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Abstract. We investigate incomplete one-sided variants of binary search trees. The
(normed) size of each variant is studied, and convergence to a Gaussian law is proved
in each case by asymptotically solving recurrences. These variations are also discussed
within the scope of the contraction method with degenerate limit equations. In an
incomplete tree the size determines most other parameters of interest, such as the
height and the internal path length.
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1. Introduction

The binary search tree is a popular structure for data storage and for the analysis
of algorithms. For instance, it is in common use as a data structure (see Mahmoud
(1992)), and it underlies Quicksort, which is one of the most popular sorting algorithms
(see Knuth (1998) and Mahmoud (2000)).

The study of pruned variants of full trees (incomplete or one-sided trees) has recently
been a popular subject. For instance, Prodinger (1993) analyzes various parameters of
the incomplete trie, a one-sided version of a random digital tree, and Fill et al. (1996)
follow up with a proof for the non-existence of limit distributions for the height of the
incomplete trie, owing to the presence of oscillations. Itoh and Mahmoud (2003) study
several incomplete variants of interval trees. There is also revived interest in algorithms
to cut down trees as in the recent probabilistic analysis in Chassaing and Marchand
(2002), an area of research begun in the work of Meir and Moon (1970). The pruning
alluded to is one way of cutting the binary search tree down to a single branch. The
‘present study is also related to the notion of ascendants and descendants in search trees,
which was taken up in Martinez et al. (1998).

In this study we investigate a few one-sided variations of binary search trees. For
each incomplete variant we study the distribution of the size of that variant. In each
variation we shall show Gaussian tendency of the size when appropriately normed. The
study parallels the continuous analog in interval trees, with similar results, but a discrete
methodology instead. The results of this paper, as well as those in other sources (for
example Sibuya and Itoh (1987) and Drmota (2002)) indicate that there might be a deep
method of embedding binary search trees into interval trees. The two classes of random
trees have rather disparate stopping rules. This interesting subject is noted, but not
pursued in this paper.
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2. One-sided binary search trees

A binary tree is a structure of nodes each with no children, one left child, one right
child, or two children (one left and one right). Many combinatorial algorithms, such
as sorting, are represented and analyzed by labeled binary trees endowed with a search
property. Several models of randomness are often used on binary trees. In the uniform
model all binary trees are equally likely: This is the model prevalent in formal language
studies, compilers, computer algebra, etc. (see Kemp (1984)).

In many practical situations trees grow from a permutation of an ordered set. If
I, = (m,...,®,) is the permutation, the binary search tree grows as follows. The
element m;, is placed in the root. If my < 7, the element 7y goes to the left subtree,
where it is placed in a node adjoined to the root. Otherwise, mo goes into the right
subtree, where it is placed in a node adjoined to the root. Likewise, subsequent elements
of the permutation are guided to the left or right subtree, according as whether they
are not or are at least as large as m, and the element is then recursively inserted in the
subtree.

The only aspect of the permutation IT, that pertains to the construction of the tree
is the relative ranking of its elements. Thus, II,, can be assimilated by a permutation of
{1,...,n}. The random permutation model is the probability model often assumed for
data structures and combinatorial algorithms, such as sorting. In the random permuta-
tion probability model, the tree is assumed to be built from a random permutation of
{1,...,n}, where all n! permutations are equally likely. Under this model binary search
trees are not equally likely. Generally, the model favors short bushy trees to tall lin-
ear shapes. The natural balance of binary search trees under the random permutation
model is an attractive property for fast search applications (see Mahmoud (1992)). The
random permutation model is fairly general, as it covers, for example, the ranks of data
taken from any continuous distribution. The random permutation probability model is
assumed in the sequel. Under the random permutation model ties occur with probability
Z€ro.

We shall interchangeably use the terms incomplete trees and one-sided trees. Dif-
ferent variants pursuing various pruning polices will be investigated. We shall discuss
five incomplete variations in this paper:

Left preference.
e Min preference.
¢ Max preference.

e Proportionate preference.

e Uniform (or no) preference.

