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A b s t r a c t .  In the present paper, we study the distribution of a statistic utilizing the 
runs length of "reasonably long" series of alike elements (success runs) in a sequence 
of binary trials. More specifically, we are looking at the sum of exact lengths of 
subsequences (strings) consisting of k or more consecutive successes (k is a given 
positive integer). The investigation of the statistic of interest is accomplished by 
exploiting an appropriate generalization of the Markov chain embedding technique 
introduced by Fu and Koutras (1994, Y. Amer.  Statist. Assoc., 89, 1050-1058) and 
Koutras and Alexandrou (1995, Ann. Inst. Statist. Math., 47, 743-766). In addition, 
we explore the conditional distribution of the same statistic, given the number of 
successes and establish statistical tests for the detection of the null hypothesis of 
randomness versus the alternative hypothesis of systematic clustering of successes in 
a sequence of binary outcomes. 

Key words and phrases: Success runs, run lengths, Markov chains, Markov chain 
embeddable variable of polynomial type, randomness tests. 

1. Introduction 

In the analysis of exper imenta l  trials whose outcomes can be classified into two 
exclusive categories, a quest ion tha t  comes in na tura l ly  is whether  reasonable cri ter ia  
providing evidence of clustering of any of the two categories could be established. These  
cri teria could then  be used to detect  changes in the underlying process which gener- 
ates the series of outcomes.  Many commonly  used cri teria for the stat is t ical  analysis of 
such phenomena  involve the concept  of runs  i.e. un in te r rup ted  sequences of alike ele- 
ments  bordered  at each end by o ther  types of elements or by the beginning or by the 
end of the  complete  sequence. For example,  many  quali ty control  plans base the accep- 
tance / re jec t ion  of the sample lot on the occurrence of prolonged sequences of successive 
working/fai led components ,  Wolfowitz (1943), Balakrishnan et al. (1993). For a mechan- 
ical engineer performing a s ta r t -up  test  for a new machine, it is reasonable to  couch his 
decision (accepting the machine or rejecting it) on the number  of consecutive successful 
or unsuccessful a t t e m p t e d  star t-ups,  Hahn  and Gage (1983), Viveros and Balakr ishnan 
(1993), Balakrishnan et al. (1995, 1997). The  same model,  in the context  of reliability, 
leads to the well known consecutive-k-out-of-n:  F system and its variat ions (for a review 
refer to Chao et al. (1995)). Finally, an addit ional  interest ing applicat ion of the  concept  
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of runs comes from the area of non-parametric runs tests, Gibbons and Chakraborti 
(1992), Agin and Godbole (1992). In this case, the interest is focused on the condi- 
tional distribution of runs or equivalently, on runs defined in a sequence of outcomes of 
prespecified composition. 

In the traditional runs/pat terns literature, the criteria used take into account the 
number of runs/patterns observed in the experimental sequence or the number of runs of 
specified length or the waiting time for the occurrence of a prespecified number of runs. 
The distributions of the number of fixed size success runs and the associated waiting 
time distributions have been termed in the statistical bibliography as distributions of 
order k and have been extensively studied by Philippou and Makri (1986), Aki and 
Hirano (1988), Godbole (1990, 1992), Hirano et al. (1991), Hirano and Aki (1993) etc. 
For a detailed and systematic exposition of the distribution theory of runs the interested 
reader may wish to consult the recent monograph by Balakrishnan and Koutras (2002). 

None of the aforementioned criteria makes use of the exact length of runs appearing 
in the outcome sequence. Agin and Godbole (1992), aiming at the development of 
non-parametric randomness tests, suggested using run lengths of variable sizes (see also 
Koutras and Alexandrou (1997)). Of a similar flavour can be considered the approach set 
in O'Brien and Dyck (1985), where a test based on longest runs is investigated. Motivated 
b~} those works, we proceed here to the investigation of a statistic utilizing the runs length 
of "reasonably long" series of alike elements (successes) in a sequence of binary trials. 
More specifically, we are looking at the sum of the lengths of subsequences (strings) 
consisting of k or more consecutive successes (k is a given positive integer). It is clear that  
theoretical results on the distribution of this statistic are of major practical importance 
for establishing and investigating appropriate statistical tests which would detect the null 
hypothesis of randomness in the sequence of outcomes versus the alternative hypothesis 
of systematic clustering of successes. The investigation of the statistic of interest here is 
derived by exploiting a proper Markov chain embedding technique. 

In Section 2 we present in brief the general family of Markov chain embeddable 
variables (c.f. Fu and Koutras (1994)) and introduce the wide subclass of Markov chain 
embeddable variables of polynomial type (MVP) which may be efficiently used for the 
evaluation of the exact distribution of enumerating random variables. This class gen- 
eralizes the family of Markov chain embeddable variables of binomial type introduced 
in Koutras and Alexandrou (1995) and offers a very functional "working environment". 
Next we establish compact and computationally tractable formulae for obtaining the 
exact distribution (probability mass function and generating functions) of MVP's. In 
Section 3 we apply the MVP methodology to the problem of establishing the exact dis- 
tribution of the sum of the lengths of success runs whose length exceed a prespecified 
level. Finally in Section 4 we assume that the composition of the observed sequence is 
known, that  is to say, the number of successes and failures are fixed quantities, and pro- 
ceed to the investigation of the conditional distribution of the aforementioned statistic. 
The results are then used (in Section 5) to investigate the performance of a new test of 
randomness. 

2. General results 

Recently, Fu and Koutras (1994) developed a unified method for capturing the 
exact distribution of the number of runs of specified length by employing a Markov 
chain embedding technique. Koutras and Alexandrou (1995) refined the method and 
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expressed these distributions in terms of multidimensional binomial type probability 
vectors. Fu (1996) extended the original method to cover the case of arbitrary patterns 
(instead of runs) whereas Koutras (1997) treated several waiting time problems within 
this framework. Finally Doi and Yamamoto (1998) and Han and Aki (1999) considered 
the case of multivariate run related distributions and offered simple solutions to the 
problem by exploiting proper extensions of the Markov chain embedding technique. 

