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A b s t r a c t .  Empirical likelihood (EL) was first applied to quantiles by Chen and 
Hall (1993, Ann. Statist., 21, 1166-1181). In this paper, we shall propose an alterna- 
tive EL approach which is also some kind of the kernel method. It not only eliminates 
the need to solve nonlinear equations, but also is extremely easy to implement. Con- 
fidence intervals derived from the proposed approach are shown, by an nonparametric 
version of Wilks' theorem, to have the same order of coverage accuracy (order l /n)  
as those of Chen and Hall. Numerical results are presented to compare our method 
with other methods. 
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worth expansion. 

1. Introduction 

Let X1, X2,..., Xn be a random sample from the unknown distribution F(x) with 
density f(x).  Given 0 < q < 1, we define the q-th quantile by F-l(q)  = inf{x : F(x) >_ 
q}. In this paper, we will construct the confidence interval for 0o = F -1 (q). 

Quantile is an important population characteristic. In some instances the quantile 
approach is feasible and useful when other approaches are out of the question. For 
example, to estimate the parameter of a Cauchy distribution, with density f (x)  = 1/7r[1+ 
(x - p)2], - o c  < x < 0% the sample mean X is not a consistent estimate of the location 
parameter #. However, the sample median 01/2 is AN(#,Tr2/4n) and thus quite well- 
behaved. 

Let Xl:n _< X2:n <_ "'" <_ X,~:n be the order statistics of the Xi's. As we know, the 
common estimator of 00 is the sample quantile 

00 = X[~ql:n, 

where [nq] is the integer part of nq. The disadvantage of the sample quantile is its 
deficiency. See Falk (1984). In order to improve its efficiency, Sheather and Matron 
(1990) proposed the kernel quantile estimators 

KQq [i/n 
= Kh(t -- q)dtXi:~, 

i=l J(i-1)/n 

where Kh(.) = h- lK( . /h)  with K a density function symmetric about 0. The asymptotic 
normality of KQq was established by Yang (1985). Therefore, one could use the kernel 
quantile estimator KQq (properly studentized) to construct a confidence interval for the 
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population quantile 00. However, the coverage of the kernel quantile estimator based 
confidence interval is not very accurate as our simulation results show. 

In the nonparametric case empirical likelihood methods are powerful techniques for 
constructing confidence intervals and tests, notably in enabling the shape of a confidence 
region determined by the sample data. Since Owen (1988, 1990) introduced empirical 
likelihood into statistics, many developments have taken place. For a review, see Owen 
(2001). When applied to quantiles, Owen's method yields the so-called binomial method 
confidence intervals. However, because of the discreteness of the binomial distribution, 
the size of coverage error is of order 0(n-1/2). In order to improve the accuracy, it is 
natural to use smoothing methods. Chen and Hall (1993) first applied the method of 
smoothed empirical likelihood to sample quantiles and obtained very accurate results. 
But their method involves solving a system of nonlinear equations. Adimari (1998) 
presented a new version of the empirical log-likelihood ratio function for the quantiles 
which also yielded good results. For other works on application of EL for smoothing 
problems, we refer to Chert (1996, 1997). 

The rest of this paper is arranged as follows. In Section 2, we propose a new version 
of the empirical likelihood method to quantiles. Based on the asymptotic chisquare 
distribution of the log-empirical likelihood ratio, we construct confidence intervals for 
the quantiles. We do some simulations in Section 3 in order to compare all kinds of 
methods numerically. The proof is deferred to Section 4. 

2. Methodology and main results 

(2.1) 

with 

We know that 00 coincides with the M-estimates defined by the equation 

~ r  O)dF(x) = O, 
o o  

- 1  if z < 0 ,  
r  q / ( 1 - q )  if z > 0 .  

The empirical likelihood ratio for 0o is 

(2.2) R(Oo) = 

subject to 

(2.3) Pi -> 0, i = 1 , . . . , n ,  

Prom (2.2), we have 

(2.4) log n(Oo) = 

n 

sup H(npi) ,  
P l , . . . , P n  i=1 

n 

i = l  

- -1 ,  
n 

- 0 o )  = 0 

i=1 

sup ~__,logp~ + n logn ,  
Pl ,...,p,, i=1 

where Pi, i = 1 , . . . ,  n satisfy the constraint (2.3). The method of Lagrange multiplier 
may be used to maximize }-]i~1 logpi subject to the constraint (2.3). Arguing this, we 
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may prove tha t  the maximizat ion point occurs with 

1 1 
( 2 . 5 )  = - 

n 1 + A(Oo)r - 0o)' 

where A(Oo) satisfies the equation 

(2.6) -1 ~ r - 0o) 
n ~ 1 + A(Oo)O(Xi - 0o) 

When 00 e [Xl:n , Xn:n] , the solution A(00) of (2.6) is 

A(Oo) = (q -- Fn(Oo))/q, 

i = l , . . . , n ,  

= 0 .  