The left preference search tree develops only the left subtree. The min (max) one-
sided variant always derives a one-sided tree from what would be the subtree of the
smaller (larger) size in the full binary search tree. This is a way of speeding up (slowing
down) the incomplete tree construction. In proportionate preference, one of the two
sides is chosen with probability proportionate to the size of the subtree. The uniform
preference policy simply chooses one of the two subtrees with equal probability, regardless
of their size in the binary tree. The rest of the paper is organized in sections. Each of
the following sections is dedicated to one particular one-sided variation. In each of these
sections, a more precise statement of the construction algorithm is given.

The size is random in each variation and we shall determine its limiting distribution,
when appropriately normed. We shall show that in each variation the (normed) size
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exhibits Gaussian tendency. The size in one-sided variants determines almost every
property of interest. For example, while in a binary search tree knowledge of the size is
not sufficient to determine the height, in an incomplete tree we have a simple connection:
the size is the height plus 1.

We use the following notation. Within each section S, will refer to the size of the
particular one-sided flavor discussed in that section, and ¢, (t) will denote the moment
generating function. For brevity, the notation S, and ¢, (t) will be reused in a different

way in each section. The symbols 2, 2», and 5 stand respectively for equality in
distribution, convergence in distribution, and convergence in probability, and N (u,0?)
will represent a normally distributed random variable with mean u and variance o2.
Because of the discrete nature of the incomplete search trees, some distributions that will
appear in the study are conveniently given in terms of the mod notation of programming
languages. The notation n mod k will assume the integer value of the remainder in the
integer division of n by k. The indicator 1¢ is a function that assumes the value 1 if

event £ occurs, otherwise the indicator is 0.
3. Left preference incomplete search trees

In this variation only the left side is developed. A left preference incomplete tree
T’, arising from a random permutation of {1,...,n} is the binary search tree with each
right subtree replaced by an empty tree. The algorithm for this construction operates as
follows. The first element of the permutation, say R, is placed in the root of the tree.
Each subsequent element of the permutation exceeding R, is thrown out (resulting in
an empty right subtree), and each subsequent member not exceeding R, is taken into
the left subtree, where recursively the tree T, _; is attached on the left side as the
only subtree of the root. Note that if the permutation IT,, is stripped of the elements
{Rn, Ro+1,. .., n}, the order of the remaining elements (all less than R,,) forms a random
permutation on {1,..., R, — 1}. The construction in Tg, 1 continues recursively until
T, an empty subtree, is to be attached on the left.

The size S, of the tree satisfies the recurrence

(3.1) Sp=1+4+8g,—1, for n>1,

with the boundary condition So = 0. Let ¢,(t) be the moment generating function
E[e®t]. Under the random permutation model, the root label R, is uniformly dis-
tributed on {1,...,n}. Then for n > 1,

¢n (t) — E[e(l‘i'SRnAl)t]

= ¢t Z E[eS*-1 | R, = r|P{R, =1}

r=1
et &
= — ;«sr_l(t).

Difference a version of the last telescoping recurrence, with n — 1 replacing n, from the
version with n to obtain

nn(t) — (0 — 1)dn_1(t) = dn-1(t).
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This recurrence can be iterated to produce the exact distribution:

n+e -1

bn(t) = —n—¢n—1(t)
_(n+et-1)(n+e —-2)
- n(n—1) Pn-2(t)

_ (n+et~1)(n+et—2)..<et¢0(t).

n!

Using the boundary condition Sy = 0, we can represent the solution in a Gamma function
form suitable for asymptotics.

PROPOSITION 3.1. Let S, be the size of a random left preference incomplete search
tree grown from a random permutation of {1,...,n}. The exact moment generating
function of S, is given by .
®n (t) = I\Lt(nﬁ‘lﬁ

(e)(n+1)

The exact (and consequently asymptotic) first two moments of S, can immediately
be computed from the exact distribution of Proposition 3.1 by taking derivatives with
respect to ¢t (at ¢ = 0). The computation of the variance is a bit lengthy, but remains
straightforward. The computation of the mean recovers an old result of Arora and Dent
(1969); the variance can be found in Martinez et al. (1998). These papers considered the
size of the left preference incomplete search tree in the context of the length of the so-
called left arm of a random binary search tree (the depth of the node containing 1). For
completeness we present these results. The result is compact when written in terms of

the first and second degree harmonic numbers H, = 3~7_; 1/, and HY = i1 l/ 32

COROLLARY 3.1.