We shall first introduce the notion of a Markov chain embeddable variable, in a way 
similar to the one used by Fu and Koutras (1994). Let Xn (n a non-negative integer) be a 
non-negative finite integer-valued random variable and denote by l ,  = sup{x : P r (X ,  = 
x) > 0} its upper end point. 

DEFINITION 2.1. The random variable Xn will be called a Markov Chain embed- 
dable variable if 

(a) there exists a Markov chain {Yt : t > 0} defined on a state space D = 
{at, a2 , . . .  } which can be partitioned as ft = (-J,>_0 Cx, 

(b) the probability mass function of Xn can be captured by considering the pro- 
jection of the probability space of Ks onto C, ,  i.e. 

Pr(Xn = x) = Pr(Yn C Cx), x = O, 1 , . . . , In .  

If At is the one-step transition probability matrix of the Markov chain ({Yt : t > 
0}, ft), then the exact distribution of Xn can be derived by the aid of the formula 

(2.1) Pr(X~ = x) = lr0 At e~, x = 0, 1 , . . . , l ~  
t = l  i:o~i cCx 

where ei are unit (row) vectors and rr0 = (Pr(Yo = c~,), Pr(Y0 = ct2), Pr(Y0 = c~3),... ) 
is the vector of initial probabilities. 

For typographical convenience we impose the convention Pr(X0 = 0) = 1 and set 
b 

I]t=a At = I for a > b. 
Should it be possible to partition At in the form of a bidiagonal blocked matrix with 

non-zero blocks appearing only on the main diagonal and the diagonal next to it, the 
investigation of Xn's distribution could be easily carried out by considering appropriate 
probability vectors describing the overall state formulation of the Markovian process at 
time t. Motivated by this observation, Koutras and Alexandrou (1995) proceeded to the 
introduction of a significant subclass of the family of Markov chain embeddable variables 
which offered a computationally efficient framework for tackling problems of this nature. 
Unfortunately, this class is not wide enough to accommodate the distributional problem 
we are aiming at in this article. For this reason we proceed to the introduction of a 
more general family of variables which will be called Markov chain embeddable variables 
of polynomial type. 

To start with, let us first observe that  without loss of generality we may assume 
that the state subspaces Cx, x = 0, 1 , . . .  have the same finite cardinality s = IC, I. 

DEFINITION 2.2. The random variable Xn will be called Markov chain embeddable 
variable of polynomial type (MVP) if 
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(a) there exists a Markov chain {Yt, t >_ 0} defined on a discrete state space fl 
which can be partitioned as 

~'~ = U Cx' Cx : {Cx,o, Cx,l, . . . ,Cx,s-l} 
x>_O 

(b) there exists a positive integer m such tha t  for t > 1 

Pr(Yt E Cy [ Yt_I E Cx) = O for all y C x, x + l , . . .  , x  + m 

(c) the probabili ty mass function of X~, can be captured by considering the pro- 
jection of the probabili ty space of Yn onto Cx i.e. 

Pr(X~ = x) = Pr(Yn E C~), n _> 0, x > 0. 

For m = 1, Definition 2.2 reduces to the definition of the Markov chain embeddable 
variables of binomial type introduced by Koutras  and Alexandrou (1995). 

Roughly speaking, a MVP is characterized by the following property: the s ta te  
subclasses Cx, x >> O, can be ordered in such a way tha t  once the chain enters Cx, the 
feasible one step transit ions lead either to the same subclass Cx or to one of the next m 
(main state) subclasses C~+1 , . . . ,  Cx+m. For the m + 1 transi t ion probability matrices 

At,i(x) = (Pr(Yt = Cz+i,j, I Y t-1 = cx,j))~• O < i < m ,  t > l ,  x > O  

it is clear (c.f. condition (b) of Definition 2.2) tha t  the matr ix  y~m_0 At,~(x) is stochastic. 
Moreover, on introducing the probabili ty (row) vectors 

f t ( x )  = (Pr(Yt = cx,0),Pr(Yt = Cx,1),... ,Pr(Yt = Cx,s-1)), t ~ 0 ,  x ~ 0 

it follows directly from condition (c) of Definition 2.2 tha t  

Pr (Xn = x) = f n ( X ) ( 1 , 1 , . . . ,  1)' = f n(X)l ' ,  n > O, X > O. 

Finally, convention Pr(Xo = 0) = 1 implies tha t  

rrol '  = f 0 ( 0 ) l '  = (Pr(Y0 = c0,0), Pr(}5 = CO,l), . . . ,  Pr(Y0 = c0,s-1)) l '  = 1 

7rxl '  = f o ( x ) l '  = 0, x > 1. 

Before proceeding to the development of general results facilitating the investigation 
of the exact distr ibution of a MVP,  let us discuss in brief some potential  applications 
where the approach taken here can be fruitfully used. Let g be an event (single or 
composite) associated with a sequence of binary (or mult istate)  trials and introduce a 
score function fi  ($) denoting the points earned if event E occurs at  the i - th  triM. Then  
a M V P  offers an appropriate methodological tool for investigating the exact distr ibution 
of the total  score Xn achieved in a series of n outcomes. This setup is wide enough to 
accommodate  the number of fixed length runs model (f i(g) = 1 if a run of prespecified 
length has been registered at the i- th trial), the sum of run lengths model introduced 
in Section 1 (fi(C) equals the exact length of a run completed at the i-th trial provided 
tha t  the length exceeds a prespecified level), or even more complex models pertaining 



O N  T H E  D I S T R I B U T I O N  O F  R U N  L E N G T H  869 

to the occurrence of specific patterns. By way of example assume that  we are trying to 
investigate the efficacy of n questions. Each time we observe a cluster of correct responses 
(e.g. a certain number of correct answers in a row, or segments containing a prespecified 
percentage of correct answers) c points are added to the subject's score, i.e. fi (C) = c. For 
each subsequent correct response d extra points are earned. Apparently, the total number 
of points collected upon the completion of the test may be considered as an indication of 
method's efficacy. The same statistic, under a slightly different description may be used 
for deciding whether a quality control process is out of control, whether a disease can 
be declared as contagious based on patterns of infected among non-infected plants in a 
transect through a field, etc. It is clear that in all these situations the knowledge of the 
distribution of the test statistic will help the practitioner to setup reasonable statistical 
procedures guarantying prespecified levels of type I error. The general results presented 
in this section are quite useful for the investigation of the aforementioned models and 
models of similar nature encountered in numerous areas of applied sciences. 

