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Abst rac t .  Multivariate extensions of univariate distributions, though useful, have 
not been applied in practice mainly due to shortage of inferential procedures caused by 
numerical complexity. The multivariate Marshall-Olkin distribution is a multivariate 
extension of the exponential distribution. Its representation as a multivariate shock 
model makes it appealing for such applications. Unfortunately, ML estimation is 
not easy and special numerical techniques are needed. In this paper an EM type 
algorithm based on the multivariate reduction technique is described. The behavior 
of the algorithm is examined and a numerical example is provided. 
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1. Introduction 

Multivariate extensions of univariate distributions, though useful, have not been 
applied in practice mainly due to shortage of inferential procedures caused by numerical 
complexity. Moreover, generalization of univariate models is not straightforward in the 
sense that certain desirable properties may hold for more than one multivariate model. 

It is common to consider as multivariate extensions of univariate distributions, mul- 
tivariate distributions with marginals in the given family. Statistical inference is not 
easy even for a model where the univariate case is trivial. This leads to restricted usage 
of multivariate models, even though they can capture more information from the data. 

A Variety of multivariate extensions of the exponential distribution have been con- 
sidered at the past. These include the distributions of Gumbel (1960), Freund (1961) 
and its extensions discussed in Heinrich and Jensen (1995), the Marshall-Olkin (1967) 
multivariate exponential distributions, the distributions proposed in Dowton (1970) as 
well as the distribution of Block and Basu (1974). 

Among them the multivariate Marshall-Olkin (MMO) distribution plays an impor- 
tant role since it is the only multivariate distribution with exponential marginals that  
fulfils a multivariate lack of memory property. The MMO distribution is not absolutely 
continuous. Unfortunately, statistical inference for the MMO is not an easy task due to 
the complicated nature of its density function. 

In this article, Maximum Likelihood (ML) estimation of the parameters of the MMO 
distribution is considered. This is implemented via an EM algorithm that  makes use of 
the multivariate reduction technique that  leads to the MMO distribution. The multivari- 
ate reduction technique is described in Section 2. For ease of exposition, the bivariate 
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Marshall-Olkin (BMO) distribution is examined analytically, in Sections 3-5. By treating 
the simplest case in detail, the derivation of the algorithm can be more clearly presented 
and understood, while circumventing the considerable notational problems of the general 
case. Section 3 briefly reviews the BMO distribution, while Section 4 deals with existing 
estimation methods. In Section 5 a full derivation of the EM algorithm for the BMO is 
provided. Section 6 presents the case when a censored version of the BMO distribution 
arises. Section 7 contains a generalization of the algorithm to the general multivariate 
case, while in Section 8 a detailed application of the algorithm in simulated data  from a 
trivariate distribution can be found. Cases with restricted parameters are also discussed. 
Finally, concluding remarks can be found in Section 9. 

2, Multivariate reduction technique 

Multivariate reduction is an appealing technique, used in many contexts, for con- 
structing multivariate distributions. The idea is to create a number of dependent ran- 
dom variables Y/, i = 1 , . . .  ,m from a number of independent random variables Xi, 
i=  l , . . . , k .  

Let Xi ~ F(xi; )~i), i = 0, 1 , . . . ,  m. A case of special interest arises if a mapping g 
exists such that  

Y~ =g(Xo,Xi) '~F(yi;Ao+ )~i), i=  1 , . . . ,m  

and (Y1,--. ,Y,~) has a multivariate extension of the F(x; )~) distribution. In this case 
{F(x; A) : A > 0} is said to form an additive family under the mapping g. The main point 
of such a construction is that  the marginal distributions belong to the family F(x; A) 
and thus the multivariate distribution can be regarded as a multivariate version of the 
univariate distribution. 

Mardia (1970) showed that  multivariate reduction construction of multivariate dis- 
tributions leads to positive correlation between Y/ and Yj, i r j = 1 , . . . , m .  Some 
common distributions allow for a mapping g for constructing multivariate analogues. 
So, the function g(Xo, Xi) = Xo + Xi forms an additive family for the Poisson and 
the normal distributions and thus multivariate distributions can be constructed in this 
way. In fact, the derivation of the multivariate Poisson distribution via multivariate 
reduction is well known (see, e.g. Johnson et al. (1997)). In a similar fashion one can 
create multivariate Gamma distributions (see, e.g. Cherian (1941)), while the mapping 
g(Xo, X~) = min(Xo, X~) is additive for the exponential distribution. 