E(S,] = H, ~lun,
Var(S,] = H, — H® ~ Inn.

The limit distribution for an appropriately normed S, can be found from Gamma
function asymptotics and local expansions. Let ¢t = v/ VInn, for fixed v, and eventually
let n — oo. By the Stirling approximation of the Gamma function we can rewrite the
exact result in Proposition 3.1 in the form

ploo s )] = 2T (1io(1))

= exp ([(1 + ﬁ + 2;{; + O((lnn)_3/2)> ~ 1} lnn)

(=o(2)
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Sp —1
E [exp {—\/I—H_%EUH —ev'2,

The right-hand side is the moment generating function of N0, 1), and we have conver-
gence in distribution by Lévy’s continuity theorem.

Asn — oo,

THEOREM 3.1. Let S,, be the size of a left preference incomplete search tree grown
from the random permutation {1,...,n}. Asn — oo,

Sn—lnn D

e BN (,1).

The asymptotic distribution of Theorem 3.1 as well as the exact and asymptotic
mean and variance of Corollary 3.1 can also be obtained from the theory of records in
the manner discussed in Devroye (1988) in the context of recursive trees.

4. Min incomplete search tree

The min strategy is meant to speed up the construction of the incomplete search
tree. In this strategy only the subtree with minimal size in the binary search tree
is recursively developed. If the two sides are of equal size, we can arbitrarily choose
either one. We shall stick to a left choice in breaking ties, but all other flavors are
mathematically equivalent from the point of view of parameters such as the probability
distribution of the size of the incomplete tree.

A min incomplete search tree T, is grown from a permutation of {1,...,n} by first
allocating a root for R,, the first element in the permutation. Let Z,, = min{R, —
1,n — R,}. If Z, = R, — 1, the right subtree remains empty, and the left grows a
tree Tz, recursively on the permutation {1,...,R, — 1}. Else, Z, = n — R,, and the
left subtree remains empty; the right grows a tree Tz, recursively on the permutation
{R,+1,...,n}. The size S, of the min tree satisfies the recurrence

(4.1) Sp=1+4+8z, for n>1,

with the boundary condition Sg = 0. Let ¢,(t) be the moment generating function of
Sp. We shall develop asymptotic relations for ¢,,(¢t) by conditioning on Z,,. The variable
Z, “almost” has a uniform distribution. That is, its distribution on {0,...,|3(n —1)]}
is uniform except for a possible perturbation at the upper end of the distribution. More
precisely, Fz, (z), the distribution function of Z,, is given by

Fz,(2)=1—-P{Z,>2}=1-P{R,—1>2,n— R, > z}.
In the rangezzO,l,...,L%(n—l)J — 1 this yields
Fz,(z) =1-P{z+1<R,<n-z}
=1-P{z+2<R,<n—2z2-1}

n—2z—2
n

%(z+1).

=1

Il
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We thus have
2 1
P{anz}=an(z)—FZn(Z—1)=ﬁ’ if ze{l""’b(n—l)Jﬂl}'

This expression is also valid at the uppermost point [ (n—1)], if n is even. However
if n is odd, the range z 4+ 2 to n — z — 1 is empty at z = |$(n — 1)|. Instead, we have
Fz.(l5(n—=1)]) =1, and it follows that

rfa o)) -2

Using the mod notation we have

2 1

in the entire range n = {0,...,|[3(n — 1)|}. We can now formulate a recurrence by
conditioning on Z,:

$n(t) = E[e+522)

l3(n-1))
> E[e5t| Z, = 2]P{Zn = 2}
z=0

tL (n—1)]

= 20 $=(t)(2 — (nmod 2)1(,_ 1 (n_1y)})

2ot B
= Z ¢z(t)——(nm°d2)¢L (-1} (8)-

We can get rid of the telescoping sum by differencing. If n is even, this yields
nn(t) — (n — 1)dn-1(t) = €t¢%(n—2)(t),

and if n is odd, the differencing yields
n¢n(t) — (n = 1)dn-1(t) = €'dy (1) (t)-

For all parities of n, we get the recurrence

(4.2) ndn(t) — (n — Dpp_1(t) = etq&L%(n_l)J (t).

