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A b s t r a c t .  We consider estimation of loss for generalized Bayes or pseudo-Bayes 
estimators of a multivariate normal mean vector, 0. In 3 and higher dimensions, 
the MLE X is UMVUE and minimax but is inadmissible. It is dominated by the 
James-Stein estimator and by many others. Johnstone (1988, On inadmissibility of 
some unbiased estimates of loss, Statistical Decision Theory and Related Topics, IV 
(eds. S. S. Gupta and J. O. Berger), Vol. 1,361-379, Springer, New York) considered 
the estimation of loss for the usual estimator X and the James-Stein estimator. He 
found improvements over the Stein unbiased estimator of risk. In this paper, for 
a generalized Bayes point estimator of O, we compare generalized Bayes estimators 
to unbiased estimators of loss. We find, somewhat surprisingly, that the unbiased 
estimator often dominates the corresponding generalized Bayes estimator of loss for 
priors which give minimax estimators in the original point estimation problem. In 
particular, we give a class of priors for which the generalized Bayes estimator of 0 is 
admissible and minimax but for which the unbiased estimator of loss dominates the 
generalized Bayes estimator of loss. We also give a general inadmissibility result for 
a generalized Bayes estimator of loss. 

Key words and phrases: Loss estimation, shrinkage estimation, Bayes estimation, 
unbiased estimation, superharmonicity. 

1. Introduction 

Suppose we observe x from a dis tr ibut ion Po where 0 E ll~ p. A basic stat ist ical  
problem is to es t imate  0 by ~(x)  under  a loss funct ion L(O, ~(x)). The  corresponding 
risk function is given by R(0 ,~ )  = Eo[L(O, ~(X)) ]  (where Eo denotes the expecta t ion  
with respect  to Po) and serves as a classical decision theoret ic  basis for evaluation of 
F. However it is often of interest  to assess the loss L(O, ~(x)) itself and a growing 
l i terature has recently developed on this subject  (see, for instance, Johns tone  (1988) for 
a rationale).  A common approach to this assessment is to  consider es t imat ion of the loss 
L(O, ~(x)) by an es t imator  5, called the loss est imator .  For evaluat ion of this new type of 
est imator,  another  loss is required and it has become s tandard  to use the squared error  

(1.1) L* (0, ~(x) ,  5(x)) = (6(x) - L(O, ~(x) ) )  2. 

More precisely this evaluation will be done th rough  the new risk funct ion 

(1.2) T~(O,p, 5) = Eo[L*(O,~(X),5(X))] = Eo[(5(X) - L(O,~(X)))2]. 

*Research supported by NSF Grant DMS-97-04524. 
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See Johnstone (1988), Lu and Berger (1989) and Fourdrinier and Wells (1995) for more 
details on this approach and Rukhin (1988) for an alternate view. 

In this paper, we consider estimation of loss for generalized or (pseudo) Bayes es- 
timators of a multivariate normal mean vector. Specifically let X be distributed as 
Alp(e, I) in dimension p and let the loss function for estimating 0 be L(O, ~o) = I10 - ~ll 2. 
For a given generalized prior 7r, we denote the generalized marginal by re(x) and the 
generalized Bayes estimator of 0 by 

(1.3) 

Through Stein's lemma 

(1.4) Eo[(X - O) . g(X)] = Eo[div g(X)] 

for any appropriate function g. The unbiased estimator of risk of ~m is 

(1.5) 6~(x) = p + 2  A m ( x )  IlVm(x) ll 2 
m(x) m~(, )  

while the posterior risk of ~m is 

(1.6) 5m(X) = p + - -  
Lx. (x) HWn(x)[I 2 
m(x)  m2(x) 

Here the symbols V and A denote the gradient and the Laplacian for real valued 
functions and div denotes the divergence for vector valued functions. See Stein (1981) 
for development and details of the above. 

Our results for generalized Bayes estimators will depend on 7r(0) only through the 
marginal re(x). Hence, in fact, they hold not only for generalized Bayes estimators but  
also for so called pseudo-Bayes estimators. In this paper, we define a pseudo-Bayes 
estimator of 0 to be one of the form (1.3) for some function m which may or may not be 
a generalized marginal corresponding to some generalized prior re. Similarly, we define 
a pseudo-Bayes estimator of loss to be one of the form (1.6). See Bock (1988) for a 
discussion of pseudo-Bayes estimators. 

In Section 2, we give an expression for the risk of a general estimator 5(X) of the 
loss of an estimator ~(X)  of 0 and for the risk difference between two competing loss 
estimators. We give a specialization of this second result for 6m and 6u. 