Let us start our study with the next theorem which provides a method for the 
evaluation of the probability mass function of a MVP.  

THEOREM 2.1. The sequence of vectors f t(x) satisfies the recurrence relation 

m i n ( x , m )  

f t (X)  = E f t - l ( X  -- i)At#(x - i), t > 1, x > O. 
i = 0  

PROOF. Let t _> 1, x > 0 and 0 _< j _< s - 1. The total probability theorem yields 

m i n ( x , m )  s - 1  

Pr(Yt = cx,j) = E E Pr(Yt = cx,j ] Yt-1 = Cx-i,r) Pr(Yt-1 = cx-i,r) 
i = 0  r=O 

which can be equivalently written as 

m i n ( x , m )  s - 1  

Pr(Yt = c~,j) = ~ E er+lAt,i(x - i)e}+ 1 Pr(Yt-1 = cx-i,r) 
i=O r = 0  

m i n ( x , r n )  

= E , f t _ l ( X -  i ) A t , i ( x -  i)e}+ 1 
i =0  

(ei denote the unit row vectors of II~S), and the proof is complete. [] 

Next, let ~t(z) and O(z, w) be the single and double generating functions 

o o  (x) 

Ft(z) = E Pr(Xt = x)z x, O(z,w) = E ~ a t ( z l w t  
x = 0  t=O 

and denote by ~t(z)  and ~(z ,w)  the single (row) and double (row) vector generating 
functions of f t  (x), respectively, that  is 

o ~  oo  

~at(z) = E f t(x)zX , t_>0, 'I~(z, w) = E ~ot(z)wt. 
x : 0  t : 0  
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It is clear that  r = 7r0, ~t(z) = ~ t (z ) l ' ,  t _> 1 and (I)(z,w) = (I)(z,w)l'. 
We mention that, it is the rule rather than the exception that  matrices At,i(x) do 

not depend on x, that is At,i(x) = At,i for all t __ 1 and x > 0. In this case the vector 
generating function ~t(z) can be expressed in the form of a product as stated in the 
following theorem. 

THEOREM 2.2. I f  At,i(x) = At# for all t >_ 1 and x >_ 0 then the (single) vector 
generating function of Xt  is given by 

 t(z) = l -I  
r = l  \ i = 0  / 

t ~ l .  

PROOF. For t _> 1 and upon using Theorem 2.1 we may write 

Or ? n  X CX:) TYt 

r : E f t (x)zx ----- E E  f t - l ( x - i ) n t ' i z x  -}- E E f t - l ( x - i ) n t ' i z x  
x = 0  x = 0  i = 0  x = m + l  i = 0  

) ) = E z  i f t _ l ( x - i ) z  x- i  A t , i+  z' f t _ l ( x - i ) z  x- i  At# 
i = 0  = "  i = 0  x = m + l  

~__ E Z  i t - l ( y ) z  y At,i = ~t_l(Z) At,iz i 
i = 0  \ y = 0  / \ i = 0  / 

The proof may easily be completed by repeated application of the last formula. [] 

It is well known that  the probability generating function ~(z) of the (generalized) 
binomial distribution is the product of the binomial terms Pro + zPrl, where Pri denotes 
the probability of occurrence of outcome "i", i = 0, 1 at the r-th trial (two possible 
outcomes). Replacing the binomial terms by the polynomial terms ~-~m=op,.izi , where 
p~i denotes the probability of occurrence of outcome "i", i = 0, 1 , . . . ,  m at the r-th trial 
(m+ 1 possible outcomes), we obtain the probability generating function of the univariate 
multinomial distribution introduced by Steyn (1956) (see also Panaretos and Xekalaki 

rn  i (1986) and Philippou et al. (1990)). In Theorem 2.2, ~-~i=oPriZ has been replaced by the 
polynomial term ~-~,~n_0 Ar,iz i, a fact justifying the nomenclature polynomial type used 
for the random variables studied here. 

In the case of an homogeneous MVP, we have the next theorem. 

THEOREM 2.3. I f  At,i(x) -- Ai for all t >_ 1 and x > 0 then the double vector 
generating function of Xt  can be expressed as 

(I)(z, w) = 7to I - w Aiz  i 
i = 0  / 

where I is the identity s • s matrix. 

--1 

PROOF. Follows readily from Theorem 2.2 on observing that  

t=o t=o \ i=O 
-- w Aiz  i 

i = 0  

-1 
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the last equality being valid in an appropriate neighborhood of zero for w. [] 

For an homogeneous MVP Xt let Pt = E(Xt),  t _> 1, denote the mean of Xt  and 
M ( w )  ~- Eta~ ~t wt,  its generating function. The next theorem provides two compact 
formulae for the evaluation of #t and M(w) through the transition probability matrices 
Ai, i = 0, 1 , . . . , m .  

THEOREM 2 . 4 .  If  At,i(x) = Ai for all t >_ 1 and x > 0 then 

Pt = E(Xt)  = ~ro Ai iA~ 1' 
r = l  i=1 

1 - i=o \~=1 / 
1'. 

