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Abstract. Multivariate extensions of univariate distributions, though useful, have
not been applied in practice mainly due to shortage of inferential procedures caused by
numerical complexity. The multivariate Marshall-Olkin distribution is a multivariate
extension of the exponential distribution. Its representation as a multivariate shock
model makes it appealing for such applications. Unfortunately, ML estimation is
not easy and special numerical techniques are needed. In this paper an EM type
algorithm based on the multivariate reduction technique is described. The behavior
of the algorithm is examined and a numerical example is provided.

Key words and phrases: Multivariate reduction, Marshall-Olkin distribution, max-
imum likelihood estimation.

1. Introduction

Multivariate extensions of univariate distributions, though useful, have not been
applied in practice mainly due to shortage of inferential procedures caused by numerical
complexity. Moreover, generalization of univariate models is not straightforward in the
sense that certain desirable properties may hold for more than one multivariate model.

It is common to consider as multivariate extensions of univariate distributions, mul-
tivariate distributions with marginals in the given family. Statistical inference is not
easy even for a model where the univariate case is trivial. This leads to restricted usage
of multivariate models, even though they can capture more information from the data.

A variety of multivariate extensions of the exponential distribution have been con-
sidered at the past. These include the distributions of Gumbel (1960), Freund (1961)
and its extensions discussed in Heinrich and Jensen (1995), the Marshall-Olkin (1967)
multivariate exponential distributions, the distributions proposed in Dowton (1970) as
well as the distribution of Block and Basu (1974).

Among them the multivariate Marshall-Olkin (MMO) distribution plays an impor-
tant role since it is the only multivariate distribution with exponential marginals that
fulfils a multivariate lack of memory property. The MMO distribution is not absolutely
continuous. Unfortunately, statistical inference for the MMO is not an easy task due to
the complicated nature of its density function.

In this article, Maximum Likelihood (ML) estimation of the parameters of the MMO
distribution is considered. This is implemented via an EM algorithm that makes use of
the multivariate reduction technique that leads to the MMO distribution. The multivari-
ate reduction technique is described in Section 2. For ease of exposition, the bivariate
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Marshall-Olkin (BMO) distribution is examined analytically, in Sections 3-5. By treating
the simplest case in detail, the derivation of the algorithm can be more clearly presented
and understood, while circumventing the considerable notational problems of the general
case. Section 3 briefly reviews the BMO distribution, while Section 4 deals with existing
estimation methods. In Section 5 a full derivation of the EM algorithm for the BMO is
provided. Section 6 presents the case when a censored version of the BMO distribution
arises. Section 7 contains a generalization of the algorithm to the general multivariate
case, while in Section 8 a detailed application of the algorithm in simulated data from a
trivariate distribution can be found. Cases with restricted parameters are also discussed.
Finally, concluding remarks can be found in Section 9.

2. Multivariate reduction technique

Multivariate reduction is an appealing technique, used in many contexts, for con-
structing multivariate distributions. The idea is to create a number of dependent ran-

dom variables Y;, i = 1,...,m from a number of independent random variables X;,
i=1,...,k.
Let X; ~ F(x;;\),i =0,1,...,m. A case of special interest arises if a mapping g

exists such that
Yl:g(X07X1)NF(yla/\O+Az)a i:17""m

and (Y3,...,Y,,) has a multivariate extension of the F(z; ) distribution. In this case
{F(z;X): A > 0} is said to form an additive family under the mapping g. The main point
of such a construction is that the marginal distributions belong to the family F(z; )
and thus the multivariate distribution can be regarded as a multivariate version of the
univariate distribution.

Mardia (1970) showed that multivariate reduction construction of multivariate dis-
tributions leads to positive correlation between Y; and Yj, ¢ # j = 1,...,m. Some
common distributions allow for a mapping ¢ for constructing multivariate analogues.
So, the function g(Xp, X;) = Xo + X; forms an additive family for the Poisson and
the normal distributions and thus multivariate distributions can be constructed in this
way. In fact, the derivation of the multivariate Poisson distribution via multivariate
reduction is well known (see, e.g. Johnson et al. (1997)). In a similar fashion one can
create multivariate Gamma distributions (see, e.g. Cherian (1941)), while the mapping
9(Xo, X;) = min(Xy, X;) is additive for the exponential distribution.