In Section 3, a primary interest is in comparing 5m and 6u for superharmonic 
marginals. In this case, it is well known and follows immediately from (1.5) that the 
generalized Bayes estimator ~)m of 0 in (1.3) dominates the usual unbiased estimator, 
X,  under the loss 116 - 0112. It is of interest to see if this domination of the generalized 
Bayes estimator over the unbiased estimator persists in the problem of estimation of the 
loss of ~Om. The somewhat surprising result is that this is not necessarily the case as we 
will demonstrate. In particular, we give a class of priors for which the generalized Bayes 
estimator of 0 is admissible and minimax but for which the unbiased estimator of loss 
dominates the generalized Bayes estimator of loss. 

In Section 4, we give general conditions under which 6m is inadmissible and explicit 
improved estimators. The results fall into two classes; in the first class, the improved 
estimators shrink toward the origin while, in the second class, they expand away from 0. 
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In Section 5, we give some concluding remarks and an example which indicates that  
perhaps the loss function (6(x) -Hg~(x) - 0112) 2 may be inappropriate. 

Finally, Appendix contains several lemmas which follow from Stein's lemma and the 
proof of the main result of Section 2. 

2. Computations and comparisons of risk 

In this section, we give an expression for the risk of a general estimator 5 of the 
loss of an estimator ~v of 0. We also give an expression for the difference in risk between 
two competing estimators of the loss of the estimator ~. We specialize this result to 
the comparison of a general estimator 6 to 5~ and 6m. In particular, we will focus on 
comparison of 5u and 6m- 

Proofs are based on the unbiased estimation of risk technique of Stein (1981) (see 
also Johnstone (1988)). This method requires conditions of weak differentiability and 
finiteness of expectation which we make throughout without explicit mention beyond this 
paragraph. Thus, for example, we require that  g and ~ be twice weakly differentiable 
and that  Eo[[]g(X)]l 4] and Eo[)~2(X)] be finite. 

Our first result gives an expression for the risk of a general estimator of loss. 

THEOREM 2.1. Let ~(x) = x + g(x) and 5(x) = p + )~(x) and let the loss function 
be given by (1.1). Then 

(2.1) 7-~(0, ~,6) = 2p + Eo[( l lg (X) l l  2 + 2divg(X) - A ( X ) )  2 

+ 4 g ( X ) .  v( l lg(x)II  5 + 2 div g(x) - A(X)) 
+ 2A([Ig(X)]] 2 + 2 divg(X) - )~(X)) 

+ 4(llg(x)lt ~ + 2 d ivg(X)  + tr(J~(X)))] 

where Jg(X) and tr denote respectively the Jacobian of g and the trace. 

PROOF. See Appendix. [] 

Recall that  IIg(X)112+ 2 div g(X)  is the unbiased estimator of risk difference between 
X + g(X) and X as estimators of 0. 

We now give an expression for the risk difference between two estimators of loss. 

COROLLARY 2.1. Let ~(x) = x + g(x), 6(x) = p + A(x) and 6"(x) = 6(x) + 3'(x). 
Then the risk difference 74(0, ~, 5") - 7-4(0, ~, 6) is given by 

(2.2) Eo[~ /2 (X)  - 2")'(X)(l[g(X)ll 2 + 2 d i v g ( X )  - A ( X ) )  

- @ ( X ) .  V v ( X )  - 2 a ~ ( X ) ] .  

PROOF. This is a direct application of (2.1). [] 

A simple situation where 6" dominates 5 is when ~ is a minimax estimator (llg(x)112+ 
2divg(x) < 0) and E0[A(X)] > c > 0, for all 0. This domination follows immediately 
from Corollary 2.1 if 3'(X) - k with -2c  < k < 0. 
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We now specialize to the case where the estimator ~ of 0 is a pseudo-Bayes estimator 
In this case, with respect to a pseudo-marginal m, that is, ~(x) = ~m(X) = x + m(~) " 

the two most natural loss estimators are the unbiased estimator ~ given by (1.5) and 
the pseudo-Bayes estimator given by (1.6). We now compare these two estimators with 
a general estimator and with each other. 

vm(x) COROLLARY 2.2. Let ~,~(x) = x + ,,,(~) , let /i~ and 6m be given by (1.5) and 
(1.6) and let 7 be a function from ]~P into ]~. Then we have 

(2.3) 74(O,~m,6m + 7) - T4(O,~m,6m) = Eo [72(X) - 
2A(rn(X) 'y(X))  ] 

r e ( x )  J ' 

(2.4) P,.(O, ~m, &, + 7) - 7~(0, ~m,/iu) 

Eo [3 '2 (X)-  2 A ' i ' ( X ) -  4V'y(X)- 
Vra(X)]  

- J 
a n d  

(2 .5)  n ( o ,  & )  - n ( o ,  = Eo  n(X) J 

where A(2)m = A(Am) is the bi-Laplacian of m. 