The asymptotics of the solution in the left preference incomplete tree come from Stirling
approximation to gamma function. This suggests an asymptotic solution for the present
recurrence. For fixed ¢, we can try the asymptotic form

bu(t) = c(t)nI® (1+%+O(nl )), as n — 0o,

for functions ¢(t), g(t), and K; that depend only on t. The constant in O must also
depend on t. Whatever they are, g(t), K; and the O constant must all approach 0, as
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t — 0, and c(t) — 1, as t — 0, to meet the requirement ¢,(t) — 1, as t — 0, for all
n > 1. Indeed, this can be a unique asymptotic solution if

cmwm“(L%&+O<%)»%@W—UWHﬁLFK¥+0<@%ﬁa]

n n-1

~ ete(t) B(n - 1)J 9() 1+ V—Ktq +0 (ﬁl‘f)

("

In expanded form, this relation is

ndO+ 4 gond® L OmIM~1) — (pgW+1 _ (4(#) + 1)n9® 4+ O(ns®-1
g
<(1+50(5))
n n
o [, ometon] (14 2Ke o (L
_eKQ) +0m O (1+=L+0( ) ).

When simplified, this reads

(9(t) + Dn#® + O(n~1) = ¢! (

This is possible if g(t) is the solution to the equation
290 (g(t) + 1) = €.

This implicit equation is similar but not identical to that which appeared in Itoh and
Mahmoud’s (2003) investigation on min incomplete interval trees. The solution to this
equation can be expressed in terms of the unique principal branch of Lambert’s function,

which satisfies:
W(z)eW® = ¢,

Lambert’s function is closely related to the tree function T'(z), which appears often in
the enumeration of classes of trees, in fact T'(z) = —W(~—z). In our case,

1
t) = —W((2In2)e') — 1.
g(t) = W ((2In2)e) - 1
The asymptotic distribution is developed from local expansions.
LEMMA 4.1. Ast — 0,
t2
9(t) = g1t + g2 + o(#*),

where

g2 =
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PROOF. See Itoh and Mahmoud (2003). O

Let t approach 0 at an appropriate rate, by taking ¢ = v/VInn, for fixed v, as

n — o00. So,
v v
Elexp< Sp—— 5| ~¢| —— ) e9(v/VInn)Inn,
[ p{ vlnnH (vlnn>

Using the second-order local expansion of g(t) as in Lemma 4.1, we have

v v Inn  gov? < 1 ))
FElexps S,——¢| ~ | — ] ex v + +0 .
[ p{ \/lnnH (\/lnn> P (91 Inn 2 vinn
It follows that, as n — oo,

E [exp {—‘S—V'l\_/lg;ﬂv}] 92?2,
nn

This convergence can also be discussed rigorously within the scope of the emerging
contraction method (see the Appendix).

THEOREM 4.1. Let S, be the size of a min incomplete search tree grown from a

random permutation of {1,...,n}. Asn — oo,
1
S, —
Inn ’(1+ln2)3 ’

COROLLARY 4.1.

Inn =~ 0.590616109 In n,

1
E[Sa] ~ 1+n2

Var[S,] Inn =~ 0.2060230748 Inn.

1
- (1+m2)3

Note that the average size of the min incomplete search tree is smaller than that of
the left preference incomplete search tree, as a result of acceleration.

5. Max incomplete search trees

The max variant reverses the accelerating policy followed in the min tree. The max
variant slows down the development. To obtain the max tree from the binary tree, at
each node the smaller of the two sides is replaced by an empty subtree, the larger is
recursively further grown.

The mathematical development is mutatis mutandis similar to the min tree case,
with max mirror images of min. Therefore, we shall only sketch both description and
analysis. A max incomplete tree T, grows from a permutation of {1,...,n}. Firstly, a
root is allocated for R,, the first element of the permutation. Let Z,, = max{R, —1,n—
R.}. A tree Ty, is grown recursively along the side corresponding to the larger of the
two subtrees in the full binary tree, the other side is voided.
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The size S,, of the max tree satisfies the recurrence
Spn=14+5z, for n>1,

with the boundary condition Sy = 0. Let ¢, (t) be the moment generating function of Sy,.
We shall develop asymptotic relations for ¢, (t) by conditioning on Z,. The distribution
of Z,, is uniform over {[1(n — 1)],...,n — 1}, with the possible exception of a parity
perturbation at the lowest point of the distribution. Similarly to developments in the
min case, one finds