Relaxing the assumption that all X;’s belong to the same family, a wealth of mul-
tivariate distributions with specific, marginal distributions can be constructed. For ex-
ample, if X;, i = 1,2 follow Poisson distributions, while Xg follows a binomial distribu-
tion, the bivariate Charlier Series distribution is obtained, which has marginal distribu-
tions that are the convolutions of a Poisson and a binomial random variables (see, e.g.
Papageorgiou and Loukas (1995)). Moreover, Stein and Juritz (1987) discussed bivariate
mixed Poisson distributions constructed via trivariate reduction, based on mixing distri-
butions that are reproductive under addition. The MMO (Marshall and Olkin (1967))
distribution arises by a multivariate reduction with mapping g(Xo, X;) = min(Xp, X;),
and multivariate analogues of the Weibull, the geometric and the Pareto distributions
can be derived. Generalized trivariate reduction schemes are described in Zheng and
Matis (1993), Heinrich and Jensen (1995) and Lai (1995).
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3. The bivariate Marshall-Olkin distribution

Consider the simple exponential distribution with density f(z) = 0 exp(—6z), z,8 >
0, denoted as Ezpo(#). Marshall and Olkin (1967) proposed a bivariate extension of the
exponential distribution. The derivation of this distribution is based on the following
scheme. Suppose that X, X1, Xs are independent random variables and X; ~ Ezpo(6;).
Then the random variables Y7 = min(Xq, X;) and Y, = min(Xy, X2) jointly follow the
bivariate Marshall-Olkin (BMO) distribution and their joint density function is given by

01(02 +00)S(y1,y2) if y2>41 >0

(3.1) Flyi,y2) = § 02001+ 00)S(y1,92)  if y1>y2>0

005 (y1,y2) if y1=92>0
where S(y1,y2) = P(Y1 > y1,Y2 > y2) = exp(—61y1 — b2y2 — 6o max(y1,y2)) is the joint
survival function. The marginal distributions are Expo(6:100/(0; + 6p)) and

Expo(6:60/(02 + 6o)) respectively and 6y = 0 corresponds to the case where Y; and
Y, are independent. The correlation coefficient is 65/6, where § = 6y + 6, + 62. Essen-
tially 6y represents the increase in the failure rates of Y7 and Y5.

The BMO distribution is not absolutely continuous with respect to the Lebesgue
measure in ®* and has a singular part on the diagonal z = y > 0. Note also that P(X =
Y') > 0 and this singular component has a density function with respect to the Lebesgue
measure in ®!. A natural interpretation of the BMO distribution is based on shock
failures where there exists positive probability of simultaneous failure of exponential
type for both components (see, e.g. Shamseldin and Press (1984)).

The BMO distribution is the only bivariate distribution with exponential marginal
distributions satisfying the bivariate lack of memory property (Basu (1995), p. 327).
Moreover, Brindley and Thompson (1972) showed that the BMO distribution and its
multivariate extensions form the boundary between increasing and decreasing multivari-
ate failure rate distributions.

4. Estimation of the parameters

Estimation procedures for the parameters of the BMO distribution have been con-
sidered by many authors. Bemis et al. (1972) described moment estimation for the pa-
rameters of the BMO distribution by equating the marginal means and the correlation
coefficient with their sample counterparts.

Other types of estimators, the INT estimator that arise from an one step ahead
iteration towards the ML estimates, have been considered by Proschan and Sullo (1976).
Since, as shown in the sequel, the ML estimates cannot be obtained in closed form
expressions, iterative numerical techniques have to be used. They showed that the
asymptotic efficiency of the INT estimators coincides with that of the ML estimates and
they are superior to moment estimates.