V m ( x )  Am(x) PROOF. Applying Corollary 2.1 with 9(x) = ~ and A(x) = ~77Y(z) IWm(x)l?m=(x) 
gives that the left hand side of (2.3) is equal to 

x vm(x) 

which reduces to the right hand side of (2.3) since the expression in parentheses is equal 
to Lx(,~(x)~(x)) 

m(x) 
Vm(x) 2Am(x) ]Wm(x)ll2 the term Similarly, still with g(x) = m(~) but with A(x) - re(x) - m2(,) ' 

Ilg(X)l]2 + 2 divg(X) - A ( X )  in (2.2) vanishes and (2.4) follows directly. 
Am(x) Finally (2.5) follows from (2.3) since 6u(x) = 6re(x) + 7(x) with 7(x) = ~ .  [] 

Comment 1. Our main interest in this paper is to compare the estimators/in and 
5~ and more generally to find procedures which dominate bin. Sections 3 and 4 respec- 
tively are devoted to these questions. It is worth noting at this stage that domination 
of 5,~ (via the unbiased estimation of risk technique) requires the existence of a function 
if(X) so that A ( m ( X ) 7 ( X ) )  > 0 and Eo['72(X)] < c~ by (2.3). Similarly, domination of 
5m by 6~ requires by (2.5) that  the bi-Laplacian of m, A(2)m, is positive. 

Comment 2. Johnstone (1988) applies his proposition 4.1 (equivalent to (2.4)) 
to the improvement of 5~(X) for the two estimators of 0, ~m(X)  = X (the "usual" 
estimator) and g)m(X) = (1 - p-2 jT~-~)X the James-Stein estimator). Note, however, that  

Win(X) = X (a generalized Bayes estimator) corresponds to m(x) = 1 and Win(X) = 
(1 _ i_[XF) X p - 2  (a pseudo-Bayes estimator) corresponds to re(x) = I]x]I-(P-2). Since both 

of these "marginals" are harmonic (i.e. Am(x )  =_ 0) we have/ im(Z) = /iu(X) and hence 
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(2.3) and (2.4) coincide. Therefore Johnstone's results may be seen as improving either 
on 6re(X) or 6u(X). 

Comment 3. Much of our focus is on pseudo-marginals re(x) for which Am(x) < 0 
and hence the corresponding pseudo-Bayes estimator of 0 is minimax. Such pseudo- 
marginals cannot be integrable. See Fourdrinier et al. (1998) for more discussion of this 
issue. Of course, if the marginal corresponds to a proper prior, the posterior risk is the 
unique Bayes estimator of loss and is therefore admissible. 

We now turn our attention to generalized Bayes estimators and give a result which 
implies domination of 5u over 5m. 

COROLLARY 2.3. 

(2.6) 

Then 5u dominates ~.~. 

Suppose that the prior density re(O) satisfies 

( A~(O) "~ ~ 
~(o) } - 2 A ( % ( 0 )  <_ o VO c •p. 

PROOF. Note that rn(x) = Ex[Tr(0)] where E~ denotes the expectation with respect 
to N'p(X, I). By interchange of differentiation and integration and Stein's lemma, we have 

Ox EX[f(o)] = E.[(r - ~,)f(O)] = E. :(0) 

for any weakly differentiable function f .  Then it follows that 

and 

Vxm(X) = E~[v0~(0)], 

zx:~(x)  = E~ [A0~(0)], 

A ~ ) m ( x )  - E~[,,~o~)~-(0)i. 

We now show that (2.6) implies that the right hand side of (2.5) is negative and 
hence gives the result. Let Eo/x be the posterior expectation given x. The bracketed 
term in the right hand side of (2.5) is equal to 

( Am(x)~ ~ A(~)m(x) 
re(x) )  - 2  re(x) 

- ( E ~ [ A ~ ( 0 ) ] )  2 _ 2 E x [ A ( 2 ) ~ ( 0 ) ]  

\ Ex[~(0)] ] Ex[~(0)l 

= ( o,x r:.<0>l k ~--~)-Jl - 2Eo/~ [ ~(o) ] 

<_ Eo/x [ \ ~(0) 1 ~(0) 
< 0  

by (2.6). [] 
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3. Comparison of 5m and 5u 

In this section, for a pseudo-marginal m, we compare 5m and 5~ as estimators of the 
loss of the pseudo-Bayes estimator ~m of 0. In particular, we are interested in conditions 
of domination of 5u over 5,~. 

