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A b s t r a c t .  We define the bivariate first order s tat ionary autoregressive process 
{(Xn, Yn)} with uniform marginal distribution where {X,~} and {Y,~} are the two 
stationary sequences with uniform b/(0, 1) marginal distributions. We also estimate 
the unknown parameters of the model. 
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1. Introduction 

The uniform autoregressive processes belong to the special class of autoregressive 
processes. Their marginal distributions are absolutely continuous/~(0, 1). Some well 
defined processes of this type are the uniform autoregressive process with positive au- 
tocorrelations (Chernick (1981)), the first order uniform autoregressive process with 
negative lag one correlations (Chernick and Davis (1982)) and the new uniform first 
order autoregressive process NUAR(1) (Risti5 and Popovi6 (2000a)). Lawrance (1992) 
discussed the uniform autoregressive process of the first order in general. The unknown 
parameters of these processes were estimated by Risti6 and Popovi5 (2000a, 2000b). We 
define here a bivariate process from the same class. Section 2 of this paper is devoted to 
the definition itself. The autocovariance and the autocorrelation structure are expanded 
in this section also. In Section 3 we prove the existence and the properties of the so- 
lution of the difference equation which defines the model. Estimations of parameters is 
discussed in Section 4. 

2. The construction of the process 

Following the definition of the bivariate autoregressive process with exponential 
marginal distribution presented by Dewald et al. (1989), we set the definition of the 
bivariate first order uniformly distributed process. 

Let the two stationary processes {Am} and {Yn} be defined as 

(2.1) 
Xn = Unl X n - 1  -]- T~TnlYn-I -[- gnl ,  

Yn = Un2Xn-1  -~- Vn2Yn-I -'[- s 

where {(Un~, Vni)), i = 1, 2, are independent sequences of independent identically dis- 
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tributed (i.i.d.) random vectors with the discrete probability distribution: 

0 0 

ai ~ 0 

The sequences {e~ } and {en2} are independent sequences of i.i.d, random variables 
with the probability distributions 

P{eni  = ji(oq - fli) - fli} = c~i - fli; 

where 1 ~ ( o h -  fli) �9 {2,3, . . .} ,  i =  1,2. 

ji = 0 , 1 , . . . , - -  1, 
O~i - -  f l i  

The random vectors (U~i, V~i), i = 1, 2 and (r e~2) are also independent. 
If we let the random variables X,~-I and Yn-1 be uniformly distributed with H(0, 1) 

probability distributions, then the random variables Xn and Yn will be distributed in 
the same way. So, we have just defined the first order autoregressive time series { Z n }  = 
{ (Xn ,  Yn) '}  which we have named BUAR(1) process. 

The equation (2.1) can be represented in the vector form: 

= ( C n l  , g n 2 )  ! and 

(2.2) 
where ~n 

Z n  = M n Z n - 1  + r 

Unl G1) 
M . =  U~2 Vn2 " 

The equations (2.1) enable us to determine the autocovariance and the autocorre- 
lation matrix as follows: 

r(k) -- Cov(Z~, zn_~) = (Txx(k) ~x.(k) ) 
\ w x ( k )  w~(k) ' 

where 7 x x ( k )  = C o v ( X n , X n - k ) ,  7 x y ( k )  = Cov(Xn, Yn-k ) ,  7 y x ( k )  = C o v ( Y n , X n - k )  
and 7 y y ( k )  = Cov(Yn, Yn-k). We shall set ui = E(Uni) ,  vi = E(Vni) ,  i = 1, 2, and let 
M be the matrix 

M = ( U l V l ) .  
U2 V2 

The simple calculation proves that 

(2.3) r(k) = M .  r(k - 1) = M k r ( 0 ) ,  

where the autocovariance matrix F(0) is defined as 

1( 1 ) 1--UlV2--U2Vl 
F(0) = i-2 ulu2+vl,2 1 " 

1 --Ul"U2--U2"OI 

Let us solve the M k. If we use Caley-Hamilton theorem, it follows that M 2 = (Ul + 
v 2 ) M  + (u2vl - u lv2) I2 ,  where 12 is the 2-by-2 identity matrix. So, by induction, it 
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will be M k = a k M  + bkI2, where the coefficients ak and bk, k = 2, 3 , . . . ,  are defined 
according to the recurrent relations ak+l = aka2 + bk and bk+l -=- akb2 with the initial 
conditions a0 = 0, bo = 1, al = 1, bl = 0, a2 = Ul+V2, b2 = u2vl -UlV2. These recurrent 
relations produce the difference equation ak+2 - a2ak+l -- b2ak =- 0, where k > 2. This 
difference equation can easily be computed using the method described by Brockwell and 
Davis ((1987), Section 3.6). If the equation A 2 - a2A - b2 = 0 corresponding to the last 
difference equation has two different roots, real or complex, A1 and A2, then the solution 
of the difference equation is 

~1 ~ - ~ 
a k  - -  A1 _ A 2 "  

The other coefficient bk is then 

The matrix M k is then 

b k ~- - ,~1 .~2  �9 "~1 k - 1  - -  )~2 k - 1  

~1 -- ~2 

M k  - 1 ~(Ul- "~2))~1 k - [ - ( ) ~ 1 -  l t l ) ' ~2  k 721()~1 k - -  '~2 k)  

~ A~ \ ~ ( ~  - ~ )  (v2 - ~2)~1 k + (~1 - v ~ ) ~  ) 

Two real and equal solutions of the equation imply that 

M k  = ( (k + l)Akl - V2kAkl-1 vlkA~ -1 ) 
u2kA~ -1 (k + 1)A~-u ,kA~ -1 " 

The eigenvalues of the matrix M are less than 1 in absolute value, so, the eigenvalues of 
M k are also less than 1 in absolute value. One consequence will be that the matrix M k 
converge to zero matrix when k ~ c~. The autocorrelation matrix of BUAR(1) will be 

R(k) = Corr(Xn,  X n - k )  = MkR(O),  

where R(0) -- 12r(0). 