Let nq, ng, n3 denote the number of observations for which y2 > y;, y2 < y1 and
Y1 = Y2, respectively, and n = n; + ny + nz. The log-likelihood function for a given
sample of observations can be written as

n n n
L= -6 zyu — 6o 2 y2: — bo Z max(y1i, Y2i)
i=1 i=1 i=1
“+ 11 111[(91 (92 + 90)] + ngy 111[02 (01 + 90)] + ng 11’1(90)
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which is valid for all possible values of 8; and n;, if we adopt the convention that 0ln0 = 0,
¢ln0 = —oo(e > 0), exp(—o0) = 0.

The resulting system of equations cannot be solved in closed form expressions and
numerical techniques are required (see, Bemis et al. (1972), Klein (1995), p. 334). If
all n; > 0 the above system has a unique solution. If ng = 0 and either n; = 0 or
ns = 0 the MLE exists but it is not unique, while if ng > 0 and either n; = 0 or
ny = 0 the MLE does not exist. Note that P(n; = 0) = [1 — 6;/6]™ and thus for
moderate sample sizes with 8; > 0 one expects to obtain observations of all the types.
The ML estimates are in general biased. Bemis et al. (1972) proposed using n;/(n+1)
to reduce the bias. Proschan and Sullo (1976) discussed ML estimation for multivariate
Marshall-Olkin distributions. Similar results were obtained. Various testing hypotheses
are described in Bhattacharyya and Johnson (1973), Hanagal and Kale (1992a, 1992b)
and Hanagal (1992). The ML estimates are consistent, asymptotically efficient and have
asymptotic trivariate normal distribution.

5. An EM algorithm for ML estimation

It is clear that the trivariate reduction technique used for the derivation of the BMO
distribution, allows for a missing data interpretation, suitable for the application of the
EM algorithm. A detailed description of the general EM algorithm can be found in the
book of McLachlan and Krishnan (1997).

According to the multivariate reduction derivation, the missing data consist of the
non-observable random variables X; = (X1;, X2;, Xo;) while the observed data are the
values Y; = (Yq;, Y2;).

The EM algorithm proceeds by calculating the conditional expectation of X; given
Y; and the current values of the parameters, while the M-step just calculates the ML
estimates for a sample from exponential distributions, using the expectations of the
E-step.

In the next section we fully describe the derivation of the required conditional ex-
pectations.

5.1 The conditional expectations

For notational convenience we drop the subscript 7 denoting the observation. Let s =
min(y,y2), t = max(y1,y2) and © = (0o, 61,02) denote the vector of parameters. Also,
let f;j(z) and Fj(z), j = 0,1,2 denote the density and the survival function respectively
of the random variable X;.

Suppose further that y; < yo. It is clear that Xy > ¢t. Moreover the conditional
density of Xy is given by:

f1(8) fo(t) Fa(t) __b%
Fyr,92) 02 + 6o

fo(t | v1,92,0) =

and similarly for w > ¢

_ fi(8)fo(w)fa(t) _ 6ob
folwlv1,12,6) = fly,y2) B2+ 6o

exp(—bo(w —t)).
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Thus we obtain that

fo )
B2+ 0o if w=t
(51) fO(walvy27@): 29 9
92—1270 exp(—Op(w —t)) if w >t

Thus the conditional expectation can be derived easily as

fo °° _ 0, 1
PR (t + Bg/t w exp(—fo(w — t))dw) =t+ 6+ 00) %

because the integral merely represents the expectation of a left-truncated at t exponential
random variable. In addition it is clear that since y; < y2, E(X;1 | ¥1,%2,0) = 3 and
with arguments similar to those used for the derivation of E(Xy | y1,y2, ©) one can show
that

E(Xo | y1,92,0) =

fp o L

(02 + 6o) 62
Moreover, assuming that y; > y» one can derive similar expressions, as those appearing
in Table 1.