= 2n(F~(Oo) log Fn(O~ + ( 1 -  Fn(Oo))log 1 -Fn(O~  
--T- i -q 

The above formula also appeared in Adimari  (1998). From (2.7) log R(00) is a step 
function with jumps at the observed values. The fact tha t  logR(00) can take only a 
finite number values makes the X 2 approximation not very accurate. It is reasonable to 
replace Fn(') by some smoothed version of the empirical distribution. 

Let the bandwidth  be h = hn > 0. Suppose h ~ 0 as n --* oz. Choose some 
Borel measurable function K(x) as the kernel and define G(t) = f t _ g ( x ) d x .  So the 
smoothed empiricM distr ibution is 

( 2 . 8 )  #n(X) : 1 ~ G  ( x - x i )  
n i=1 h 

We propose to use [;n(Oo) in (2.7) instead of Fn(Oo). Thus the adjusted log-empirical 
likelihood ratio is 

(2.9) [(0o) = 2n (Fn(00)log/wn(00) + ( 1 -  Fn(Oo))log 1 -  Fn(Oo)) 
q i - - q  �9 

Clearly, our [(0o) has a closed form, while Chen and Hall's version is implicitly deter- 
mined by a nonlinear equation. In order to state our theorem, we give some regularity 
conditions. 

(i) Let f (x)  = F'(x). For some integer r > 2, f and f(r -1)  exist in a 
neighborhood of 00, and are continuous at 00. Also f(Oo) > O. 

(ii) The kernel K( . )  is bounded and has a compact  support  [a, b]. For some 
decomposition, a = u0 < ul < - . .  < u m =  b, K(.)  is either strictly posi- 
tive or strictly negative on each interval (uj-1 ,  uj), where j = 1 , . . . ,  m. 
Also suppose 

f uK(u)a(u)du = O, 

1, j = 0 ,  
uJK(u)du = O, <_ j <_ rl - 1, 1 

C, j ----- r l ,  

n where Fn is the empirical distr ibution function given by Fn(x) = • }-]~=1 I{Xi  < x}, n 
with I{.} being the indicator function. Hence the log-empirical likelihood ratio is 

(2.7) l(Oo) = - 2  log R(Oo) 
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where C is some finite constant and rl is some integer greater than or 
equal to r. 

(iii) n h / l o g  n ---+ oc, nh 2 is bounded as n --~ oc. 
Let us give some remarks about the conditions. The first requires that  the distribu- 

tion function F be sufficiently smooth in a neighborhood of 00. That  f(80) > 0 guaran- 
tees the asymptotic variance of the sample quantile is of order n -1 . Without that  assump- 
tion, the asymptotic theory is quite different. We refer to Feldman and Tucker (1966). 
The second condition specifies that K(.) is different from the commonly used kernel in 

nonparametric density estimation. For example, K(u)  = { ~ u  2 + -3+~v~ }I([u] <_ 
1) satisfies condition (ii) with rl = 2. Finally, condition (iii) implies that  the bandwidth 
h does not converge to zero too fast or too slowly. 

THEOREM 2.1. Let [(0o) be defined by (2.9). Assume that conditions (i)-(iii) hold. 
Then we have as n ~ oo, 

P([(Oo) <_ x) - P(X~ <- x) = O(71, -1 )  

for  each fixed x. 

We postpone the proof of Theorem 2.1 to Section 4. 
By Theorem 2.1, we have 

lim P{Oo e Ihc} = P(X  2 <_ c), 
n ---+ O 0  

where Ihc = {0 : [(0) <_ c}. If c is chosen to satisfy P(X~ -< c) = a, then the coverage 
probability of the interval Ih~ will approximate a with error O(n -1) as n --+ oo. Also 
note that  our result is not uniform in x. 

3. Simulation results 

A Monte Carlo study was conducted to investigate the coverage accuracy of empiri- 
cal likelihood confidence interval. We generated 10,000 pseudo random samples of various 
sizes from standard normal, exponential and chi-square with degree 1 respectively. The 
kernel function K has been chosen to be K(u)  = { 21-9'/7iu2+ - a + ~ } I ( l u  I < 1), which 

satisfies condition (ii) with r = 2. And we employed bandwidths h = n -1/2, n -3/4, n -1, 
where h = n -1/2 satisfies condition (iii). 