PROOF. Exploiting the formula 

(m 
d Z A i z  i = E  Aiz~ iAiz~-I Aizi 
dz \ i = 0  / r = l  i=0  i=1 \ i = 0  / 

we deduce, by virtue of Theorem 2.2 

#t = ~-:~[~t(z)l'] = 7to A~ iAi Ai 1'. 
r = l  i=0  \ i = 1  / 

m A The first result follows readily by recalling that  matrix )-~i=o i is stochastic. 
The generating function M(w) may be written as 

) 
t = l  r = l  \ i = i  / J  

= 7row Ai w~-i E wt-r  iA~ 
r = l  i=0  t = r  

11 

and the desired formula is effortlessly established by virtue of 

(2.2) E Ai w r-1 = I -  w Ai 
r=l i=O i=0  

[] 

It goes without saying that for m --- 1 the outcomes of Theorems 2.1-2.4 produce 
the respective results which have been developed by Koutras and Alexandrou (1997) for 
the Markov chain embeddable variables of binomial type. 
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3. The distribution of the sum of the exact lengths of runs of length at least k 

Consider a sequence of Bernoulli  trials Z1, Z 2 , . . .  with success probabili t ies pt = 
Pr (Z t  = 1), and failure probabili t ies qt = Pr (Z t  = O) = 1 - P t ,  t _> 1 and let n, k be any 
positive integers with n _> k. For k < t < n we define 

k + ~, if Zt-k-e+l = Zt-k-e+2 . . . . .  Zt = 1 and Zt-k- i  = Zt+l = 0 
Ut = O, otherwise 

(convention: Zo = Zn+l = 0). Then  the sum of the exact  lengths of substrings of the 
sequence Z1, Z2,.  �9 Zn containing k or more consecutive successes, can be expressed as 

n U . - -  Xn = }-:~t=k t, n _> 1. It  is clear tha t  the suppor t  of X~ is {0, k , k + l , . .  ,n}.  For n < k 
we set Xn = 0 and the suppor t  of X~ reduces to {0}. 

In order  to view the r andom variable Xn as a MVP, we set Cx = {cx,0, Cxa,.. . ,  cx,k} 
where cx,i = (x,i), 0 < i < k, x > 0 and define a Markov chain {Yt,t ~ 0} on ~ = 
Ux>o Cx as follows: Yt = Cx# (or equivalently Yt = (x, i)) if in the first t outcomes,  say 
1001 �9 �9 �9 0 1 1 ~ ,  the observed sum of the exact lengths of runs of k or more consecutive 

T 

successes is x and 

i = {  r'k, if if r>_k.r=O'l''"'k-1 

It  is apparen t  that ,  once the chain enters C~, the one step transi t ions may  lead only 
to the subclasses C~, Cx+l or Cx+k. Hence the r andom variable Xn belongs to the class 
of MVP. The  t ransi t ion probabi l i ty  matrices At,i, i = O, 1 , . . . ,  k, can be easily identified 
by observing tha t  if Yt = c~,k the  feasible one step transi t ions of the chain lead ei ther  
to substa te  cx+l,k (if Zt+l = 1) or 
given by 

qt 

At, 0 ~- 

qt 

to substate 

pt O " ' O  
O p t " "  0 

q t O  0 . . . 0  

q t O 0 " ' O  

q t O 0 ' ' ' O  

Cx,o (if Zt+l = 0). Therefore,  At,o will be 

0 0 "  

0 0  

Pt 0 

O0 
O0 

( k+ l )  x (k+ l )  

while At,2,.. .  ,At,k-1 will be (k + 1) x (k + 1) matr ices with all their  entries 0. Mat r ix  
At,1 will have all its entries 0 except  for the ent ry  (k + 1, k + 1) which equals Pt. Finally, 
At,k will have all its entries 0 except  for the ent ry  (k, k + 1) which equals Pt. Th e  
appropr ia te  initial probabi l i ty  vector  of the Markov chain established here is given by 
7r0 = ( 1 , 0 , 0 , . . . , 0 ) .  

Recalling now Theorem 2.1 we may readily evaluate the probabi l i ty  mass function of 
X~. Moreover exploit ing Theo rem 2.2 we may derive its probabil i ty  generat ing funct ion 
a s  

o o  n 

~n(z) = E P(Xn = x)z x = 1to I-I (A,~,o + zA~,l + zkAr,k)l '. 
x = 0  r = l  
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In the case of iid trials with success probabilities p (Pt = P, qt = q), Theorem 2.3 
yields, after some routine calculations, 

(3.1) 

where 

O(z,w) = ~ ~n(Z)W n = f r o ( I -  w(Ao + zA1 + z k A k ) ) - l l  ' -- P l ( z , w )  
P2(z, ~) 

rt=O 

Pl  (Z, W) ~- 1 - w p z  - (wp)k(1  -- z k) -- (wp)k+ l  (zk -- Z) 

P 2 ( z , w )  = 1 - w ( 1  + pz )  + w 2 p z  + w k + l q p k ( 1  -- z k) + Wk+2qpk+l(Z k -- Z). 

(I denotes the identity (k + 1) x (k + 1) matrix). It is not difficult to verify that (I)(z, w) 
may be written in the form 

e(z,~) = ~ ~ (z )w ~ = 
n = 0  

1 --  w a l ( Z  ) - -  wka2(z) - wk+la3(z)  

1 - [wbl(z) + w2b2(z) + wk+lb3(z) q- wk+2b4(z)] 

where ai(z), i = 1, 2, 3 and bi(z), i = 1, 2, 3, 4, are appropriate functions of z. 
Following the methodology employed by Antzoulakos and Chadjiconstantinidis 

(2001), we may express ~n(Z) as 

where 

~ n ( Z )  = ~ o ( Z )  - -  a l ( Z ) ~ l ( Z )  --  a2(z)~k(Z) - a 3 ( z ) ~ k + l ( z )  

n l + 2 n 2 + ( k + l ) n a + ( k + 2 ) n 4 = n - i  j = l  j = l  nj! 
- - ,  i = 0, 1, k ,k + 1. 

Since the generating function of pn(Z),  n > 0, is a rational function of the form 
(3.1) a recursive scheme may be readily established by the aid of standard combinatorial 
techniques (see e.g. Chapter 4.1 in Stanley (1997)). More specifically we have the next 
result. 