Relaxing the assumption that  all Xi's belong to the same family, a wealth of mul- 
tivariate distributions with specific, marginal distributions can be constructed. For ex- 
ample, if Xi, i = 1,2 follow Poisson distributions, while X0 follows a binomial distribu- 
tion, the bivariate Charlier Series distribution is obtained, which has marginal distribu- 
tions that  are the convolutions of a Poisson and a binomial random variables (see, e.g. 
Papageorgiou and Loukas (1995)). Moreover, Stein and Juritz (1987) discussed bivariate 
mixed Poisson distributions constructed via trivariate reduction, based on mixing distri- 
butions that  are reproductive under addition. The MMO (Marshall and Olkin (1967)) 
distribution arises by a multivariate reduction with mapping g(Xo, Xi) = min(X0, Xi), 
and multivariate analogues of the Weibull, the geometric and the Pareto distributions 
can be derived. Generalized trivariate reduction schemes are described in Zheng and 
Matis (1993), Heinrieh and Jansen (1995) and Lai (1995). 
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3. The bivariate Marshall-Olkin distribution 

Consider the simple exponential distribution with density f ( x )  = 0 exp(-Sx) ,  x, 0 > 
0, denoted as Expo(O). Marshall and Olkin (1967) proposed a bivariate extension of the 
exponential distribution. The derivation of this distribution is based on the following 
scheme. Suppose that X0, X1, X2 are independent random variables and Xi "~ Expo(Oi). 
Then the random variables Y1 = min(X0, X1) and II2 = min(X0, X2) jointly follow the 
bivariate Marshall-Olkin (BMO) distribution and their joint density function is given by 

{ 01 (82 + Oo)S(yl, Y2) if Y2 > Yl > 0 

(3.1) I(Yl,Y2) = 02(01 + Oo)S(yl,y2) if Yl > Y2 > 0 

OoS(yl,y2) if Yl = Y2 > 0 

where S(yl,  Y2) = P(Y1 > Yl, Y2 > Y2) = exp(-01yl  - 02y2 - Oo max(y1, Y2)) is the joint 
survival function. The marginal distributions are Expo(OlOO/(01 + 80)) and 
Expo(828o/(82 + 80)) respectively and 80 = 0 corresponds to the case where II1 and 
]I2 are independent. The correlation coefficient is 80/8, where 8 = 80 + 01 + 82. Essen- 
tially 80 represents the increase in the failure rates of Y1 and Y2. 

The BMO distribution is not absolutely continuous with respect to the Lebesgue 
measure in ~2 and has a singular part  on the diagonal x -- y > 0. Note also that P ( X  = 
Y) > 0 and this singular component has a density function with respect to the Lebesgue 
measure in ~1. A natural interpretation of the BMO distribution is based on shock 
failures where there exists positive probability of simultaneous failure of exponential 
type for both components (see, e.g. Shamseldin and Press (1984)). 

The BMO distribution is the only bivariate distribution with exponential marginal 
distributions satisfying the bivariate lack of memory property (Basu (1995), p. 327). 
Moreover, Brindley and Thompson (1972) showed that the BMO distribution and its 
multivariate extensions form the boundary between increasing and decreasing multivari- 
ate failure rate distributions. 

4. Estimation of the parameters 

Estimation procedures for the parameters of the BMO distribution have been con- 
sidered by many authors. Bemis et al. (1972) described moment estimation for the pa- 
rameters of the BMO distribution by equating the marginal means and the correlation 
coefficient with their sample counterparts. 

Other types of estimators, the INT estimator that arise from an one step ahead 
iteration towards the ML estimates, have been considered by Proschan and Sullo (1976). 
Since, as shown in the sequel, the ML estimates cannot be obtained in closed form 
expressions, iterative numerical techniques have to be used. They showed that the 
asymptotic efficiency of the INT estimators coincides with that of the ML estimates and 
they are superior to moment estimates. 

Let nl,  n2, n3 denote the number of observations for which Y2 > Yl, Y2 < Yl and 
Yl -- Y2, respectively, and n = nl + n2 + n3. The log-likelihood function for a given 
sample of observations can be written as 

n n 

L = - O 1 E Y l i - O 2 E y 2 i - O o E m a x ( y l i , Y 2 i )  
i = 1  i = 1  i -=1  

+ nl ln[O1 (02 + 00)1 + n~ ln[02(01 + O0)] + n3 ln(O0) 
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which is valid for all possible values of 0i and hi, if we adopt the convention that 0 In 0 = 0, 
clnO = - o o ( c  > 0), exp(-o~) = 0. 