A first example gives a class of pseudo-marginals corresponding to minimax esti- 
mators of 0 for which 5~ dominates 5m. It is then worth noting that the pseudo-Bayes 
estimator ~m of 0 dominates the unbiased estimator X while the pseudo-Bayes estimator 
5m of loss is dominated by the unbiased estimator of loss. 

( 1 )b where a and b are Example 1. Let re(x) be a function proportional to 

Ilxll2 and re(x) f(y)  1 b nonnegative constants. It is convenient to set y 2 _ = = 

Then it is straightforward to express Am(x) and A(2)m(x) as 

(3.1) 

and 
(3.2) 

Am(x) = 2yf"(y) + pf'(y) 

A(2)m(x) p(p + 2)f"(y)  + 4(p + 2' ~'"+ " = )y j  (Y) + 4y2f(4)(y). 

Hence the unbiased estimator of the risk difference between 5u and 5m given by (2.5) 
is expressed in term of y as 

f ,  y p f , (y )~2  ip  2 ) / , ( y  ) , ~, f,,,(y) 4y2/(4)(y)~ ~(y) : (2yf~:(Y)~ + - 2 (p + + 4(p + . 
\ ][Y) f(y)  ] f(y) + z ) y - ] ~  ~ ] 

Noting that 

(3.3) f(k)(y) _ (-1)kb( b +  1 ) . . - (b  + k -  1)(y + a) -k 
f(y) 

straightforward calculations lead to 

71(y) = -b(y + a)-2(Az 2 - Bz  + C) 

where 

and 

A = 4 ( b + l ) ( b 2 + 9 b + 1 2 ) ,  

B = 4 ( b + l ) ( ( p + 4 ) b + 4 ( p + 2 ) ) ,  

C=p((p+4)b+2(p+2)) 

z = y ( y + a )  - 1  

for (a, y) ~ (0, 0). Note that A > 0, B > 0 and C > 0 and hence ~/(0) < 0 provided b > 0 
and a > 0. It follows that  one cannot show that 5m dominates 5~ using this unbiased 
estimator of risk technique if a > 0. 

The next lemma gives conditions which guarantee that T/(y) < 0 for all y and hence 
5~ dominates 5,~ in the case where a > 0. We consider the case a = 0 in Lemma 3.2. 



BAYES LOSS ESTIMATION 809 

LEMMA 3.1. Suppose a > O. A suJficient condition for which rl(y) <_ 0 for all y is 

[ + 1)(b + 2)2] 1/~ 
(3.4) p > b + l +  ( b + l )  2 + 8 ( b b 2 + 3 b + 4  

In particular this condition holds if p >_ 2(b + 3). 

PROOF. A necessary and sufficient condition for ~(y) < 0 for all y > 0 is that  
Az 2 - B z +  C > 0 for all z E [0, 1[. Then it suffices that B 2 - 4AC < O. Straightforward 
calculations lead to 

B 2 - 4AC 
- ( 5 2 + 3 b + 4 ) p  2 + 2 ( b + l ) ( b  2 + 3 5 + 4 ) p + 8 ( b + l ) ( b + 2 )  2 . 

32(b + 1) 

It is clear that this quadratic in p will be nonpositive as soon as p is at least as big 
as its only positive root which is given by the right hand side of (3.4). 

Since 
(b+ 1)(b+ 2) 2 -- b 2 + 3 b + 2 ( b + 2 ) < b + 2 < b + 3  

b 2 + 3b + 4 b 2 + 3b + 4 - - 

an upper bound of the right hand side of (3.4) is 2(b + 3). [] 

Comment 4. Note that, by (3.1) and (3.3), the Laplacian of m is given by 

) (3.5) Am(x)  -- (y + a)b+ 1 2(b + 1) y y + a  P 

and is nonpositive for b < ~-~ and, in particular, for b < 2a~ which is equivalent to the 
last condition of Lemma 3.1. Hence, under this condition, the James-Stein-like pseudo- 
Bayes estimator ~,~ given by ~m(x) = (1 25 ~x ijzll~-+~aj is minimax and dominates the 
usual unbiased estimator X. The lemma shows however that the unbiased estimator of 
risk 6~ dominates the (pseudo) posterior risk of ~m as an estimator of loss. 

Example 2. Let ~r(0) 1 b = ( ~ )  . It follows immediately from calculations in 
Example 1 that, if p > 2(b + 3) then (2.6) holds and hence 5u dominates 5m. Since 
~r is integrable if and only if b > 2 ~ (for a > 0), the prior 7r is improper whenever this 
condition for domination of 5u over 6m holds. Of course, whenever ~r is proper, the Bayes 
estimator 6m is admissible provided its Bayes risk is finite. 