THEOREM 3.1. If Z1, Z2,..., Zn is a sequence of lid Bernoulli trials the probability 
generating function ~n(Z) of the random variable Xn  satisfies the recursive scheme 

~ n ( z )  = (1 + pz) i f ln_l(Z ) - -  pZ)gn_2(Z ) 

- qpk(1 -- Z k ) ~ O n _ k _ l ( Z )  -- q p k + l ( z k  -- Z ) ( ~ n _ k _ 2 ( Z ) ,  n > k + 2  

with initial conditions 

1, i f  OK n K k  

~n(z)  = 1 - pk + (pz)k, i f  n = k 

1 - - p k ( l + q ) + 2 q p k z  k + ( p z )  k+l, /f n = k + l .  

PROOF. The desired result follows by writing (3.1) in the form 

oo 

P~(z, w) ~ ~n(Z)W n = Pl(z, w), 
n = 0  
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performing the multiplication in the LHS and considering the coefficients of w ~, n = 
0, 1 ,2 , . . .  in the resulting power series equality. [] 

As far as the probability mass function g~(x) = Pr(X~ = x), x > 0 is concerned, its 
numerical computation can be easily achieved by launching the vector recursive scheme 
given in Theorem 2.1 (with matrices At,i, i = 0, 1 , . . . ,  k being replaced by the special 
forms described earlier in this paragraph) and using the expression 

P r ( X n = x ) = f n ( x ) l '  , n > O ,  x = 0 , 1 , 2 , . . . , n ;  

note that, for x = 1, 2 , . . .  ,k - 1 no calculations are necessary since in this range we 
always have f ~  (x) = 0. 

In the special case of iid Bernoulli trials one could avoid working with vector re- 
currences. Instead he may exploit the following effective recursive scheme which ensues 
easily from the result established in Theorem 3.1. 

THEOREM 3.2. I f  Z1, Z 2 , . . .  , Z n is a sequence of iid Bernoulli trials, the probabil- 
ity mass function gn(X) = Pr(Xn = x) of the random va~iable Xn  satisfies the recursive 
scheme 

g n ( X )  = g n - l ( X )  -~- p g n - l ( X  - -  1) - p g n - 2 ( x  - 1) 
- q p k ( g n - k - l ( X )  - - g n - k - l ( X  - -  k ) )  

- q p k + l ( g ~ _ k _ 2 ( x  - -  k )  - g ~ - k - 2 ( x  - 1)), 

with initial conditions 

n > k + 2 ,  x > 0  

g ~ ( x )  = O, ff x < 0  o r  x > n 

1, i f  x = 0  0 < n < k  
g~(x)= 0, if x > 0  /or 

1-p/, i f  x = O  

gk(x) = p k  i f  x = k 

0, i f  l ~ x ~ k - 1  

1 - - p k ( l  +q) ,  i /  x = 0  

2qp k, i f  x = k 
gk+l(X) = pk+l, i f  X = k + 1 

O, if  l < x < k - 1 .  

PROOF. It suffices to replace ~n(Z), n > 0 in the recursive formula given in Theo- 
rem 3.1 by the power series 

o o  

~ . ( z ) = ~ g ~ ( x ) z  x 
x = O  

and then consider the coefficients of z x on both sides of the resulting identity. [] 

Although one can always resort to Theorem 2.2 to evaluate the exact distribution of 
Xn, when n and k become large the calculations might get time consuming. In this case 
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n=15, k=2,1~0.5 

0.16 ............................................................................................................................................................ 

J l  
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o + 1  . . . . . . . .  - o 

0 1 2 3 4 5 6 7 8 0 10 11 12 13 14 15 

n=15, k'--3, p=0.5 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

X 

n=lS, ~ 1~0.9 

0 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 

x 

n:15, k=S, 1~-0.5 

0.90 ................................................................................................................................................. 
0+00 
0,70 

~ 0.60 
~' o,so 

0.30 ~ 
0.20 
0.10 
0.00 . . . . .  |~ . ~ + ~ . - -  . . . . . . .  

0 1 2 3 4 5 6 7 5 9 10 11 12 13 14 15 

x 

0.25 

O.2O 

0.15 

o. 0.10 

0.05 

0.00 

n=lS, k---S, i~,Q.9 

0 1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 

Fig. 1. Probabil i ty mass function of Xn for various n,  k. 

the investigation of the asymptotic distribution of Xn, will be quite valuable. Results of 
this flavour can be developed by appealing to the celebrated Chen-Stein method to settle 
an adequate Poisson convergence. Barbour et al. (1992) have provided a total variation 
distance bound for the joint distribution of runs of several lengths (see p. 244). Since 
applying a functional on the multivariate random variables involved does not increase the 
total variation distance, the upper bound offered there can be exploited for deriving an 
(asymptotic) estimate of the distribution of X~. However we are not going to pursue this 
issue in the present article. The interested reader can urged to consult the monograph 
of Barbour et al. (1992) and work out the details of the aforementioned approach. 

In Fig. 1 the probability mass function of Xn has been pictured for several values 
of n, k. 

Theorem 3.1 can also be used for the derivation of a recursive formula for the raw 
moments of Xn.  To this end, we observe first that the moment generating function 
E[exp(zXn)] of Xn can be expressed as E[exp(zXn)] = ~n(eZ). Accordingly, replacing z 
by e z in the recursive formula provided by Theorem 3.1 we may easily derive a recursive 
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scheme for it. Recalling next  tha t  

dr z=0 -d-zTzE[exp(zXn)] , if r _> 1 
E ( X ~ )  Pn,r 

1, if r = O  

and making use of the well known formula 

dz r (ekZE[exp(zXn)]) = kr - i  Pn,i 
i = 0  

we may readily verify the following theorem.  