Example 1. Let parameters' values be a l  = 0.4, ~1 = -0.1,  (~2 = 0.35 and ~2 = 
-0.15. Then the autocovariance and the autocorrelation matrix will be 

~ 0.0833 0.0648 ) 
r(o)  = \ ~ 1 7 6  0.0833 ' 

while the matrix of expectations M will be 

1 

0.778 

M =  ( 0.32 - 0 . 0 2 ) .  

0.245 -0.045 

The scatter diagram of 100 simulated values is plotted in Fig. 1. 
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Fig.  1. S c a t t e r  p lo t  u s i n g  a s i m u l a t e d  s e q u e n c e  of  100 va lues .  

3. Well defined process 

The main result is that the process is well defined meaning that the solution of (2.2) 
exists. Let us set the equation again: 

Zn = M n Z n - 1  -br 

We will search for the mean square solution of this equation. 
Nicholls and Quinn (1982) have considered the process { Tn} defined as 

T,, = M n  Tn-1 + r/,,, 

where the processes { M n }  and {r/n} are independent and E(M,~) = O, E(r/r,) -=- 0 
for all n. The process which we have just defined above can be translated by Tn = 
Z,~ - 1/2(1, 1) I. In this way, the expectations will become zeros, but  the independence 
of the sequences will be disturbed. So, Theorem 2.2 from Nicholls and Quinn ((1982), 
p. 21) can't be applied directly. The same is with two theorems (3.1 and 3.2) set by 
Andel (1991). 

By applying the backward shift operator to equation (2.2) we have 

k 

Zn -= Q k Z n - k - 1  -[- E QJ - l r  
j = 0  

= l-It=0 M n - r  and Q-1 = I2. We will prove immediately that the right side where Q j J 
of the equation 

k 

Zn - E QJ - l r  = Q k Z n - k - 1  
j=O 

converges in mean square to the zero matrix. 
As 

k 

vecE Zn -- ~ Qj-l~n-~ = A k+lvecr(o),  
j=O 
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where A = E ( M ~  | M n )  and the eigenvalues of the matr ix  A are less than  one in 
modulus, it will be (2.2) has the mean square solution 

o o  

(3.1) Wn---- E QJ -l~n-j" 
j=0  

The solution is strictly s ta t ionary  for, it is of the same form for each n. If we set 
9~n be a-field generated by the set { ( M m , e m ) , m  <_ n}, then  it can be seen tha t  the 
solution (3.1) is ~n-measurable.  As the solution is :Pn-measurable on the ergodic set 
{ ( M m , e m ) , m  < n}, it will be ergodic also (Doob (1953), p. 458). Finally, we shall 
prove tha t  the solution is a wide sense s ta t ionary process. 

As the eigenvalues of the matrices A, M | I2 and 12 | M are less than  one in 
modulus, it follows tha t  

vec Var (W~)  = (14 - A) - l I ( I 4  - M | I2) -1 - I4] vec(e6') 

+ (I4 - A)- I  [(I4 - 12 | M )  -1 - I4] vec(se ')  

+ (I4 - A) -1 vec Var(en), 

where e = E(en) .  The components  of the vector v e c V a r ( W n )  are all finite, so tha t  
the elements of the vector V a r ( W n )  are finite also. This proves the s ta t ionar i ty  of the 
solution. 

This solution is also unique almost surely. 
We have just  proved the following theorem: 

THEOREM 3.1. The mean square solution of the equation (2.2) is unique, ~n-  
measurable, strictly, ergodic and also wide sense stationary, ergodic and its explicit form 
is 

= I]r=o M n - r .  where Q j J 

W n  ~-- 

o o  

E QJ -len-j, 
j=0  

4. Estimation of the unknown parameters 

Consistent estimates of the parameters  of the model are obtained from the definition 
of the model itself. If we have the sample (X0, X 1 , . . . ,  X N )  from the only one realization 
of the process, we can use the fact 

# l ( Y n - 1  - 1) <_ X,~ <_ C~I(Xn--1 -- 1) + 1, 

•2(Yn-1 - 1) ~ Yn ~- OL2(Xn--1 -- 1) + 1, 

and conclude tha t  

&iN = min : X n - - 1  } 
l<n<g [.Xn_l - 1 ' 

&2N = min : Yn_-i } 
l<n<N [.X~_I - 1 ' 

~iN---- max < xn } 
I<n<N Y~---,--- 1 

l<n<N Yn--~-- 1 " 
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Now, we shall prove that  the obtained estimates are consistent. Let GIN(X) = P{C~lW >_ 
x} be the survival function of the estimate C~lN. After some simple calculations, we 
obtain that  

and 

G1N(X) z 1, for x < c~;, 

GIN(X)  ~__ (1 - o11) N-1  ~ 0, N --~ cxD, for x > Ct  1 . 

This implies that  

i, x <_ oq, 
G i N ( x )  a , ( x )  = 0, x > 

and it means that  OL1N converges in probability to c~1. In the quite same way we can 
prove the consistency of all three other estimates. This completes the proof for the 
consistency of the proposed estimates. 

This method gives the exact values of the parameters for relatively small number of 
observations (N -- 17 for Example 1). In fact, the exact values of the parameters can be 
obtained after a random number of observations for the model. The same results were 
obtained by Gaver and Lewis (1980) when the first-order autoregressive gamma process 
had been discussed. 
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