We now turn to the case where a = 0. 

LEMMA 3.2. 1) I f  a = O, a necessary and sufficient condition for which ~?(y) < 0 
(resp. < O) for any y > 0 is that A -  B + C > 0 (resp. > 0). 

2) / f p >  4, then A -  B + C > 0 (resp. > O) for b > a~22 (resp. > 2 ) and for 
0 < b < bo (resp. < bo) where bo < ~2 2 is a positive root of the cubic equation in b, 
A - B + C = O .  

PROOF. The first part of the lemma follows immediately upon using the alternative 
representation 

1 (2A a + A~-~ a2 } ~ ] ( y ) = - b  ( A - B + C ) ( y + a ) 2  - B ) ( y _ ~ a )  3 +a)4  . 
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A straightforward calculation shows that,  for p > 4, the cubic equation (in b), 
f (b)  = A - B + C  = 0, has the following properties: a) f ( ~ )  = 0, b) f(0) > 0, 

c) f,:p-2~ 2 : > 0 and d) fro(b) = 24 > 0. This implies that  there is one negative root and 

two positive roots b0 and ~ of which p-2 is the larger. Hence f (b)  > 0 for 0 < b < b0 2 
and for b > p-2 [] 

- -  2 " 

Comment  5. The above re-expression for ~?(y) was kindly pointed out by a referee. 
The referee also raises the possibility that  EIrl(y)] < 0 for a range of positive values of a 
for values of b > a ~ .  This seems plausible but does not appear to follow directly from 
our method of proof. 

Example 3. We continue with Example 1 when a = 0. In this case, Lemma 3.2 
implies that r/(y) < 0 for 0 < b < bo and b > - ~  when p > 4. Further, the finiteness 
conditions stated prior to Theorem 2.1 require Ea[]]X]1-4] < cx~ which holds when p > 4. 
Hence, under these conditions, 54 dominates 5m (and qom dominates X for 2P~ _< b < 
p-2). 

p-2 However note that  5m dominates 5~ and also ~,~ dominates X for bo < b < 2 �9 
Also note that  the risks of 5m and 5~ coincide when b = p-2 and when b = bo; actually 

2 

5,~ and 5u coincide when b = ~ but not when b = bo. 

We now consider the prior distribution in Example 2 but for the case a = 0. This 
is perhaps the most striking of our examples since it gives a class of priors for which the 
generalized Bayes estimator of 0 is minimax and admissible but for which the unbiased 
estimator of risk 5u dominates the generalized Bayes estimator 5m. Hence ~r(0) provides 
an admissible and minimax estimator of 0 but an inadmissible estimator of loss. 

Example 4. Consider 7r(0) = (110@) b. By the calculations in Lemma 3.2 and Ex- 

ample 3, the conditions of Corollary 2.3 are satisfied provided b > 2P-~. We also require 
that b < p in order that zr is locally integrable in a neighborhood of the origin (otherwise 
m will not exist). It follows that, if a_~ < b < p, the generalized Bayes estimator 5m 2 
is inadmissible and is dominated by the unbiased estimator of risk 5u. We show below 
however that for ~ < b < ~-~ + __2_=2__ the generalized Bayes estimator of O, ~m, is 2 2(p+l) 
admissible and minimax. 

It is easily seen that  7r has a representation as a hierarchical prior where the first 
stage of the prior is the conjugate prior 0 f v ,-~ Af(0, v - l I )  and where v has "density" 
proportional to v -a for a = p - b + 1. A standard calculation shows that the generalized 
Bayes estimator of 0, Urn, is given by 

Q fd uP/2--a+I (i -- ~)a-2e-uI]XH2/2du~ 

By Theorems 2.3 and 2:4 of Maruyama (1998), qom is admissible and minimax 
3(e+2) provided 3 - ~ < a _< 2 and a - 2 >_ - ( a  + ~ - 3) /p or equivalently 2(e+1) <- a _< 2. 

In terms of b (= ~ - a + 1) this calculation becomes ~ 2  < b < p-22 + ~2(p+1) as stated 
above. 

- -  - -  p--2 Hence if a~2 < b < ~ + ~ ,  ~Om is admissible and minimax as an estimator of 
0 while 54 dominates 5m as an estimator of loss. 
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4. General inadmissibility results for 5~ 

The results of this section are of the form: if re(x) >_ h(x) for all x, where h is in 
some class, then 5m is inadmissible as an est imator  of loss and we give an explicit class 
of dominat ing estimators.  The main result is given by the following theorem. 