THEOaEM 3.3. The raw moments  Pn,~, r >_ 1, of the random variable Xn  satisfy 
the recursive scheme 

#,~,~ = #n- l ,~  + P Z (#n- l , i  - #n-2,i) - qpk#n-k - l , r  
i = 0  

§  ( : ) ( k r - i ( . n _ k _ l , i - - P ] ~ n _ k _ 2 , i ) - ~ p ] A n _ k _ 2 , i )  , n ~ k §  
i =0  

with initial conditions {o, 
]~n,r ~--- kr p k, 

2krqp k + (k + 1)rp k+l, 

i f  O < n < k  

i f n - - k  

/ f  n - - k + l .  

For r = 1, the aforementioned recursive scheme leads to the following second order 
difference equat ion for the sequence #s - P8-1 = E(X8)  - E(Xs_x) :  

#8 - #8_l = p(ps_l  - ps_2) + qpk(kq + p), s > k + 2. 

Applying this formula for s = k + 2, k + 3 , . . .  , n and summing up all the resulting 
equat ions we get 

~tn -- ~tk-I-1 z P(Pn-1  -- Pk) + ( n - -  k -- 1)qpk(kq + p), n >_ k + 2 .  

If we replace next  #k, Pk+l (see Theo rem 3.3) we may  easily obta in  the following first 
order  difference equation for the means Pn = E(Xn) :  

t-tn : P#n--1 + kqp k + (kq + p)pk (p + (n - kq)), n > k + 1. 

For numerical  calculation of Pn, n _> 0 by the aid of the last formula it suffices to recall 
the initial conditions 

#n = 0, 0 < n < k, #k = kP k. 

Moreover,  one could easily derive the solution of the above difference equat ion as 

#~ = E ( X n )  = pk(k  + (n - k)(kq + p)), n > k. 
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Needless to say, the same expression can be established by expanding the means  
generat ing funct ion 

oo 

= E ( X n ) w  n : 

n=O 

1)) 
(1 - w )  2 

which is effortlessly deduced by a direct applicat ion of Theorem 2.4. 
It  is no tewor thy  tha t  Theorem 3.1 can also be used for the derivat ion of a recursive 

scheme for the factorial moments  

dr z=l E ( X n ( X n  - 1 ) . . - ( X .  - r + 1)) = ~ z ~ n ( Z )  . 

The  details are left to the reader.  
Closing this section we ment ion tha t  the approach used here for the  s tudy  of the  

r andom variable Xn can be easily modified to cover the more general case where the 
sequence of trials exhibits a first order  Markov dependence.  To this goal, let us assume 
tha t  Z1, Z2, �9 �9 �9 Zn is a sequence of Markov dependent  trials, wi th t ransi t ion probabili t ies 
defined by 

Pij = Pr (Z t+ l  = j I Zt = i), t >_ 1, 0 <_ i, j <_ 1 

and initial probabili t ies Pr(Z1 = j )  = pj, j = 0, 1. Using exact ly the same s ta te  
definition as in the lid case it can be readily verified tha t  the t ransi t ion probabi l i ty  
mat r ix  At,o = Ao takes on the form 

P00 Pol 

Pl0 0 

A0 = 
PlO 0 

PlO 0 

PlO 0 

0 . . . 0  0 0-  

p n - - .  0 0 0 

0 . . .  O p n  0 

0 - . . 0  0 0 

0 - - - 0  0 0 
(k+l) • 

while At# = At,  i = 1, 2 , . . . ,  k - 1, will be (k + 1) x (k + 1) matrices with all their  entries 
0. Matr ix  At,1 = A1 will have all its entries 0 except  for the ent ry  (k + 1, k + 1) which 
equals P n .  Finally, At,k = Ak will have all its entries 0 except  for the en t ry  (k, k + 1) 
which equals Pl 1. 

Now making use of the formula 

( L )1 �9 ( z , w ) = l + W ~ l ( Z )  I - w  A i z  i 1' 
i=0 / 

with t~l (Z) = (P0, P l ,  0 , . . .  , 0)1• we ge t  

�9 (z, w) - Q1 (z, w) 
Q2(z, ) 
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where 

and 

Q1 (z; w) = 1 - w(c~ + pl lZ) Jr- w 2 ~ P 1 1  z -- Wkplpk111  (1 - z k) 

-- w k + l p k l l [ P l ( Z k  -- Z) + ~(1 - z k ) ] -  w k + 2 p k ? l ' ~ ( z k  -- Z) ,  

Q2(z ;w )  = 1 - w(1 + c~ + p u z )  + w2[c~ + p l x z ( 1  + c~)] 

-  3 pllz +  k+iz(1 - z k) +  k+2ZPii(zk -- z)  

a ---- Pll  -- POl, /3 ---- PlOPO1Pk111, O ~ = POl -- Pl. 

These  expressions can be exploited to establish recurrence relations for the probabil-  
i ty generat ing functions, probabi l i ty  mass functions and means of the r andom variable 
X~ under  the Maxkovian set up. The  interested reader  may carry  out  the respective 
calculations in exact ly the same way as in the iid case. 

4. Conditional distribution 

In this section it is assumed tha t  the composi t ion of the observed sequence is known, 
tha t  is to say, the number  of successes and failures are fixed quantities.  Th e  probabili t ies 
of our  interest,  therefore,  become condit ional  ones. As elucidated in the next  section 
outcomes of this na ture  are of p r imary  interest in the development  of tests  of randomness 
in sequences of independent  b inary trials. 