1
- E(n mod 2)1¢,_r1(n_1y]}-

Sl

P{Z,=z}=
Forn > 1,

$n(t) = E[e+522)Y)
n—1
= e Z E[e52:t | Z, = 2|P{Z, = 2}
=4 (n-1)]

ot n-1 t
_ % Z é.(t) — %(nmon)d)f%(n—m -

z=[z(n-1)]

Just like in the case of min trees, going through the routine of differencing and arguing
for all parities of n, one obtains the recurrence

15 (t) — (n — 1)pn-1(t) = 2e' Ppn_1(t) — €' [y (n_2y(t)-

By arguments that parallel the min tree case, one sees that d(t)n*®(1+ A;/n+O0(n"2))
is an asymptotic solution for fixed {, if

(5.1) R(t) + 1 = et(2 — 27h(®),

and if h(t),A; — 0, and d(t) — 1, as t — 0, and the hidden constant in O is also
a function of ¢ tending to 0, as t — 0. The function h(t) that solves the functional
equation must then have the local expansion

t2
h(t) = hit + hag + O@t®), as t—0,

with
1
hi = ———
1T T T2
1_ 2
hy = 2In 2.
(1-1n2)3

The general idea of the proof is to develop the coefficients hy = h’(0), and hy = hA”(0)
from functional equation for A’(t) and h”(t) that can be obtained by taking the first and
second derivative of the implicit equation (5.1). The details of this proof are omitted,
and the reader can refer to Itoh and Mahmoud (2003) for a more detailed discussion of
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a similar result. This convergence can also be discussed rigorously within the scope of
the emerging contraction method (see the Appendix).

By a development parallel to the asymptotic procedure in the min incomplete search
tree (with g(t) replaced by h(t)), we obtain the following.

THEOREM 5.1. Let S, be the size of a maz incomplete search tree grown from a

random permutation of {1,...,n}. Asn — oo,
S, ! 1
"1 _m2 "o 1-2In%2
SN0, ———— .
Inn (1-1n2)3

COROLLARY 5.1.

E(S,] ~ R Inn =~ 3.258891353 Inn,
1-2In%2
Var(S,] = A= Inn ~ 1.353067446 In n.

Note that the average size of the max incomplete search tree is larger than that
of the left preference incomplete search tree, which is to be expected in view of the
deceleration in the algorithm.

6. Proportionate preference incomplete interval trees

The proportionate preference incomplete search tree develops one of the two subtrees
with probability proportionate to its size. More precisely, the construction algorithm
operates as follows. The first element R, is placed in the root. A subtree is chosen with
a particular probability to be further developed, the other remains empty. The random
choice of the subtree is obtained through the mechanism of an independent random
variable V,, uniform on the set {1,...,n — 1}; if V,, < R, the left subtree is developed,
the right is truncated, otherwise V,, > R,, and the right subtree is developed, the
left is truncated. The selector V,, chooses the left subtree with conditional probability
(Rn—1)/(n—1), or chooses the right subtree with conditional probability (n—R,)/(rn—1),
given R,,. A subtree is grown recursively on the random permutation belonging to the
size of the selected subtree.

The size S,, of the tree satisfies the recurrence

S, =1+ I{VnSRn—l}SRn—l + ]-{V,,an}Sn—-Rna for n>1,

where S’j is distributed like S}, for each j, and Sy and S'j are independent, for every j and
k. It is important to note that Sg,—1 and S R,, are only conditionally independent,
given R,, otherwise without the knowledge of R, they are dependent through their
joint dependency on R,. The boundary condition is So = 0. Let ¢,(t) be the moment
generating function of S,. Forn > 1,

bult) = E[e(1+1(vnSRn—l}SRn—lﬂ{vnzn—nn}gn—nn)t]
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I

n r—1
t [Z > EleS|P{R, = r}P{V, = v}

r=1v=1

+3 ‘2 E[e5* " P{R, = r}P{V, = v}}

r=1v=r

T [Z(r Dr_1(t) +Z n—T)Ppn- r(t)}

1

Changing the second summation variable r to n —r + 1 renders the second summation
the same as the first:

n(n — 1)¢n(t) = 2" > (r— L)gr_1(t).