THEOREM 4.1. Let g(x) be a strictly positive function on R p such that either 
Ag(x)  < 0 or Ag(x)  > 0 for all x C ~P and such that ~ r~Ag(X)~2~ ~ot~ 9---(X Y) I < oo. Assume 

that re(x) > K 1a9(z)lg2(x) for all x and for some K > 0 and that Ko = infxeR. m(x)~9 (x) 
(which is also the supremum of such K).  

Then 5,~ is inadmissible and a class of dominating estimators is given by 

5re(x) = c~ sgn(Ag(x))  m~x )) for 0 < a < 2K0. 

PROOF. We give the proof  only for Ag < 0 the case Ag > 0 being similar. We 
apply the first par t  of Corollary 2.2 with ~/(x) = - a  g(~) The sufficient dominat ion re(x)" 
condition becomes 

(4.1) 2c~Ag(x) + (~ 2g2(x) < O. 
. ~ (x )  - 

92(~) 
By assumption on m and g, we have Ag(x) < - K o ~ ( ~ ) .  So the left hand side of (4.1) 
is bounded  above by 

~ - 2Ko)  < 0. 

Also the integrability condition E0[~2(X)] < c~ is satisfied since ~/2(x) = a2 g2(x) 
(~2 f Ag(x) ~2 
~oo ~ g ( x )  J �9 [ ]  

[ 1 )b By calculations essentially equivalent to those Example 5. Let gb(x) = ~ . 

leading to (3.5), we have Agb(x ) < 0 for a _> 0 and 0 < 2(b + 1) < p. Also Agb(x ) > 0 if 
a = 0 and 2(b + 1) > p. Fur thermore 

g~(x) 
IAgb(x) l 

1 1 

2b p IIxll2 a (llxl12 + a )b- l"  
- 2(b + 1)ilxjl2 + 

a) Suppose that  0 < 2(b + 1) < p and a > 0. Then 

g~(x) <_ 1 1 

IAgb(x)l 2b(p - 2(b + 1)) (tlxll 2 + a) b-1 

and ~ fr ~gb(X) ~21 1 ~0t~ gb--5~-~-) J < c~ since it is proport ional  to Eo[(lixll2+a)2] which is finite for a > 0 
or f o r a = 0 a n d p > 4 .  
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[ 1 ~b-1  Suppose tha t  re(x) is greater than  or equal to some multiple of t ~ j  or 
equivalently 

k ( 1 )  
(4.2) re(x) > 2 b ( p -  2(b + 1)) llxll ~ + a 

b - 1  

for some k > 0. The theorem implies tha t  5re(X) is inadmissible and is dominated by 

for 

og 

6re(X) -- m ( X ) ( l l X l l  + a) b 

0 < ce < 4b(p - 2(b + 1)) in f (m(x ) ( I t x l l  2 + a)b-1). 

Alternatively, if m(x) > k for 0 < c < a~A, 5m is inadmissible and the above 
- (llxll2+a)c 

gives an explicit improvement upon subst i tut ing c -  1 for b. Note tha t  the improved 
estimators shrink towards 0. 

Suppose, for example, tha t  re(x) = 1. Then (4.2) is satisfied for b _> 1. Here 
pro(X) = X and 5m(X) = p. Choosing b = 1, an improved class of estimators is given 
by p IIXl~+a for 0 < c~ < 4(p - 4). The case a = 0 is equivalent to Johnstone 's  result 
for this marginal.  

b) Suppose tha t  2(b + 1) > p > 4 and a = 0. Then  

g2(x) 1 1 

Izxgb(x)l 2b(2(b + 1) - Ilxll2(b-1) 

A development similar to the above implies tha t ,  when m(x)  is greater t han  or equal 
to some multiple of / 1 ~b-1 ~ ;  , an improved est imator is 

c~ 
 m(x) + 

m(Z)llXII 2b 

for 
0 < ~ < 4b(2(b + 1) - p) inf(m(x)l lxl l2(b-1)) .  

Note that ,  in this case, the correction term is positive and hence the est imator ex- 
pands away from 0. Note also tha t  this result only works for a --- 0 and hence applies 
to pseudo-marginals which are unbounded in a neighbourhood of 0. Since all marginals 
corresponding to a generalized prior 1r are bounded, this result can never apply to gen- 
eralized Bayes procedures but  only to pseudo-Bayes procedures. 

Suppose, for example, tha t  m(x) = (11~111) (p-2)/2. Here ~Om(X) = (1 -- ~ ) X  is 

(P-2)~ In particular,  the above applies for the James-Stein est imator and 5re(X) = p - I-[XY" 

b -  1 = a ~ ,  tha t  is, for b -- 2 ~ > p-22 . An improved est imator is given by 5m(X) + 
for 0 < ~ < 4p. This again agrees with Johnstone 's  result for James-Stein estimators. 