Consider now the case where y; = yo. In this case it is clear that E(Xq | y1,¥2,9) =
y1. Moreover, one obtains that

E(X2 | y1,¥2,0) =

fi(w) fo(y1) F2(y1)
f(y1,92)

w > y; which is the density of a left truncated at y; exponential distribution with

parameter 61. Therefore F(X1 | 11 = y2,0) =y + % and in a similar fashion E(X |

Y1 =¥2,0) =y + é. Table 1 summarizes the conditional expectations.

fH(w|y1,92,0) = = 6y exp(—61(w — 1)),

Table 1. The conditional expectations for all cases.

E(X1|v1,92,0) E(Xz2|y1,¥2,0) E(Xo|y1,¥2,0)

Gp 1 6 1
y1 <y2 Y1 Y2+ 5,305 55 Y2 + ;165 55
6o 1 () 1
Y1 >92 vi+ 81+60 61 Y2 y1+ 91+60 90
1
Y1 =2 Ry y2 + g5 v

5.2 The algorithm
From the aforementioned derivations one can describe the EM algorithm as follows:
E-step: Using the data and the current estimates ©%) = (00(’“),01('“),92(]“)) after
the k-th iteration, calculate the pseudo-values

% = E(Xoi | 916,92,0%),  di = B(X1; | y1i,y2:,0%), and
¢ = E(Xa; | y1i, y2i, 0))
for i =1,...,n (using the entries of Table 1).
M-step: Update the estimates by
gkt = " g, k+1) — 1 gt —

Z?=1 Zi 22;1 d; Z?—_—l ¢i
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If some convergence criterion is satisfied stop iterating otherwise go back to the
E-step.

Note that the M-step simply obtains the ML estimates from a random sample from
the exponential distribution using the pseudo-values calculated at the E-step.

It is interesting to note that the algorithm can be extended easily to cover the case of
covariates at the parameters. Assume that the parameter 6;, ¢ = 0,1, 2 is associated with
a vector of covariates, say z;, through a log-link function, namely 8; = exp(8}), ¢ =
0,1,2, where 3; is a vector of regression coeflicients associated to the vector of regressors
z;. Note that z; may differ among parameters. In such a case, the only amendment in
the EM algorithm described above is that at the M-step, the parameter vectors 3; are
updated by simply fitting exponential regression models, using as dependent values the
pseudo-values of the E-step. This can be done easily by standard statistical packages.

5.3 Operating characteristics

The aim of this section is to examine some characteristics of the proposed algorithm.
Firstly, the choice of efficient initial values is treated. We conducted a small simulation
experiment for examining the plausibility of the moment estimates (MOM) and the INT
estimates as inifial values for the EM algorithm. Both estimates are given in closed
form expressions and thus they can be easily calculated. Table 2 reports the mean
number of iterations needed until convergence, when the two different estimates were
used as initial values. The convergence criterion used was to stop iterating when the
ratio |(L(k)— L(k—1))/L(k—1)| < tol, where L(k) denotes the value of the loglikelihood
at the k-th iteration and tol = 10~12.

Various combinations of parameters, representing situations with large correlation
as well as symmetric and asymmetric cases (with respect to 6; and 6;) were selected.
Four different sample sizes were used, namely n = 50, 100, 250, 500. For each sample size
and parametrization 5000 replications were used. Only samples for which all n; > 0 were
kept in the analysis as otherwise the ML estimates do not exist or they are inconsistent.

It is evident from Table 2 that the INT estimates are preferable as initial values for
all the configurations and sample sizes. As the sample size increases the difference gets
smaller but even for the largest sample size (n = 500) there is still substantial difference.
This indicates that the INT estimators are superior as initial values.

