the same as the first: 

n 

n(n  - 1 ) r  ) --- 2e t ~ - ~ ( r  - 1 ) r  

r = l  

Differencing a version of this recurrence with n - 1 replacing n, from the version wi th  n, 
we obta in  an i teratable  recurrence 

n + 2e t -- 2r Cn(t) 

I tera t ing all the way back to r = 1, we have an exact representa t ion in terms of the 
G a m m a  function: 

r  = r ( n  + 2e ~ - 1) r(e )r(n + 1 )  

This exact  dis t r ibut ion is similar to the exact dis tr ibut ion of the left preference incom- 
plete search tree,  and can be manipula ted  with the same G a m m a  funct ion asymptot ics  
and methods  of local expansion. 

THEOREM 6.1. Let Sn be the size of a proportionate preference search tree grown 
from a random permutation of { 1 , . . .  ,n} .  As n ---* oc, 

Sn - 21nn ~A[(O, 2). 

COROLLARY 6.1. 

E[Sn] ~ 21nn,  

Var[Sn] ~ 2 Inn.  

It  is to be expected tha t  the average size of the propor t iona te  tree lies somewhere 
between tha t  of the min and t ha t  of the  max  incomplete search tree as the recursive 
selection of the smaller and larger subtrees for the developed side mixes the two cases. 
The  propor t iona te  preference incomplete  search tree is also larger on average than  the left 
preference incomplete search tree, because larger subtrees are favored probabilistically. 
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7. No preference incomplete interval trees 

In the uniform preference (no preference) variation equal weight is given to the two 
subtrees, regardless of their size. A subtree is chosen with probability 1/2. The choice 
of the subtree to develop is determined by a fair coin flip, say with heads we develop 
the left subtree and with tails we develop the right subtree. The first element of the 
permutation, say Rn, goes into the root. In the case of heads we grow a subtree on the 
left side on the remaining elements in the permutation that  are less than Rn (which form 
a random permutation on {1 , . . . ,  Rn - 1}); the right subtree remains empty. In the case 
of tails we grow a subtree on the right side on the remaining elements in the permutation 
that  are greater than Rn (which form a random permutation on {Rn + 1 , . . . ,  n}); the 
left subtree remains empty. 

Let the events 7-t and 7- stand respectively for the outcomes heads and tails. The 
recurrence for the size Sn is 

(7.1) Sn = 1 + 17-tSRn-1 + 1TSn-Rn;  

the tilde stands for equality in distribution and conditional independence, as explained 
in Section 6. 

Let r (t) be the moment generating function of Sn. By conditioning on the outcome 
Q of the coin flip, the relation (7.1) yields 

Cn(t) = E[e (l+lnSRn-l+l~-~'-R~)t] 

= e t (E[eSm~-l t]P{Q = ~ }  + E[eS'~-R.~t]P{Q = 7"}) 

-_ E[e(]+sR,~-l)t], 

where we used the identical distribution of n - Rn and Rn - 1, and of Sj and Sj, for all 
j .  Hence, for n > 1, 

Sn -- 1 + SRn--1" 

This recurrence is the same as that of the recurrence of the left preference tree (cf. (3.1)). 
Consequently, the results are the same as those in that  case; the no preference case grows 
a zig-zag path of length distributed like the leftmost arm of a binary tree. 
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Appendix 

The one-sided variations discussed can be handled within the rigorous approach 
of the contraction method. We illustrate the approach on the min tree. However, the 
method is applicable to all five variants discussed. 
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The method was introduced by RSsler (1991). Several extensions were contributed 
by Rachev and Rfischendorf (1995). Recently general contraction theorems and mul- 
tivariate extensions were added by R6sler (2001), and Neininger (2002). RSsler and 
Riischendorf (2001) survey the area. 

The general philosophy of the approach is to start from a recurrence on a random 
variable, say Xn. Under appropriate norming, the recurrence carries over to X*, the 
normalized random variable. The norming is usually affected by asymptotic centering 
(subtracting off an asymptotic equivalent of the mean) and asymptotic scaling by an 
asymptotic equivalent of the standard deviation. The rest of the argument is devoted 
to demonstrating that the distributional equation for X n converges in the limit to a 
limiting distributional equation on a limit random variable X. Usually, the limiting 
distribution is the unique fixed-point solution to the limiting equation. The convergence 
itself is argued by showing that the distance in some metric space, such as Wasserstein's 
or Zolotarev's, between the laws of Xn and X approaches 0. 

The method is challenged in some tree applications by the appearance of a degen- 
erate limit equation of the form 

(A.1) X ~ = X ,  

which is of no help in characterizing the limit distribution, because of course any random 
variable with arbitrary distribution satisfies such a degenerate equation. The depth of 
a randomly selected node in a random binary search tree provides such an instance (see 
Mahmoud and Neininger (2003)). 