Also shown in Tables 1-6 are smoothed empirical likelihood method (SELM) pro- 
posed by Chen and Hall (1993) and Bartlett  adjusted SELM (BSELM) respectively. In 
this case, we use K(u)  = 15 _ _  n-3/4. ~ (1  -- u2)2I(lu] < 1), and h = Adimari's result (1998) 
is included too for comparison. 

Confidence intervals by the normal approximation method, denoted by S.M. in 
Tables 1-6, can be obtained as follows. From Yang (1985), we know 

nl /2 (KQq - Oo) --+L N(O, or2), 

where 

( 3 . 1 )  _ p ( 1  - 
f 2 ( O o )  �9 
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T a b l e  1. 

q = 0.5. (N(0, 1)) 
n o m i n a l l e v e l  0.8 0.9 0.95 0.99 

n = 2 0  h = n  - ~  0.789 0.894 0.949 0.986 

h = n  - ~  0.773 0.891 0.953 0.986 

h = n - 1  0.756 0.888 0.955 0.985 

S E L M  0.769 0.886 0.948 0.984 

B S E L M  0.773 0.888 0.950 0.985 

A d i m a r i  0.808 0.913 0.925 0.989 

S.M. 0.843 0.927 0.967 0.994 

n =  50 h = n  - ~  0.802 0.897 0.951 0.989 

h = n  - ~  0.801 0.892 0.946 0.989 

h = n - 1  0.799 0.887 0.942 0.990 

S E L M  0.796 0.892 0.947 0.990 

B S E L M  0.798 0.894 0.947 0.990 

A d i m a r i  0.794 0.905 0.950 0.988 

S.M. 0.827 0.921 0.962 0.991 

n = 100 h -- n - ~  0.802 0.901 0.950 0.989 

h = n - 0 7 5  0.804 0.903 0.951 0.987 

h -- n - 1  0.807 0.909 0.949 0.987 

S E L M  0.801 0.902 0.950 0.988 

B S E L M  0.802 0.902 0.950 0.988 

A d i m a r i  0.763 0.886 0.951 0.991 

S.M. 0.819 0.912 0.959 0.992 
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A consistent estimator of a 2, &2, can be obtained by replacing f(00) in the above formula 
by their empirical versions (or smoothed ones when appropriate). Thus, a two-sided 
confidence interval based on the normal approximations can be taken to be 

rl (N)  
= (KQ  - + 

where Zl_c~ is the 1 - a quantile of a standard normal distribution. For simplicity, in 
our simulation studies conducted here, we employ the true value of a 2 rather than its 
consistent estimator &2. We did this since it is reasonable to expect that  the latter will 
not usually outperform the former. We also use the biquadratic kernel in the cMculation 
of KQq. The bandwidth is selected to be h = n -1/2. 

We make the following observations from the numerical studies. 
(1) Our method is more accurate almost everywhere than SELM. And it is 
very competitive with BSELM and Admirani's result, even in small samples. 
(2) The new method is robust with respect to bandwidth selections. 
(3) Compared with SELM, the adjusted empirical method is very efficient in 
the computation. For example, when n = 20, F = N(0, 1), the time needed 
to get the first four numbers (0.7895, 0.8941, 0.9496, 0.9869) is less than 10 
seconds when we run C-program in Sun microsystems. But the time needed 
to get the corresponding four numbers of SELM is more than 4 minutes. 
(4) In many cases, we find that  BSELM is not better than SELM. Even 
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Table 2. 

q = 0.5. (e - x )  

nominal level 0.8 0.9 0.95 0.99 

n = 20 h = n - ~  0.792 0.898 0.948 0.987 

h = n -~  0.778 0.894 0.953 0.986 

h = n -1 0.759 0.890 0.957 0.986 

SELM 0.776 0.890 0.950 0.985 

BSELM 0.782 0.893 0.950 0.986 

Adimari 0.813 0.892 0.948 0.986 

S.M. 0.841 0.921 0.955 0.985 

n = 5 0  

n = 100 

h = n - ~  0.798 0.901 0.952 0.990 

h = n -0"75 0.796 0.895 0.949 0.990 

h = n -1 0.795 0.889 0.945 0.991 

SELM 0.793 0.895 0.950 0.991 

BSELM 0.794 0.896 0.951 0.991 

S.M. 0.832 0.923 0.962 0.989 

Adimari 0.794 0.911 0.952 0.989 

S.M. 0.832 0.923 0.962 0.989 

h = n -~ 0.803 0.902 0.949 0.988 

h = n -~  0.807 0.903 0.947 0.988 

h = n -1 0.811 0.908 0.943 0.987 

SELM 0.805 0.902 0.948 0.989 

BSELM 0.806 0.903 0.949 0.989 

Adimari 0.810 0.890 0.952 0.989 

S.M. 0.825 0.915 0.959 0.991 

in  some cases where  B S E L M  is b e t t e r  t h a n  SELM,  t he  i m p r o v e m e n t s  are 