Differencing a version of this recurrence with n — 1 replacing n, from the version with n,
we obtain an iteratable recurrence

o) =225 o),

Iterating all the way back to ¢o(t) = 1, we have an exact representation in terms of the

Gamma function:
(n + 2et — 1)

[ B —_
This exact distribution is similar to the exact distribution of the left preference incom-

plete search tree, and can be manipulated with the same Gamma function asymptotics
and methods of local expansion.

THEOREM 6.1. Let S,, be the size of a proportionate preference search tree groun

from a random permutation of {1,...,n}. As n — oo,
S, —21
Zn 227 D A0, 2).

vinn

COROLLARY 6.1.

E[S,] ~2Inn,
Var{S,] ~ 2Inn.

It is to be expected that the average size of the proportionate tree lies somewhere
between that of the min and that of the max incomplete search tree as the recursive
selection of the smaller and larger subtrees for the developed side mixes the two cases.
The proportionate preference incomplete search tree is also larger on average than the left
preference incomplete search tree, because larger subtrees are favored probabilistically.
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7. No preference incomplete interval trees

In the uniform preference (no preference) variation equal weight is given to the two
subtrees, regardless of their size. A subtree is chosen with probability 1/2. The choice
of the subtree to develop is determined by a fair coin flip, say with heads we develop
the left subtree and with tails we develop the right subtree. The first element of the
permutation, say R,, goes into the root. In the case of heads we grow a subtree on the
left side on the remaining elements in the permutation that are less than R,, (which form
a random permutation on {1,..., R, —1}); the right subtree remains empty. In the case
of tails we grow a subtree on the right side on the remaining elements in the permutation
that are greater than R, (which form a random permutation on {R, + 1,...,n}); the
left subtree remains empty.

Let the events H and 7 stand respectively for the outcomes heads and tails. The
recurrence for the size 5, is

(7.1) Sp=1+1xSr,_1+175,_g,;

the tilde stands for equality in distribution and conditional independence, as explained
in Section 6.

Let ¢, (t) be the moment generating function of S,,. By conditioning on the outcome
Q of the coin flip, the relation (7.1) yields

¢n(t) _ E[e(1+1HSRn—1+lT§n—Rn)t]

et (EleSm—Y|P{Q = H} + E[eS-YP{Q = T})
_ E[e(1+SRn—1)t],

where we used the identical distribution of n — R, and R, — 1, and of S; and S;, for all
j. Hence, for n > 1,
Sn =1 -+ SRn—l-

This recurrence is the same as that of the recurrence of the left preference tree (cf. (3.1)).
Consequently, the results are the same as those in that case; the no preference case grows
a zig-zag path of length distributed like the leftmost arm of a binary tree.
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Appendix

The one-sided variations discussed can be handled within the rigorous approach
of the contraction method. We illustrate the approach on the min tree. However, the
method is applicable to all five variants discussed.
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The method was introduced by Rosler (1991). Several extensions were contributed
by Rachev and Riischendorf (1995). Recently general contraction theorems and mul-
tivariate extensions were added by Rosler (2001), and Neininger (2002). Rosler and
Riischendorf (2001) survey the area.

The general philosophy of the approach is to start from a recurrence on a random
variable, say X,. Under appropriate norming, the recurrence carries over to X, the
normalized random variable. The norming is usually affected by asymptotic centering
(subtracting off an asymptotic equivalent of the mean) and asymptotic scaling by an
asymptotic equivalent of the standard deviation. The rest of the argument is devoted
to demonstrating that the distributional equation for X converges in the limit to a
limiting distributional equation on a limit random variable X. Usually, the limiting
distribution is the unique fixed-point solution to the limiting equation. The convergence
itself is argued by showing that the distance in some metric space, such as Wasserstein’s
or Zolotarev’s, between the laws of X,, and X approaches 0.

The method is challenged in some tree applications by the appearance of a degen-
erate limit equation of the form

(A1) X2Xx,

which is of no help in characterizing the limit distribution, because of course any random
variable with arbitrary distribution satisfies such a degenerate equation. The depth of
a randomly selected node in a random binary search tree provides such an instance (see
Mahmoud and Neininger (2003)).