Table 2. The mean number of iterations until convergence for combinations of sample size and
parameter values.

sample size n

parameter values 50 100 250 500
01 ) fo MOM INT MOM INT MOM INT MOM INT
1 1 27.9 24.6 24.7 21.9 21.6 19.4 19.9 17.7
2 1 0.5 72.7 49.6 62.1 42.0 54.5 36.9 50.2 33.3
2 1 42.1 33.0 37.8 29.1 34.1 26.3 31.8 24.0
2 1 2 36.7 31.0 324 26.9 28.3 23.5 26.8 21.8
3 1 0.5 108.2 66.9 91.5 56.7 81.3 48.1 75.7 43.9
3 1 62.9 44.6 57.6 40.5 49.4 35.0 47.5 32.1
3 1 2 46.8 36.3 41.1 32.0 36.5 28.2 34.1 25.8
5 1 1 113.4 69.0 96.4 594 83.2 51.0 77.5 46.1
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This was expected since the derivation of the INT estimators was based on an
one-step iteration towards the ML estimator. Note that the stopping rule used was
rather strict. Relaxing this criterion, by using a less strict one, like tol = 1076, we got
the surprising result that the INT estimators led to ML estimators after quite a few
iterations, usually less than 5 for all configurations and sample sizes, as one can see in
Table 3. This implies that the INT estimators are quite close to the ML estimators. As
the sample size gets larger the number of iterations is reduced.

The above clearly implies that the INT estimates are quite satisfactory for estimation
purposes. The relative difference in the loglikelihood calculated for the INT estimates
and the maximized loglikelihood was found to be less than 1075.

Table 3. The mean number of iterations until convergence when the INT estimators were used
as initial values for a less strict terminating condition (tol < 1079).

initial values n

61 62 B 50 100 250 500
3.25 2.53 1.752 1.308
0.5 2082 1564 1.112 1.018
2.518 1.8 1.288 1.076
2.812 1.98 1.408 1.162
0.5 1.542 1.212 1.02 1.002
1902 1446 1.102 1.018
2 2.33 1.612 1.234 1.046
1.35 1.168 1.012 1

Gt W W W N NN e
e T e T T T G
(V]

As far as the convergence is concerned, the algorithm converged after rather few
iterations for all the cases. In addition, no multiple solutions were found. Stopping
criteria that are not based on the likelihood could be used, like the relative change
on the parameter values at successive iterations. However the likelihood can be easily
obtained and thus there is no reason for not using it.

6. A censored model

The model described so far, assumes that the two components work in parallel.
Considering a model where the two components are connected in series, a censored
BMO model arises. In this model the fatal shock may arise from the third process but
whenever one component fails the other fails, too. If two components are connected in
series, following Pena and Gupta (1990), then the random vector observed on system
failure is (Z, 61, 62), where Z = min(¥1,Y2), 8 = I(Y1 < Y2) and 63 = I(Ys < Y1), where
I(A) denotes the indicator function of the event A.

Omne can see that this model implies that one of the two variables of the BMO
distribution is censored. The random variable Z follows an Ezpo(f) distribution, while
the joint density of the vector (Z,6;,82) can be written with respect to the product of
the Lebesgue measure on R* and the counting measure on M = {(0,0), (1,0),(0,1)} as

dy d2 1—d;—dy
f(z,d1,d2) = O exp(—62z) (%) (%2) (%) .
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Note that the above density can be retrieved as a censored version of the BMO dis-
tribution. Direct maximization of the likelihood is not easy but an EM algorithm is
applicable. The algorithm is similar to the one used for the uncensored case. The ex-
pectations needed are analogous to those in Table 1. The only change is that now we
have observed simply 2; which has to substitute in all cases y; and y, in Table 1. Thus,
the conditional expectations can now be seen in Table 4.

Table 4. The conditional expectations for the case of censored observations (model with
components in series).

E(x;]2,61,62,0©) FE{z2]26:1,82,0) E(xo0]2,61,62,0)

_ _ B0 1 _62 1
61=1062=0 z z+ 92+00 62 z+ 82+60 6o
— — 60 1 6 1
§1=0,6=1 2+ 5o 5 z Z+ 57485 %o
_ _ 1 .
61=0,62=0 2:-!—01 z+92 z

The steps of the EM algorithm are similar with those described for the uncensored
case. The only difference is that now the expectations of Table 4 are used.