Let  us assume again tha t  we have a fixed number  of Bernoulli  trims Z1, Z 2 , . . . ,  Zn 
with success probabi l i ty  p = P ( X i  = 1) and failure probabi l i ty  q = P ( X i  = O) = 1 - p, 
i = 1, 2 , . . . ,  n. Our  intent ion is to investigate the condit ional  dis tr ibut ion of the run 
statist ic X n  given the number  Sn -- n - y (0 < y <_ n) of successes in the  n lid trials. 
Since Sn is a sufficient s tat is t ic  for p, the condit ional  dis t r ibut ion we axe looking at does 
not  depend on p. In this section we shall use the nota t ion  O(z, w;p)  and ~o~(z; p) instead 
of ~(z ,  w) and 9~n(Z), respectively, tha t  is 

o~  o o  

(4.1) (Pn(Z;p)= E P r ( X n = x ) z X ,  r  E ( f l n ( Z ; p ) w n .  
x~O n=O 

Let also 

o o  

(4.2) r  = E P r ( X ~  = x I Sn = n -  y ) z  x 
x = O  

denote  the probabi l i ty  generat ing funct ion of the condit ional  dis tr ibut ion of Xn given 
tha t  Sn = n -  y. The  next  theorem provides a formula for the double generat ing function 
of the quant i ty  

y 

THEOREM 4.1. The double generating funct ion of  an(z ;y ) ,  y = 0, 1 , . . . ,  n = y, 
y + 1 , . . . ,  is given by 

a s ( z ;  y) n = �9 z, (i + V ; -  
y=O n=y  
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PROOF. Replacing Pr(X~ = x) in (4.1) by the sum 

Pr(Xn = X) 
~t 

= E P r ( X n = x l S n = n - y )  P r ( S n = n - y )  
y=O 

= pn Pr(X~ = x I S~ = n -  y) 
y----O 

and making use of the expression (4.2) we deduce 

~n(z;P) : ~-~ (y)pn (q)Y~)n(Z;B) 
y=O 

or equivalently 

�9 (z ,w;p)=~ a~(z;y) 
n=0 y=0 

Setting t = q/p in the last expression we obtain 

(~)n. 

z, w; = a,~(z; y)t y 
n=0 y=0 

and the required result follows immediately on replacing w by (1 + t)w. [] 

The outcome of Theorem 4.1 can be exploited to derive an explicit formula for the 
conditional distribution of X~ given the number of successes S,~. Specifically we have 
the following interesting result. 

THEOREM 4.2. The conditional probability Pr(Xn = x I S,~ = n - y) is given by 

( ~ ) - - 1  y + l  r r--i i 
Pr(Xn . . . .  x [ S n  n y) E E E  E( -1)~+i+Y' - '=  

r=0 i=0 j l = 0  j2=0 

i + a -  x ( y + l ) r  ( ~ ) ( r  j l  i ) ( j 2 ) ( r  a 1 ) ( y  +b)b 

where a = x - i + j2 - k(j l  + j2) and b = n - y -  k r -  i - a. 

PROOF. Making use of (3.1) we deduce 

~ (Z' (I + t )w;1- -~  ) = ~ ( 1 - -  WZ -- Wk(I -- zk) -- Wk+I(zk -- Z) ) ~ W)--O---W--~) (wt)Y 

which can be written in the form 

p 1 - w ~ -  (1  - z ~ )  - w ~ + l ( z  ~ - z )  " + ~  

---- wY \~-w]( 1 ~Y+' ( l _ w  k(1-zk)+w(zkl_wz - z ) )  y+I 
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Expanding the RHS in a power series with respect to w and employing the conven- 
tions (•) = 0 if m < 0 and (01) = 1, we may easily arrive at the expression 

an(z;y) -- E E E  ( -1) r  y §  y +  l 
m = 0  r = 0  i=0  S r 

• 
m 

n > y  

w h e r e s = n  y kr - i - m. 
The desired result follows immediately by a further expansion, by the aid of the 

binomial formula, of the powers appearing in the summand; c.f. (4.1), (4.2). [] 

5. Non-parametric tests of randomness 

One of the widely known, oldest and easiest method of testing for random versus 
non-random ordering in a sequence of two types of symbols, is the classical runs test 
which has become a necessary addition in all contemporary non-parametric statistics 
textbooks, Bradley (1968), Gibbons and Chakraborti (1992). This test is based on the 
total number of runs, a run being any string of identical symbols which are followed 
and preceded by a different symbol or no symbol at all. An alternative test can be 
established by working with the length of the longest run in the observed sequence. 
Since an unusually long run indicates a tendency for like objects to cluster and, hence, 
the presence of a trend, Mosteller (1941) suggested a test for randomness based on the 
length of the longest run. The computation of the critical values of this test calls for 
the evaluation of the conditional distribution of the length of the longest run in n trials, 
given the number S~ = n - y of the successes. We are now going to investigate a new 
test of randomness based on the statistic X~ introduced in the previous section (with k 
being a fixed pre-determined integer). Using an upper tailed test, the null distribution 
will be directly related to the conditional event 

X n > c l S ~ = n - y ,  

where c is specified in terms of the significance level of the test. It is therefore apparent 
why an outcome like the one established in Theorem 4.2 is of special importance. 

As mentioned earlier, in the 1940s, when the interest in the theory of runs was 
quite high, two different randomness tests were proposed: The classical runs test which 
was based on the total number Rn of runs of either type and the longest-run test which 
utilizes the length Ln of the longest success run. Recently, Agin and Godbole (1992) using 
the classical runs test as a model, developed a new exact test based on (a conditional 
version of) the total number Nn,k of non-overlapping success runs of length k. This new 
test was found to be significantly more powerful in detecting certain types of clustering 
(non-randomness), than the classical runs test. Motivated by this result, Koutras and 
Alexandrou (1997), explored the performance of tests based on the total number Gn,k 
of success runs of length at least k, and on the total number Mn,k of overlapping success 
runs of length k. The test based on M~,k was found to be more powerful than the tests 
based on Gn,k and Nn,k. 

In the sequel, we conduct a systematic numerical experimentation in order to assess 
the performance of the randomness test based on the conditional distribution of the 
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Tab le  1. E m p i r i c a l  p o w e r / f i r s t - o r d e r  M a r k o v  d e p e n d e n c e  mode l .  