The resulting system of equations cannot be solved in closed form expressions and 
numerical techniques are required (see, Bemis et al. (1972), Klein (1995), p. 334). If 
all ni > 0 the above system has a unique solution. If n3 = 0 and either nl -- 0 or 
n2 = 0 the MLE exists but  it is not unique, while if n3 > 0 and either n: = 0 or 
n2 = 0 the MLE does not exist. Note that P(n~ = 0) = [ 1 - 0 i / 0 ]  n and thus for 
moderate sample sizes with 0i > 0 one expects to obtain observations of all the types. 
The ML estimates are in general biased. Bemis et al. (1972) proposed using nOi/(n + 1) 
to reduce the bias. Proschan and Sullo (1976) discussed ML estimation for multivariate 
Marshall-Olkin distributions. Similar results were obtained. Various testing hypotheses 
are described in Bhattacharyya and Johnson (1973), Hanagal and Kale (1992a, 1992b) 
and Hanagal (1992). The ML estimates are consistent, asymptotically efficient and have 
asymptotic trivariate normal distribution. 

5. An EM algorithm for ML estimation 

It is clear that the trivariate reduction technique used for the derivation of the BMO 
distribution, allows for a missing data interpretation, suitable for the application of the 
EM algorithm. A detailed description of the general EM algorithm can be found in the 
book of McLachlan and Krishnan (1997). 

According to the multivariate reduction derivation, the missing data consist of the 
non-observable random variables Xi = (Xli,X2i,  Xoi) while the observed data are the 
values Y /=  (Yli, Y2i). 

The EM algorithm proceeds by calculating the conditional expectation of Xi given 
Y/ and the current values of the parameters, while the M-step just calculates the ML 
estimates for a sample from exponential distributions, using the expectations of the 
E-step. 

In the next section we fully describe the derivation of the required conditional ex- 
pectations. 

5.1 The conditional expectations 
For notational convenience we drop the subscript i denoting the observation. Let s = 

rain(y:, y2), t = max(y1, y2) and O = (00, 01,02) denote the vector of parameters. Also, 
let fj  (x) and Fj (x), j = 0, 1, 2 denote the density and the survival function respectively 
of the random variable Xj. 

Suppose further that Y: < Y2. It is clear that  Xo _> t. Moreover the conditional 
density of Xo is given by: 

f:(s)fo(t)F2(t) O0 
fo(t I Yl, Y2, O) = f(Yl, Y2) - 02 + 00 

and similarly for w > t 

fo(w I Y l ,Y2 , e )  = f : ( s ) fo (w)f2( t )  _ 0002 e x p ( - 0 o ( W  - t)) .  
f(Yl, Y2) 02 + 00 
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Thus we obta in  tha t  

00 if w = t 

(5.1) fo(w I Yl, Y2, @) = 02 + Oo 
0002 exp( -Oo(w t)) if w > t. 

02 + 00 

Thus  the condit ional  expecta t ion  can be derived easily as 

0o( ) 
E ( X o  I Y l ,  Y2, O)  -- 02 -[- O0 t -[- 02 W exp(-0o(W - t))dw = t + (02 + 0o)  0 o '  

because the integral merely represents the expec ta t ion  of a lef t - t runcated at  t exponent ia l  
r andom variable. In addit ion it is clear tha t  since Yl < Y2, E(X1 I y l , y2 ,0 )  = Yl and 
with arguments  similar to those used for the derivat ion of E(Xo I Yl, Y2, O) one can show 
tha t  

0o 1 
E ( X 2  I Y l , Y 2 ,  O)  = t + 

(02 + 0o) 02 
Moreover, assuming tha t  Yl > Y2 one can derive similar expressions, as those appear ing 
in Table 1. 

Consider now the case where Yl = y2. In this case it is clear tha t  E(Xo [ Yl, Y~, O) = 
Yl. Moreover, one obtains tha t  

f l ( w  [ Yl,Y2, O) = f l (w)fo(yl )F2(yl)  = 01 e x p ( - 0 1 ( w -  Yl)), 
f (Yl ,  Y2) 

w > Yl which is the density of a left t runca ted  at Yl exponent ia l  dis t r ibut ion wi th  
1 and in a similar fashion E(X2 I paramete r  01. Therefore  E(X1 I Yl = Y2, @) = Yl + 

1 Table I summarizes  the condit ional  expectat ions.  Yl = Y2,O) = Yl + ~ -  

Table  1. T h e  condi t ional  expec ta t ions  for all cases. 