Pena and Gupta (1990) studied Bayesian estimation for both models (uncensored
or censored), corresponding to models with the two components in parallel or in series.
They concluded that the case of parallel components could be considerably more efficient
than series sample estimates, but from a practical point of view they could be more costly,
in order to infer for the parameters of the underlying processes. Lu (1997), Chen and
Lu (1998) and Chen et al. (2000) exploited the case of alternative models that could
balance efficiency and cost.

7. Multivariate Marshall-Olkin distributions

7.1 Derivation and properties

Multivariate extension of the BMO distribution can be made via two different ap-
proaches. The first one uses the fatal shock derivation of the bivariate model. The idea
is that there are m processes along with another, say (m + 1)-th process that whenever
fails all the rest m processes fail, too. Thus the vector Y = (Y3,...,Yy,) is defined as
Y = (Xo,...,Xo0),if Xo < X;,foralli=1,...,m,and Y = (X1, Xo, ..., X,,) otherwise.

Another definition, more consistent with the multivariate reduction technique pro-
posed above, defines the new variables Y; = min(X;, Xo). Such a definition allows for
random vectors with some of their elements equal, while the fatal shock model does not
allow for ties between subsets of the variables. To this extent, the second model can be
considered as more general. In the sequel only the second model will be considered.

The survival function is given as

S(y1,---,Yym) = exp (—Z&yi - HOmM(yl,-.',ym)) :

=1

The joint density function is not absolutely continuous with respect to the Lebesgue
measure in R™ and has singularities corresponding to the cases where two or more of
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the y;’s are equal. Thus the density can be written as
4 m
S, ym)(6; +60) [ ] 6
&
if y; =max(y1,...,ym), 3=1,...,m and

(7.1) f(yl,...,ym)ZJ Y F Yt FJ
S(yl, . ,ym)600i19i2 . 'eik

it Y, Vi Y < Uy =Yj = = Y,
S(y17"‘aym)00
L if y1=92=-=ym>0.

It can be verified that the MMO distribution satisfies a multivariate lack of memory
property.

7.2 Derivation of an EM algorithm

In a similar manner, we can construct an EM algorithm for ML estimation of the
parameters of the MMO distribution. Proschan and Sullo (1976) discussed estimation
for the MMO distribution. For constructing the EM algorithm, one needs to calculate
a series of conditional expectations. Since now the form of the joint density is quite
complicated, with a large number of distinct cases, one has to separate all the possible
cases. Let Y denote the observed data and © the parameters.

Let us start with the simplest case where y; = y2 = - = ¥y, i.e. all the values
are equal implying the existence of a shock. Therefore E(Xy | Y,0) = y;,while E(X; |
Y,0) =1y + 0,7 i=1,...,m, corresponding to the expectation of a left-truncated at
y1 exponential distribution for each variable.

The more complicated case is when some of the y;’s are equal but there are some
other with smaller values. More formally, ¥;,,¥iys -+ ¥ir, < Yjy = Yjp = -+ = Yj, = y(©
for some k and p. Clearly for all the subscripts i, & = 1,...,k it holds that E(X,, |
Y, ©) = y,, because the observed value corresponds to the unobserved one. For the rest,
where the equality holds, it is obvious that the corresponding Xy is the observed value y(®
and thus E(X, | Y,0) = y(® while the rest are the expectations from a left-truncated
at 4(®) exponential distribution and thus E(X;, | Y,0) = y© + Ojb_l, b=1,...,p
The last case is when there is some y;, which is larger than the rest. This implies that
the information for Xy is contained only in this value, and thus E(X; | Y,0) = y;,
i=1,...,m and i # k. Then as shown for the bivariate case, it holds

9k 1 9() 1
+—————, and EXi|Y,O)=yp+-—--—.
b+ Gr+ 60) o X [Y.0) = v+ G 50y o

7.3 The EM algorithm

The conditional expectations needed for the E-step have been defined and, now, the
algorithm can be described as:

E-step: Calculate the pseudo-values t;; corresponding to the j-th non observable
variable of the i-th observation as

ti = B(X; | Y;,0%), i=1,...,n, j=0,...,m.
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M-step: Update the parameters by
Bj(k+1) = nn )
2im1 b
If some criterion is satisfied then stop iterating otherwise go back to the E-step for

one more iteration.
Again, one may add covariates to each ;, as described for the bivariate case.

i=0,...,m

8. lllustrative example

In order to illustrate the EM type algorithm derived above, we use a simulated
data set from a trivariate Marshall-Olkin distribution. The joint density function of the
trivariate Marshall-Olkin distribution, in accordance with (7.1) can be described as

[ 5(y1,y2,y3)0203(61 + 6p) if 31> yo,us
S(y1,y2,y3)0103(02 +6p) if y2>u1,u3
S(Y1,Y2,Y3)0102(05 + o)  if ys > y1, 2

(8.1) F(y1,u2,93) = < S(y1,y2,y3)0001 if y1<y2=uys
S(y1,y2,y3)0002 if yo<yr=uys
S(y1,y2,y3)0003 if y3<y1 =12

L S(y1,92,y3)60 f h=y2=y3>0

where S(y1,Yy2,¥3) = exp(— 2?:1 Biyi — 0o max(y1, y2, ¥3))-
The conditional expectations needed for the EM algorithm can be found in Table 5.

For convenience we have separated the different types of data that may occur.

Using the expectations of Table 5 the EM algorithm for the trivariate Marshall-Olkin
distribution is described as

E-step: Using the data Y and the current estimates ©) = (00(’“), 01(’“), 92(’“), 03('“))
after the k-th iteration calculate the pseudo-values

tﬂ:E(XJllY’h@(k))a i=1,...,n, 7=0,1,2,3.
M-step: Update the estimates by

k+1 n .
83< ):’n—t, 320,1,2,3
Table 5. The conditional expectations needed for ML estimation for the trivariate

Marshall-Olkin distribution.

Type E(X1 |y,9) E(X2|y,©0) E(X3]|y,0) FE(Xo|y,0)
! Y1 > y2,y3 Y+ g o y2 ys Y1+ oo
I y2>y1,93 1 Y2 + g o v Y2 + 5 e
1 Y3 > Y1, 92 n Y2 Y3 + g0 63+90 03 y3+ 53—?75%
WV yi<yz=ys Y1 y2 + % ya+ 33 y2
V. p<yi=uys v+ g v2 vs + 55 %1
VI ga<yi=uye Y1+ 5= ¥2 + 55 Y3 1

VII y1=y2=uy3 yrf-% y2+7,1; ys-!-% n
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If some convergence criterion is satisfied stop iterating otherwise go back to the
E-step.

Consider the data of Table 6 generated from a trivariate Marshall-Olkin distribu-
tion. All the four parameters (6, 8;,602,63) used to generate the data were set equal to
1. In addition, in Table 6 one can see the Type for each observation (the Type is de-
fined according to the notation used in Table 5), as well as the conditional expectations
for the unobserved latent variables. These expectations have been calculated after the
termination of the algorithm, and they correspond to the pseudo-values of the E-step.

Table 6. Generated data from a trivariate Marshall-Olkin distribution.