P a r a m e t e r s  a = 0.10 a = 0.05 a = 0.01 

p n Xn Mn,k Xn Mn,k Xn Mn,k 

0.99 50 0.98 0.99 0.99 1.00 0.96 0.88 

0.99 100 0.98 0.98 0.98 0.97 0.98 0.85 

0.99 150 0.94 1.00 0.97 1.00 0.93 0.81 

0.95 50 0.92 0.92 0.91 0.92 0.90 0.76 

0.95 100 0.86 0.99 0.80 0.95 0.87 0.87 

0.95 150 0.82 0.98 0.74 0.97 0.69 0.91 

0.65 50 0.74 0.59 0.46 0.25 0.39 0.14 

0.65 100 0.62 0.65 0.48 0.54 0.39 0.14 

0.65 150 0.63 0.66 0.49 0.54 0.41 0.15 
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T a b l e  2. E m p i r i c a l  p o w e r / c y c l i c a l  c l u s t e r i n g  m o d e l  (wi th  cycle  l e n g t h  equa l  to  10). 

P a r a m e t e r s  a = 0.10 a = 0.05 a = 0.01 

p n Xn Mn,k Xn Mn,k Xn Mn,k 

0.99 50 0.65 0.32 0.68 0.35 0.66 0.04 

0.99 100 0.78 0.38 0.51 0.26 0.50 O.11 

0.90 50 0.68 0.27 0.69 0.14 0.65 0.02 

0.90 100 0.49 0.29 0.47 0.18 0.48 0.29 

0.80 50 0.62 0.16 0.55 0.10 0.46 0.09 

0.80 100 0.51 0.17 0.45 0.11 0.38 0.02 

0.65 50 0.77 0.16 0.59 0.08 0.56 0.02 

0.65 100 0.51 0.13 0.43 0.07 0.42 0.01 

Xn (sum of the exact lengths of runs of length at least k). As already indicated, our 
tests are upper tailed and the critical values for rejection are determined by the aid of 
Theorem 4.2. 

The empirical power of the new randomness test was compared to the empirical 
power of the randomness test based on Mn,k. The evaluation of the operational char- 
acteristics curves of the test, was achieved by the aid of Monte Carlo techniques. Thus, 
using specific alternatives 100 non random sequences were generated, and the probability 
(proportion) of rejecting the null hypothesis was computed. 

The parametric configurations upon which the comparisons were performed are the 
following: 

A. First-order Markov dependence: Pl = 0.5 and 

p, if the (i - 1)-th trial is a success 
Pi =- 

Pl, if the (i - 1)-th trial is a failure 

for i = 2, 3 , . . . .  
B. Cyclical clustering (with cycle length equal to 10): The success probabilities 
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Fig. 2. Empir ical  power for various n, k. 
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Fig. 3. Empir ical  power for various n, k. 

Pi, i = 1, 2 , . . .  are given by 

p, if lOr+l<i<lOr+c,  r = 0 , 1 , 2 , 3 , . . .  

P / =  0.5, otherwise 

where c _< 10 is a fixed integer. 
It is worth mentioning that  these sequences are indicative of real situations and 

have appeared before in certain practical applications (c.f. discussion in Koutras and 
Alexandrou (1997)). 

The results of the simulation study, in the case where the sequence of outcomes 
exhibits a first-order Markov dependence, are displayed in Table 1. The empirical power 
recorded there was obtained by applying each test for all k = 2, 3 , . . . ,  9 and choosing 
the largest power attained. Apparently the randomness tests based on Xn, are proved to 
be significantly more powerful than the ones based on Mn,k when the type I error must 
be kept low (a = 0.01). For higher values of the significance level (a = 0.05 or a = 0.10) 
the performance of the two tests is comparable. 

Shifting to the cyclical clustering model (Table 2) we observe that  the Xn-based 
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Table 3. Empirical power against k/first-order Markov dependence model. 
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Parameters k 

p a n Statistic 2 3 5 6 7 9 max - rain 

0.90 .10 50 x n  0.79 0.77 0.73 0.67 0.67 0.70 0.12 

0.90 .10 50 Mn,k 0.82 0.82 0.74 0.78 0.61 0.62 0.21 

0.90 .05 50 Xn 0.71 0.69 0.68 0.58 0.60 0.66 0.13 

0.90 .05 50 Mn,k 0.86 0.82 0.67 0.63 0.48 0.54 0.38 

0.95 .05 100 X~ 0.64 0.67 0.63 0.67 0.60 0.70 0.07 

0.95 .05 100 Mn, k 0.88 0.82 0.71 0.65 0.59 0.50 0.38 

0.65 .10 100 X,~ 0.52 0.52 0.46 0.37 0.56 0.62 0.16 

0.65 .10 100 Mn,k 0.65 0.60 0.41 0.26 0.32 0.28 0.39 

tes t  is a lways  superior .  In  this  case, the re  are ins tances  where  the  Mn,k-based  tes t  leads 
to  ex t r eme ly  low empir ica l  values,  while the  new one  a t t a in s  s ignif icant ly  h igher  levels. 

Closing we ment ion ,  t h a t  a n o t h e r  in te res t ing  fea tu re  of  t he  X n - b a s e d  tes t  is t h a t  it 
is no t  ve ry  sensi t ive in changes  on  k, a p r o p e r t y  t h a t  is no t  p resen t  in the  Mn,k-based  
test .  Th i s  is c lear ly  e luc ida ted  in Figs.  2 and  3 where  the  empi r ica l  powers  ( W  s t ands  for 
the  X n - b a s e d  tes t  and  O for the  Mn,k-based  test)  have  b e e n  p lo t t ed  aga ins t  k (see also 
the  resul ts  p resen ted  in Table  3). A d i rec t  consequence  o f  this obse rva t ion  is t h a t  one  
has  no t  to  w o r r y  a b o u t  the  choice of  k if he is go ing  to  use the  X ~ - b a s e d  test .  This  is the  
m a i n  reason w h y  we do  no t  consider  here the  p r o b l e m  of  deve lop ing  empi r ica l  rules for 
the  ident i f ica t ion of  reasonable  values of  k; such rules, w h e n  r a n d o m n e s s  tes ts  based  on  
fixed leng th  runs  are in use, have been  given by  Ag in  and  G o d b o l e  (1992) and  K o u t r a s  
and  A l e x a n d r o u  (1997). 
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