E(X1 [ Yl, Y2, O) E(X2  I Yl, Y2, O) E(Xo  [ Yl, Y2, O) 
0 9 1 0~. 1 

Yl < y2 Yl Y2 4- 02+eo ~ Y2 4- 0~+0 ~ 0~o 
0 0 t 01 I 

yl > y2 yl 4- 0~ +0o ~ y2 Yl 4- 01+0o ~o 

yl : Y2 Yl + ~ Y2 + ~ Yl 

5.2 The algorithm 
From the aforement ioned derivations one can describe the EM algor i thm as follows: 
E-step: Using the da ta  and the current  est imates  e (k) -- (00(k),01 (k), 02 (k)) af ter  

the k-th i terat ion,  calculate the pseudo-values 

zi = E(Xoi I Yli,Y2i, o(k)), d~ = E ( X l i  I Yli,Y2i, O(k)), and 

r = E(X2i ] Yl~, Y2i, O (k)) 

for i = 1 , . . . ,  n (using the entries of Table 1). 
M-step: Upda te  the est imates by 

0o(k+l ) __ n 01(k+l ) _ n 02(k+l ) _ n 
n n n �9 
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If some convergence criterion is satisfied stop iterating otherwise go back to the 
E-step. 

Note that  the M-step simply obtains the ML estimates from a random sample from 
the exponential distribution using the pseudo-values calculated at the E-step. 

It is interesting to note that  the algorithm can be extended easily to cover the case of 
covariates at the parameters. Assume that the parameter Oi, i = 0, 1, 2 is associated with 
a vector of covariates, say z~, through a log-link function, namely 0i -- exp(t3~z~), i = 
0, 1, 2, where/3i is a vector of regression coefficients associated to the vector of regressors 
zi. Note that  zi may differ among parameters. In such a case, the only amendment in 
the EM algorithm described above is that  at the M-step, the parameter vectors 13i are 
updated by simply fitting exponential regression models, using as dependent values the 
pseudo-values of the E-step. This can be done easily by standard statistical packages. 

5.3 Operating characteristics 
The aim of this section is to examine some characteristics of the proposed algorithm. 

Firstly, the choice of efficient initial values is treated. We conducted a small simulation 
experiment for examining the plausibility of the moment estimates (MOM) and the INT 
estimates as initial values for the EM algorithm. Both estimates are given in closed 
form expressions and thus they can be easily calculated. Table 2 reports the mean 
number of iterations needed until convergence, when the two different estimates were 
used as initial values. The convergence criterion used was to stop iterating when the 
ratio [ (L(k)-  L ( k - 1 ) ) / L ( k -  1)[ < tol, where L(k) denotes the value of the loglikelihood 
at the k-th iteration and tol = 10 -12. 

Various combinations of parameters, representing situations with large correlation 
as well as symmetric and asymmetric cases (with respect to 01 and 02) were selected. 
Four different sample sizes were used, namely n = 50,100,250,500. For each sample size 
and parametrization 5000 replications were used. Only samples for which all ni > 0 were 
kept in the analysis as otherwise the ML estimates do not exist or they are inconsistent. 

It is evident from Table 2 that  the INT estimates are preferable as initiM values for 
all the configurations and sample sizes. As the sample size increases the difference gets 
smaller but even for the largest sample size (n -- 500) there is still substantial difference. 
This indicates that  the INT estimators are superior as initial values. 

Table 2. Th e  mean  number  of i terat ions until  convergence for combina t ions  of sample  size and  

pa rame te r  values. 

p a r am e te r  values 

01 02 O0 

sample  size n 

50 100 250 500 

MOM INT M O M  INT MO M INT MO M INT 

1 1 1 27.9 24.6 24.7 21.9 21.6 19.4 19.9 17.7 

2 1 0.5 72.7 49.6 62.1 42.0 54.5 36.9 50.2 33.3 

2 1 1 42.1 33.0 37.8 29.1 34.1 26.3 31.8 24.0 

2 1 2 36.7 31.0 32.4 26.9 28.3 23.5 26.8 21.8 

3 1 0.5 108.2 66.9 91.5 56.7 81.3 48.1 75.7 43.9 

3 1 1 62.9 44.6 57.6 40.5 49.4 35.0 47.5 32.1 

3 1 2 46.8 36.3 41.1 32.0 36.5 28.2 34.1 25.8 

5 1 1 113.4 69.0 96.4 59.4 83.2 51.0 77.5 46.1 



EM FOR MULTIVARIATE SHOCK MODELS 823 

This  was expected  since the  der ivat ion of the  I N T  es t imators  was based on an 
one-s tep i tera t ion towards  the ML es t imator .  Note  t h a t  the  s topping rule used was 
r a the r  strict .  Relaxing this criterion, by  using a less s tr ict  one, like tol = 10 -6 ,  we got 
the surpris ing result  t ha t  the I N T  es t imators  led to ML es t imators  af ter  qui te  a few 
i terat ions,  usually less t h a n  5 for all configurat ions and sample  sizes, as one can see in 
Table  3. This  implies tha t  the I N T  es t imators  are quite close to the ML es t imators .  As 
the sample  size gets larger the num ber  of  i tera t ions  is reduced.  