5. Conclusion 

In this paper, we have studied pseudo-Bayes and generalized Bayes estimators of 
loss. We have given conditions under which these estimators are inadmissible and have 
provided explicit improved estimators. 
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In a sense, the most interesting result of our investigation is that, in certain com- 
mon situations where the usual estimator, X, of 0 is dominated by a pseudo-Bayes or 
generalized Bayes estimator with respect to some "marginal" m(x), the corresponding 
"Bayes" estimator of loss 5m is dominated by the unbiased estimator of loss 5,,. 

This phenomenon may reflect a deficiency in the loss function (5 - [[~om - 0H2) 2 

of the loss estimation problem. The situation is somewhat analogous to estimation of 
a strictly convex function of 8, say for example g(O) = 02, under quadratic loss. The 
following simple result concerning estimation of the square of a location parameter in 
R 1 indicates a general problem with squared error in this setting. 

L E M M A  5.1. Suppose X E ]~1 ~ , ~  f ( ( X  - 0)2). Consider estimation of 82 under 
loss ( 5 -  82) 2. Then the generalized Bayes estimator 6~ of O 2 with respect to the uniform 
prior 7r(O) - 1 is inadmissible for any f( .)  such that Eo[X 4] < oz and is dominated by 
the unbiased estimator 5u = X 2 - Eo[X2]. 

PROOF. The generalized Bayes estimator of 82 is given by 

f 02f ( (X - O)2)dO = X 2 Eo[X2]. 
5 (x) = 7 i--((-2-- + 

Since this estimator has constant bias 2Eo[X2], it is dominated by the unbiased 
estimator X 2 - Eo[X 2] (the risk difference is (Eo[X2])2). [] 

The phenomenon of inadmissibility of the generalized Bayes estimator with respect 
to the uniform distribution extends easily to the case of a strictly convex (or concave) 
function g(O) with a positive lower bound on Ig"(0) l. The uniform prior in one dimension 
is virtually universally accepted as the correct non-informative or reference prior for 8. 
It seems that the loss function in this basic problem as well as in the loss estimation 
problem is at the heart of the somewhat paradoxical nature of the result. 

Another interesting aspect of the loss estimation problem studied in this paper is 
the domination of the unbiased (and pseudo-Bayes) estimator of loss of the James-Stein 
estimator by an estimator that adjusts away from 0 i.e. expands 6u. We have indicated 
that this phenomenon seems to be connected with the singularity of the pseudo-marginal 
at 0 = 0 .  

It seems that the unbiased estimation of risk technique cannot provide improved 
estimators that always "expand away from 0" if the marginal is non-singular at 0 = 0 
(e.g. (IIXH 2 +a) -b for a > 0). In fact, Fourdrinier and Wells (1995), in a slightly different 
context (general spherically symmetric distributions in the presence of a residual vector 
U of dimension k), have shown that shrinkage towards 0 improves on the unbiased 

estimator of loss of the James-Stein estimator (1 - (P-2)IIUII2)X. (k+2)llXl[ 2 
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Appendix 

We first recall Stein's lemma and derive several useful expressions which follow upon 
repeated applications of it. 

LEMMA A.1. (Stein (1981)) For any weakly differentiable function 9 from R p into 
IRp, we have 

(A.1) Eo[(X - 0) .  9(X)] = E0[div 9(X)] 

provided these expectations exist. 

LEMMA A.2. (Stein (1981) and see also Johnstone (1988)) For any twice weakly 
differentiable function g from ]R p into ]~1, we have 

(A.2) Eo[II x - OII2g(X)] = Eo[Ag(X)  + pg(X)] 

provided these expectations exist. 

PROOF. It follows from (A.1) applied to ( X  - O)g(X). [] 

LEMMA A.3. For any twice weakly differentiable function 9 and h from R p into 
]Rp we have 

(A.3) Eo[(X - 0). 9(X) • (X - 0). h(X)] 

= Eo [g(X).  h(X) + div g(X) div h(X) + 9(X)" V(div h(X)) 

+ h(X) .  V(divg(X))  + tr(Jg(X)Jh(X))] 

provided these expectations exist. Here Jg(X)  and tr denote respectively the Jacobian 
matrix of g and the trace. 