Conditional expectations
Data after the last iteration
Y14 Yo Y3 | Type | iy 2 t3; toi

1.597 1.597 0.150 \'2! 2.821 2795 0.150 1.597
1.299 0.398 1.144 I 1.930 0.398 1.144 1.856
0.745 0.745 0.745 vl 1.969 1.943 1461 0.745
1.227 0.173 1.227 A\ 2.451 0.173 1943 1.227
0.086 1.000 0.255 II 0.086 1.612 0.255 1.563
0.360 0.169 0.331 I 0991 0.169 0.331 0917
1.400 1.110 0.764 1 2.031 1.110 0.764 1.957
0192 1.276 0.730 11 0.192 1.888 0.730 1.840
0.024 0.024 0.024 VII 1.248 1.222 0.740 0.024
0.708 0.119 0.190 I 1.339 0.119 0.190 1.266
1.959 1.941 0.692 1 2.500 1941 0.692 2,516
0.430 0.430 0.256 VI 1.654 1.628 0.256 0.430
0.261 0.345 0.584 I 0.261 0.345 0.859 1.293
0.384 0.440 0.046 II 0.384 1.052 0.046 1.003
0.002 1.218 0.391 II 0.002 1.830 0.391 1.782
0.126 0.126 0.126 VII 1.350 1.324 0.842 0.126
0.379 0.379 0.048 VI 1.603 1.577 0.048 0.379
0.011 0.011 0.011 VII 1.235 1.210 0.727 0.011
0.256 0.288 1.621 II1 0.256 0.288 1.896 2.330
0.090 0.145 0.145 v 0.090 1.344 0.862 0.145

The EM algorithm was applied to the data and the estimates were derived. The
initial values were set arbitrarily equal to 1 for all the parameters. The algorithm con-
verged quite quickly, after 23 iterations. The algorithm stopped iterating when the
relative change of the loglikelihood became smaller than 1072, The history of the
parameter values with respect to the iterations can be seen in Fig. 1. Note that the
parameters required quite few iteration to reach their final values, and the last itera-
tions increased only slightly the likelihood. Several other different initial values were
used without change in the final solution. It is quite interesting that even if one starts
from a point far away from the ML estimates, like the point (5,5,5,5), the algorithm
converged after 25 iteration (with the same stopping criterion). This is an indication
that the choice of initial values is not so important.
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13

Fig. 1. The history of parameter values across iterations.

Table 7. Results from fitting different models to the data of Table 6.

Model 01 62 63 6o loglikelihood
Full 0.817 0.834 1.396 0.869 —40.7390
6; =03 0.826 0.826 1.396 0.869 —40.7399
61 =03 1.091 0.836 1.091 0.869 —41.47594
O = 03 0.818 1.090 1.090 0.858 —41.45105
01 =0;=6; 1 1 1 0.849 —41.70794

Reduced models assuming equality of certain parameters were also considered. Re-
sults are reported in Table 7. Reduced models can be fitted with minor changes at the
M-step of the EM algorithm. For example if we assume that §; = 62 then the only
change needed at the M-step of the algorithm is to update the parameters using

2n
9 (k+1) - e d 0 (k+1) .y (k+1)
' Yoy (t1i + t2) an 2 !

retaining the rest of the calculations as described above.

Similar changes can be made for the cases 6; = 03 and 6 = 3. Finally for the more
complicated case §; = 2 = 63 the changes needed at the M-step of the algorithm are to
update the parameters using

gkt = " g, (k+1) 3n
S ites Doy (tri + b + t3:)
02(k+1) _ 03(k+1) — 01(k+1)‘

and

Looking at the results of Table 7 it is clear that a model that assumes §; = 0, = 03
has the worst loglikelihood. However keeping in mind that this model has fewer param-
eters than the other models, the symmetry does not seem to be an invalid assumption.
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9. Concluding remarks

In this paper, an EM type algorithm for ML estimation of the parameters of the
MMO distribution was described. This algorithm made use of the multivariate reduction
derivation of the MMO distribution. It is clear that the approach can be expanded to
several other models, useful in reliability and survival analysis, that are based on similar
shock models as those described for the MMO distribution. For example, allowing the
components to follow Weibull distributions one can construct similar algorithms for ML
estimation.

Another generalization allows for the use of covariates at the parameters ;. Allowing
for covariates, the MMO model can be seen as a competing risk model, appropriate for
survival data analysis.

Finally, in a more general setting, the EM algorithm can be proven quite helpful for
distributions resulting from a multivariate reduction technique.
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