The  above clearly implies tha t  the  I N T  es t imates  are quite sa t i s fac tory  for es t imat ion  
purposes.  The  relative difference in the  loglikelihood calculated for the  I N T  es t imates  
and  the maximized  loglikelihood was found to be  less t han  10 -5.  

Table 3. The mean number of iterations until convergence when the INT estimators were used 
as initial values for a less strict terminating condition (tol < 10-6). 

initial values n 

81 82 80 50 100 250 500 

1 1 1 3.25 2.53 1 . 7 5 2  1.308 

2 1 0.5 2 .082  1 .564  1 .112 1.018 
2 1 1 2.518 1.8 1.288 1.076 

2 1 2 2.812 1 . 9 8  1 . 4 0 8  1.162 

3 1 0.5 1 .542  1 .212  1 . 0 2  1.002 

3 1 1 1.902 1 .446  1 .102  1.018 
3 1 2 2.33 1 . 6 1 2  1 .234  1.046 

5 1 1 1.35 1 . 1 6 8  1.012 1 

As far as the convergence is concerned,  the  a lgor i thm converged af ter  r a the r  few 
i terat ions for all the cases. In addit ion,  no mul t ip le  solut ions were found. S topping 
cri teria tha t  are not based on the likelihood could be used, like the relative change 
on the p a r a m e t e r  values at  successive i terat ions.  However  the  likelihood can  be  easily 
ob ta ined  and  thus there  is no reason for not  using it. 

5. A censored model 

T h e  model  described so far, assumes t ha t  the  two componen t s  work in parallel .  
Considering a model  where the  two componen t s  are connected  in series, a censored 
B M O  model  arises. In this model  the  fa ta l  shock may  arise f rom the th i rd  process bu t  
whenever  one componen t  fails the other  fails, too. I f  two componen t s  are connected in 
series, following Pena  and G u p t a  (1990), then  the r a n d o m  vector  observed on sys tem 
failure is (Z, 51, 52), where Z = min(Y1, Y2), 51 = 1(]I1 < ]/2) and  52 = I(Y2 < Y~), where 
I ( A )  denotes  the  indicator  funct ion of the event  A. 

One can see t ha t  this model  implies t ha t  one of the  two variables of  the  B M O  
dis t r ibut ion  is censored. The  r a n d o m  variable  Z follows an Expo(O) dis t r ibut ion,  while 
the joint  densi ty  of the  vector  (Z, 51,52) can be wr i t t en  wi th  respect  to the  p roduc t  of 
the  Lebesgue measure  on ~ +  and the  count ing measure  on M = {(0, 0), (1, 0), (0, 1)} as 
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Note  tha t  the above density can be retr ieved as a censored version of the BMO dis- 
t r ibution.  Direct maximizat ion  of the likelihood is not easy bu t  an EM algori thm is 
applicable. The  algori thm is similar to the one used for the uncensored case. The  ex- 
pecta t ions  needed are analogous to those in Table 1. The  only change is tha t  now we 
have observed simply zi which has to subst i tu te  in all cases Yl and Y2 in Table 1. Thus,  
the condit ional  expectat ions  can now be seen in Table 4. 

Table 4. The conditional expectations for the case of censored observations (model with 
components in series). 

E(xl t z, 61,62, e )  E(x2 I z, 61, ~2, e )  E(xo I z, 61,62, O) 
61 = 1, 62 = 0 Z Z "~ 90 1 O~ 1 

O,,+Oo ~2 z + #2+0o ~oo 
61 : O, 62 = 1 z -[-- Oo 01 1 

01-1-00 ~1 2: g "~ Ol-I-O0 ~0 

61=o,  62 = 0  z +  ~ z +  ~ z 

The  steps of the EM algori thm are similar with those described for the uncensored 
case. The  only difference is tha t  now the expectat ions  of Table 4 are used. 

Pena  and Gup ta  (1990) studied Bayesian est imat ion for b o th  models (uncensored 
or censored),  corresponding to models with the two components  in parallel or in series. 
T h e y  concluded tha t  the case of parallel components  could be considerably more  efficient 
t han  series sample estimates,  bu t  from a pract ical  point  of view they  could be more costly, 
in order  to infer for the parameters  of the underlying processes. Lu (1997), Chen and 
Lu (1998) and Chen et al. (2000) exploited the ease of a l ternat ive models t ha t  could 
balance efficiency and cost. 