Only very recently has this issue been finessed in Neininger and Riischendorf (2002),
where it is shown that under some mild conditions on growth rates, one still gets normal
limit laws as the unique solution of a degenerate equation like (A.1).

Recall the definitions g; = 1/(1 +1n2), and g5 = ¢} (cf. Lemma 4.1). In our case,
we can start from the recurrence (4.1) and progress to normalize:

_ Sp—gilnn Sz —gInZ, +InZ,

S = = X + An{Z,),
" vg2Inn Vg2 In Z, vinn n(Zn)

where ) ) 1

grinu—gnn
A =
n(u) Vg Inn + VozInn
Hence
vinZ
St =8y YEn L A (Z).

" vInn

But then, as n — oo,

1
— (0,
Vvgalnn -

and 7z
Zn B EU,
n 2

with U being a standard Uniform(0, 1) random variable, so that

InZ, —lnn p
—_—_—

0.
Vinn
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Thus, A,(Z,) £0, and vIn Zn/\/lnng 1. If S 2 S, where S is some limiting random
variable one would then get the degenerate equation

sZgs

This can be shown rigorously in either of the afore-mentioned metric spaces. But that
would not help. One can then resort to the finesse of Neininger and Riischendorf (2002).

For the reader’s convenience, we repeat their main result here. Suppose Y, is a
sequence of random variables that satisfies the recurrence

(A.2) Y, 2y, +b,, forall n>mne>1,
and (I,,by),Ys are independent, with b, random, and I, € {0,...,n}, with P{I, =

n} < 1, for n > ng. Denote E[Y,] by un, and Var|Y,] by o,,. Let || X||, denote the L,
norm of a random variable X.

THEOREM A.l. (Neininger and Riischendorf (2002)) Let Y, be a sequence of ran-
dom variables satisfying (A.2) with |Y,|l3 < oo, for alln > 0, and

(A.3) limsup E [ln (In v 1)] <0,
n—oo T
(A4) sup [|1n (In‘v 1)
n>1 n 3

Further more, assume that for real numbers a, A\, k, with o > 0, and 0 < X < 2a, the
mean and variance of Y, satisfy

(A.5) b = pin + pir, I3 = O(In" n),
(A.6) 02 = Cln®**n + O(In* n),

for some positive constant C. If
B8 := (%(1 A2a—[(2k)V A]])) ANMa—s+[1AQ2a—-N)])>1,

then
Y, - E[Y,] p

cn  Thnl A 1
Tomen VO,

and we have the rate of convergence O(In®~! n) in Zolotarev’s metric space (see Zolotarev
(1976)).

Note that this route does not require at all checking first that the contraction method

gives a degenerate equation of the form Y 2y . The theorem stands by itself, and gives
a way out if the limit equation is degenerate.

In our incomplete tree investigation, b, = 1, and I,, = Z,,. All the conditions of
Theorem A.1 are satisfied: Obviously, the third moment (in fact all the moments) of
S, < 3(n+1) exist, and from the distribution of Z, we can quickly verify conditions
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(A.3) and (A.6). Indeed, recurrence equations for the moments can be readily found
from the recurrence (4.2). For instance, by taking derivatives of (4.2), we get

npn — (1= Dpp-r =1+ Hi1(n-1)]-
It follows from an easy induction that
glnn < p, <1+ g Inn.
One can now verify (A.5) for large n, by conditioning on Z,, as follows. We have
2 9 3(n-1)]
Ellby = pin+ pz, Pl < = Inn+ = > (g1lnn-gInk)® = O(1);
n no &

such a computation can be carried out by comparing sums to bounding integrals. We
can take k = 0.
Likewise for (A.6), one finds by induction

on = g2Inn +O(1).

Thus, a = %, and A = 0. By conditioning on Z,,, we can verify that

i(n—-1)f-1
E [111(Z"V1>] = glnl-{— 2 Z In (E)
n n n n n

k=1
1
+—-(2-nmod2)ln| =——
n n
— —1—-In2.
Likewise,
Zn V1
sup ln( n ) =6+6In2+3In%2+In2.
n>1 n 3

All the conditions for Theorem A.1 hold, with 8 = %; Theorem 4.1 follows, with
O(In~*? 1) rate of convergence (in Zolotarev’s metric space).
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