PROOF. We have 

Eo[(X - 0 ) . g ( X )  x (X - 0). h(X)] 

= Eo[div([(X - 0) .  h(X)]g(X))] 
= Eo[(X - 0). h (X)d ivg(X)  + V[(X - 0) .  h(X)]-  g(X)] 

= Eo [div h(X) div g(X) + V(div g(X)) ,  h(X) 

+ h(X) .  9(X) + (J~(X)(X - 0)) .  9(X)] 

= E0[div h(X) divg(X)  + V(divg(X))  �9 h(X) 

+ h (X) .g (X )  + ( X -  0). (Jh(X)g(X)) ] 

= Eo [h(X) �9 9(X) + div h(X) div g(X) + V(div 9(X)) .  h(X) + div(Jh(X)9(X)) ]. 

As we have 

d i v ( J h ( X ) g ( X ) )  = V(div h ( X ) )  . 9 (X)  + t r ( J h ( X ) J g ( X ) )  

this is the desired result. [] 
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COROLLARY A.1. For any twice weakly differentiable funct ion g f rom IRP into tRP, 
we have 

(A.4) Eo[((x - o). g (x) )  2] 

= Eo[ l lg(X) l l  2 + 2 g ( X ) .  V(divg(X))  + (div g(X)) 2 + tr(J2(X))] 

provided these expectations exists. Furthermore, i f  g is three times weakly differentiable, 
then 

(A.5) Eo[llX - 0112(X - 0) .  g(X)] = Eo[(p + 2) d ivg(X ) +/X(div g(X))l .  

PROOF. Formula (A.4) follows from Lemma A.3 for h = f while formula (A.5) 
follows with h ( X )  = X - 0 and upon an additional application of Lemma A.1. [] 

We now use these lemmas to prove Theorem 2.1. 

Pr~OOF OF THEOREM 2.1. The risk re(O, X + g ( X ) ,  p + ) ~ ( X ) )  of the loss estimator 
p + A(X) of the loss IJX + 9 ( X )  - 0112 is given by 

Eof(p + ) , ( x )  - IlK + g ( X )  - 0112) 2] = E o [ A ( X )  + B ( X )  + C ( X ) ]  

where 

and 

A ( X )  = Eo[(p  + A ( X )  - IIg(X)l12)2], 
B ( X )  = E o [ ( l l S  - 0112 + 2(X - 0) .  g(X))2l 

c ( x )  = -2Eo[(p + ~ ( X )  - I I g ( X ) l l 2 ) ( l l X  - 0112 + 2(X - 0). g ( / ) ) ] .  

Expanding B ( X )  and using Corollary A.1 give 

B ( X )  = p(p + 2) + 4Eo[( ( X  - 0 ) .  9(X)) 2] + 4Eo[IIX - Ol?(X - o).  g(x)]  

= p ( p  + 2) + 4Eo[ l lg(X)[ I  2 + 2g(X) �9 V(divg(X))  + (divg(X))  2 + t r (a2(x)) ]  

+ 4Eo[(p + 2) div g(X) + A(div g(X)]. 

Also, using Lemmas A.1 and A.2, C ( X )  becomes 

c ( x )  = -2Eo  [ZX(p + ,X(X) - IIg(X)II 2) + p(p  + ,~(X) - [[g(X)17)1 
- 4Eo[div((p + )~(X) - I I g ( X ) l l 2 ) g ( X ) ) ]  

= - 2Eo[A()~(X) - IIg(X)l[ 2) + p(p + ,~(x)  - IIg(X)ll2)] 

- 4Eo[(p + )~(X) - 119(X)l[ 2) div g(X) + V(,~(X) - IIg(X)ll2)- g(x)] .  

Expanding A ( X )  and gathering all the terms give 

74(0, X + g ( X ) , p  + ~ ( X ) )  

= 2p + EofA~(X)  + flg(x)lr 4 + 4rrg(x)l? 

- 2 :~(X) l lg (X) l l  2 + 8g(X) .  V(d ivg(X) )  + 4(divg(X)) 2 

+ 4 t r ( Jg (X))  + 8 d ivg(X)  + 4A(divg(X))  
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- 2A(&(X))  + 2A(l lg(X)l l  2) - 4A(X)  div g ( X )  

+ 41 lg(X) l l  2 div g ( X )  - 4 V ( A ( X ) ) .  g (X)  + 4 V ( l l g ( X ) l l 2 )  �9 g(X)]  

= 2p + Eo[([]g(X)[[ 2 + 2 d i v g ( X )  - A(X))  2 

+ 4 g ( X ) .  V([[g(X)][ 2 + 2 d i v g ( X )  - A(X))  

+ 2A([[g(X)[[ 2 + 2d iv  g ( X )  - A(X))  

+ 4(llg(X)ll 2 

+ 2 d i v g ( X )  + tr (J~(X)) ) ] .  [] 
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