7. Multivariate Marshall-Olkin distributions 

7.1 Derivation and properties 
Multivariate  extension of the BMO dis t r ibut ion can be made  via two different ap- 

proaches. The  first one uses the fatal shock derivation of the bivariate model.  Th e  i d e a  

is tha t  there  are m processes along with another ,  say (m + 1)-th process tha t  whenever  
fails all the  rest m processes fail, too. Thus  the vector  Y = (Y1 , . . . ,  Ym) is defined as 
Y = (X0, �9 �9 �9 X0), if X0 < X~, for all i = 1 , . . . ,  m, and Y = (X1, X 2 , . . . ,  Xm) otherwise. 

Another  definition, more consistent with the mult ivariate  reduct ion technique pro- 
posed above, defines the new variables Y/ = min(Xi ,X0) .  Such a definit ion allows for 
r andom vectors with some of their  elements equal, while the fatal  shock model  does not  
allow for ties between subsets of the variables. To this extent ,  the  second model  can be 
considered as more general. In the sequel only the second model  will be considered. 

The  survival function is given as 

S(yl,...,ym)--exp(-~Oiyi-Oomax(yl,...,ym)).i=l 

The  joint  density funct ion is not  absolutely continuous with respect  to the Lebesgue 
measure in ~m and has singularities corresponding to the cases where two or more of 
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the Yi'S are equal. Thus  the density can be wr i t ten  as 

(7.1) 

m 

s(yi,..., + 00) H 
i = 1  

if yj = m a x ( y l , . . . , y ~ ) ,  j = 1 , . . . , m  and 

f ( Y l , . - . , Y m )  = Yi r y j , i  r j 
S (y l ,  . . . , ym)O00il 0i2 "'" 0~ 

if Yi~, Y~ , - - - ,  Y~k < YJ~ --- Yj2 . . . . .  Yjp 

S ( y , , . . . ,  ym)Oo 

if Yl = Y2 . . . . .  Ym > O. 

It can be verified tha t  the  MMO dis t r ibut ion satisfies a mult ivar ia te  lack of memory  
property.  

7.2 Derivation of an E M  algorithm 
In a similar manner ,  we can const ruct  an EM algor i thm for ML es t imat ion of the 

parameters  of the MMO distr ibution.  Proschan and Sullo (1976) discussed es t imat ion 
for the MMO distribution.  For construct ing the EM algori thm, one needs to  calculate 
a series of condit ional  expectat ions.  Since now the form of the joint  densi ty is quite 
complicated,  with a large number  of dist inct  cases, one has to separate  all the  possible 
cases. Let  Y denote  the observed da ta  and O the parameters .  

Let  us s tar t  with the simplest case where Yl = Y2 . . . . .  y,~, i.e. all the  values 
are equal implying the existence of a shock. Therefore  E ( X o  I Y, O) = Yl,while E ( X i  I 
Y, O) = Yl + 0i -1,  i = 1 , . . . ,  m, corresponding to the expec ta t ion  of a lef t - t runcated at  
Yl exponent ia l  dis tr ibut ion for each variable. 

The  more complicated case is when some of the Yi'S are equal bu t  there  are some 
other  with smaller values. More formally, Yil, Yi2,.-- ,  Yik < Yjl = Yj2 . . . . .  yjp = y(O) 
for some k and p. Clearly for all the  subscripts ib, b = 1 , . . . ,  k it holds tha t  E(Xib I 
Y, O) = Yib because the observed value corresponds to the unobserved one. For the  rest,  
where the equali ty holds, it is obvious tha t  the corresponding Xo is the observed value y(0) 
and thus E ( X o  I Y, O) = y(0) while the rest are the expecta t ions  from a lef t - t runcated 
at y(0) exponential  dis t r ibut ion and thus E(Xjb I Y, O) = y(O)+ 0 jb - t ,  b = 1 , . . . , p .  
The  last case is when there  is some Yk which is larger than  the rest.  This  implies tha t  
the informat ion for X0 is contained only in this value, and thus E ( X i  I Y ,O)  = Yi, 
i = 1 , . . .  , m  and i ~ k. Then  as shown for the bivariate case, it holds 

E(Xo I Y, e )  = yk + 
Ok 1 Oo 1 

(Ok + 00) 00' and E ( X k  I Y, O) = Yk + (Ok + 0o) Ok" 

7.3 The E M  algorithm 
The  condit ional expectat ions  needed for the E-step have been defined and, now, the 

algori thm can be described as: 
E-step: Calculate the pseudo-values tji  corresponding to the j - t h  non observable 

variable of the i- th observat ion as 

t j i = E ( X j i l Y i , e ( k ) ) ,  i - - 1 , . . . , n ,  j - - O , . . . , m .  
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M-step: Upda te  the paramete rs  by 

n 

0 j  (k+ l )  - E i L l t j i ,  j : 0 , . . . , m .  