Only very recently has this issue been finessed in Neininger and Riischendorf (2002), 
where it is shown that under some mild conditions on growth rates, one still gets normal 
limit laws as the unique solution of a degenerate equation like (A.1). 

Recall the definitions gl = 1/(1 + ln2), and g2 = gl 3 (cf. Lemma 4.1). In our case, 
we can start from the recurrence (4.1) and progress to normalize: 

S~ := Sn - gl l n n  _ Sz, ,  - g~ l n Z ,  x/-~Z,~ + A n ( Z n ) ,  
Inn v/g2 In Zn x 

where 

Hence 

But then, as n --+ cx~, 

and 

1 gl In u - gl Inn 
An(u)  . -  ~ + v / ~ l n n  

s *  - -  + 
"~" Z,~ v ~  n 

1 
-~ O, 

v/g2 in n 

Z n P 1  
-~  U, 

7 

with U being a standard Uniform(O, 1) random variable, so that  

ln Zn - Inn PO. 
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Thus, An(Zn)  P O, and lnv/i-~n/lv/Yn--~ P 1. If S* -~ S, where S is some limiting random 
variable one would then get the degenerate equation 

S~' S. 

This can be shown rigorously in either of the afore-mentioned metric spaces. But that 
would not help. One can then resort to the finesse of Neininger and Riischendorf (2002). 

For the reader's convenience, we repeat their main result here. Suppose Yn is a 
sequence of random variables that satisfies the recurrence 

(A.2) Y n ~ Y I ~ + b n ,  for all n>_no>_l ,  

and (In,bn),Yk are independent, with bn random, and In E {0 , . . . , n} ,  with P{In  = 
n} < 1, for n >_ no. Denote E[Yn] by Pn, and Var[Yn] by an. Let IIXIIp denote the Lp 
norm of a random variable X. 

THEOREM A.1. (Neininger and Riischendorf (2002)) Let Yn be a sequence of ran- 
dom variables satisfying (A.2) with IIYnlI3 < oc, for all n >_ 0, and 

(A.3) lira sup E [ln ( ~ - - ~ ) ]  n--.oo < 0 ,  

(A.4) n~lSUp In ( I n ~  1)  3 < o o .  

Further more, assume that for real numbers ~,/~, ~, with a > O, and 0 _< )~ < 2a, the 
mean and variance of Yn satisfy 

(A.5) 

(A.6) 
Ilbn - t t n  + Pxn 113 = O( ln~ n), 

2 C In 2a n + O (ln ;~ n), (7  n 

for some positive constant C. IS 

• :=  ( 3 ( 1 A [ 2 a - - [ ( 2 a )  V ) ~ ] ] ) ) A ( a - - a + [ 1 A ( 2 a - - s  

then 
Yn - E[Yn] ~Af(O, 1), 

v ~ l n  '~ n 

and we have the rate of convergence O(ln e-1 n) in Zolotarev's metric space (see Zolotarev 
(1976)). 

Note that this route does not require at all checking first that the contraction method 

gives a degenerate equation of the form Y =~ Y. The theorem stands by itself, and gives 
a way out if the limit equation is degenerate. 

In our incomplete tree investigation, bn - 1, and In = Zn. All the conditions of 
Theorem A.1 are satisfied: Obviously, the third moment (in fact all the moments) of 
Sn < �89 + 1) exist, and from the distribution of Zn we can quickly verify conditions 
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(A.3) and (A.6). Indeed, recurrence equat ions for the moments  can be readily found 
from the recurrence (4.2). For instance, by taking derivatives of (4.2), we get 

nttn -- (n -- 1)#n-1 = 1 + ~[�89 

It follows from an easy induct ion tha t  

gl I n n  <_ #n <_ 1 + gl Inn.  

One can now verify (A.5) for large n, by conditioning o n  Zn, as follows. We have 

[�89 
2 

E[lbn - , n  + , z . [  31 <_ 2gl l n n + -  E (gl l n n -  g' lnk)3  = O ( 1 1 ;  
n /t 

k=l 

such a computa t ion  can be carried out  by comparing sums to bounding  integrals. We 
can take t~ = 0. 

Likewise for (A.6), one finds by induct ion 

an = 92 l n n +  O(1). 

Thus,  a = 1, and A = O. By condit ioning on Zn, we can verify tha t  

2 in 1 [ 2  l l(n-l~ )l-1 ( k ) ]  
= - - + In 

n n 
k=l 

+ - (2 - n r o o d  2) In -- 
n 

-~ - 1  - ln2. 

Likewise, 

l n ( Z n V 1 )  3 sup = 6 -4- 6 In 2 + 3 In 2 2 + In 3 2. 
n~_l n 

All the conditions for Theorem A.1 hold, with ~ -- 3; Theorem 4.1 follows, with 

O(ln -1/2 n) ra te  of convergence (in Zolotarev's  metr ic  space). 
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