If some cri terion is satisfied then  stop i terat ing otherwise go back to the E-step for 
one more i teration.  

Again, one may add covariates to each Oi, as described for the bivariate case. 

8. Illustrative example 

In order  to i l lustrate the EM type  algori thm derived above, we use a s imulated 
data set from a trivariate Marshall-Olkin distribution. The joint density function of the 
trivariate Marshall-Olkin distribution, in accordance with (7.1) can be described as 

S(yl, Y2, y3)0203(01 + 00) 
S ( Y l ,  Y2, y3)0103(02 -[- 00) 

S(yl,  Y2, y3)0102(03 + 00) 

(8 .1 )  f ( Y l ,  Y2, Y3) -~ S(Yx,  Y2, y3)O001 

S (yl , y2 , y3)0o02 
S(yl,  Y2, y3)0o03 
S(yl,  Y2, y3)0o 

if Yl >Y2,Y3 

if Y2 > Yl,Y3 

if Y3 > Yl,Y2 

if Yl < Y2 = Y3 

if Y2 < Yl = Y3 

if Y3 < Yl = Y2 

if Yl -- Y2 = Y3 > 0 

where S(yl,  Y2, Y3) exp ( -  3 =- ~-~i=10iyi - Oo max(y1, Y2, Y3)). 
The  condit ional  expecta t ions  needed for the EM algori thm can be found in Table 5. 

For convenience we have separa ted  the different types of da t a  tha t  may  occur. 
Using the expecta t ions  of Table 5 the EM algori thm for the t r ivar ia te  Marshall-Olkin 

dis t r ibut ion is described as 
E-step: Using the da ta  Y and the  current  est imates O(k) = (0o(k), 01 (k) 02(k), 03(k)) 

af ter  the k-th i terat ion calculate the pseudo-values 

t j~=E(Xj i [Y i ,O(k ) ) ,  i = l , . . . , n ,  j = 0 , 1 , 2 , 3 .  

M-step: Upda te  the est imates by 

n 
OJ(k+l) -- E l L 1  t j i '  j = O, 1, 2, 3. 

Table 5. The  condi t ional  expec ta t ions  needed for ML es t imat ion  for the  t r ivar ia te  
Marshal l -Olkin  dis t r ibut ion.  

Type  E(X1 I Y, O) E(X2 [ y, O) E(X3 I Y, O) E(Xo I Y, O) 
0o 01 

I Yl > Y2,Y3 Yl + 01+0o o~ Y2 Y3 Yl + ~ 0 0  
Oo 1 0 2 1 

II Y2 > Yl,Y3 Yl Y2 + 02+00 02 Y3 Y2 + 02+00 ~o 
00 _._1 0;i 1 

III Y3 > Yl,Y~ yl y~ Y3 + Oa+Oo 03 y3 q- oa+oo 
1 1 

IV Y1 <Y2  =Y3 Yl y 2 +  ~ Y a +  ~ Y2 
1 1 

V Y2 < Yl = Y3 Yl + o--7 Y~ Y3 + ~3 Yl 

VI Y3 < Yl = Y2 Yl q- ~ Y2 + ~ Y3 Yl 

VII y l = y 2 = y 3  y l + ~ -  1 y 2 + ~  Y3+]-~3 Yl 
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If some convergence criterion is satisfied stop iterating otherwise go back to the 
E-step. 

Consider the data of Table 6 generated from a trivariate Marshall-Olkin distribu- 
tion. All the four parameters (00, 01,02, 03) used to generate the data were set equal to 
1. In addition, in Table 6 one can see the Type for each observation (the Type is de- 
fined according to the notation used in Table 5), as well as the conditional expectations 
for the unobserved latent variables. These expectations have been calculated after the 
termination of the algorithm, and they correspond to the pseudo-values of the E-step. 

Table 6. Genera ted  da t a  f rom a tr ivariate  Marshal l -Olkin  dis t r ibut ion.  

Condi t ional  expec ta t ions  

D a t a  after  the  last  i terat ion 

Yli ]/2/ Y3i Type  t l i  t2i t3i to~ 

1.597 1.597 0.150 VI 2.821 2.795 0.150 1.597 

1.299 0.398 1.144 I 1.930 0.398 1.144 1.856 

0.745 0.745 0.745 VII 1.969 1.943 1.461 0.745 

1.227 0.173 1.227 V 2.451 0.173 1.943 1.227 

0.086 1.000 0.255 II 0.086 1.612 0.255 1.563 

0.360 0.169 0.331 I 0.991 0.169 0.331 0.917 

1.400 1.110 0.764 I 2.031 1.110 0.764 1.957 

0.192 1.276 0.730 II 0.192 1.888 0.730 1.840 

0.024 0.024 0.024 VII 1.248 1.222 0.740 0.024 

0.708 0.119 0.190 I 1.339 0.119 0.190 1.266 

1.959 1.941 0.692 I 2.590 1.941 0.692 2.516 

0.430 0.430 0.256 VI 1.654 1.628 0.256 0.430 

0.261 0.345 0.584 III 0.261 0.345 0.859 1.293 

0.384 0.440 0.046 II 0.384 1.052 0.046 1.003 

0.002 1.218 0.391 II 0.002 1.830 0.391 1.782 

0.126 0.126 0.126 VII 1.350 1.324 0.842 0.126 

0.379 0.379 0.048 VI 1.603 1.577 0.048 0.379 

0.011 0.011 0.011 VII 1.235 1.210 0.727 0.011 

0.256 0.288 1.621 III 0.256 0.288 1.896 2.330 

0.090 0.145 0.145 IV 0.090 1.344 0.862 0.145 

The EM algorithm was applied to the data and the estimates were derived. The 
initial values were set arbitrarily equal to 1 for all the parameters. The algorithm con- 
verged quite quickly, after 23 iterations. The algorithm stopped iterating when the 
relative change of the loglikelihood became smaller than 10 -12. The history of the 
parameter values with respect to the iterations can be seen in Fig. 1. Note that the 
parameters required quite few iteration to reach their final values, and the last itera- 
tions increased only slightly the likelihood. Several other different initial values were 
used without change in the final solution. It is quite interesting that even if one starts 
from a point far away from the ML estimates, like the point (5, 5, 5, 5), the algorithm 
converged after 25 iteration (with the same stopping criterion). This is an indication 
that the choice of initial values is not so important. 
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Table 7. Results  from fi t t ing different models to  the  da t a  of Table 6. 

Model 01 02 03 00 loglikelihood 

Full 0.817 0.834 1.396 0.869 -40 .7390  

01 = 02 0.826 0.826 1.396 0.869 -40 .7399  

01 = 03 1.091 0.836 1.091 0.869 --41.47594 

0 2 = 0 3  0.818 1.090 1.090 0.858 -41 .45105 

0 1 : 0 2  : 03 1 1 1 0.849 --41.70794 

Reduced models assuming equality of certain parameters were also considered. Re- 
sults are reported in Table 7. Reduced models can be fitted with minor changes at the 
M-step of the EM algorithm. For example if we assume that  01 = 02 then the only 
change needed at the M-step of the algorithm is to update the parameters using 

81(k+1 ) = 2n a n d  82 (k+ l )  = 81 (k+l) 
Ein=x (tli + t2i) 

retaining the rest of the calculations as described above. 
Similar changes can be made for the cases 01 = 03 and 02 = 03. Finally for the more 

complicated case 01 = 02 = 03 the changes needed at the M-step of the algorithm are to 
update the parameters using 

O0(k+l  ) _ n O1 (k+ l )  = 
n 

~ = 1  t0i 

82 (k+ l )  = 83 (k+x) = 81 ( k + l )  

3n 
~-~in=l(tli A- t2i -t- t3i) 

and 

Looking at the results of Table 7 it is clear that  a model that  assumes 01 = 02 = 03 

has the worst loglikelihood. However keeping in mind that this model has fewer param- 
eters than the other models, the symmetry does not seem to be an invalid assumption. 
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9. Concluding remarks 

In this paper, an EM type algorithm for ML estimation of the parameters of the 
MMO distribution was described. This algorithm made use of the multivariate reduction 
derivation of the MMO distribution. It is clear that  the approach can be expanded to 
several other models, useful in reliability and survival analysis, that are based on similar 
shock models as those described for the MMO distribution. For example, allowing the 
components to follow Weibull distributions one can construct similar algorithms for ML 
estimation. 

Another generalization allows for the use of covariates at the parameters 9i. Allowing 
for covariates, the MMO model can be seen as a competing risk model, appropriate for 
survival data analysis. 

Finally, in a more general setting, the EM algorithm can be proven quite helpful for 
distributions resulting from a multivariate reduction technique. 
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