very  m a r g i n a l .  If we e x a m i n e  the  s i m u l a t i o n  r e su l t s  in  C h e n  a n d  Hal l  (1993) 

carefully,  we can  see t h a t  B a r t l e t t  a d j u s t m e n t  improves  t he  o rder  of a c c u r a c y  

ins igni f icant ly .  As p o i n t e d  ou t  by  one  referee, th i s  is because  w h e n  h is smal l  

t he  B a r t l e t t  factor  is sma l l  a n d  the  en t i r e  cor rec t ion  fac tor  is very  close to  one. 

I t  is a qu i t e  c o m m o n  p h e n o m e n o n  in  s m o o t h i n g ,  as obse rved  in  C h e n  a n d  

Q i n  (2000). So B a r t l e t t  co r rec t ion  for s m o o t h i n g  p r o b l e m  m a y  no t  be  very  

effective a n d  i ts  usefu lness  is m a i n l y  a theore t i ca l  n a t u r e  as it  i nd ica t e s  t he re  

is s o m e t h i n g  de l ica te  go ing  on  w i t h  the  EL  which  resembles  a p a r a m e t r i c  

l ikel ihood.  

(5) For  smal l  s ample  size n ,  t he  ke rne l  q u a n t i l e  e s t i m a t o r  m e t h o d  seems to  

p e r f o r m  worse t h a n  the  s m o o t h e d  empi r i ca l  l ike l ihood m e t h o d s .  However ,  

t he  a d v a n t a g e  of t he  l a t t e r  m e t h o d  g r a d u a l l y  d i s a p p e a r s  w h e n  the  s a m p l e  

sizes get  large,  as one migh t  expect .  

We also do some s i m u l a t i o n  resu l t s  for q = 0.1, 0.25. T h e  conc lus ions  are the  same.  

4. Proof  of  Theorem 2.1 

Let us  first i n t r o d u c e  a few l emmas ,  which  will be  useful  in  p r ov i ng  the  m a i n  theo-  

rems.  
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Table 3. 

q = 0.75. (N(O, 1)) 

n o m i n a l l e v e l  0.8 0.9 0.95 0.99 

n = 2 0  h = n  -~  0.797 0.885 0.947 0.988 

h = n  -~ 0.802 0.881 0.948 0.991 

h = n -1  0.804 0~873 0.954 0.991 

SELM 0.788 0.877 0.953 0.994 

B S E L M  0.793 0.888 0.955 0.994 

Adimar i  0.791 0.875 0.958 0.989 

S.M. 0.844 0.931 0.967 0.993 

n = 5 0  h = n  - ~  0.800 0.901 0.949 0.988 

h = n  -~ 0.806 0.902 0.949 0.987 

h = n -1  0.809 0.901 0.950 0.987 

SELM 0.802 0.902 0.950 0.987 

B S E L M  0.804 0.903 0.951 0.987 

Adimar i  0.771 0.901 0.941 0.989 

S.M. 0.834 0.922 0.961 0.992 

n = 100 h = n -~  0.798 0.898 0.948 0.989 

h = n - ~  0.798 0.898 0.949 0.989 

h -- n - 1  0.796 0.896 0.950 0.989 

SELM 0.793 0.895 0.949 0.989 

B S E L M  0.794 0.896 0.950 0.989 

Adimar i  0.815 0.891 0.943 0.989 

S.M. 0.825 0.914 0.960 0.993 
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LEMMA 4.1. Under conditions (i) (iii), we have Ve > 0, 

sup / ~  exp{itG(u)}d~,F(Oo - hu) <_ 1 - C(e)h 
I t q > ~  

for all sufficiently small h, where C(e) > 0 and d~ means the integmnd is a function of 
U.  

PROOF. Observe  t h a t  

(4.1) I(t) :=  exp{itG(u)}d~F(Oo - hu) 
0 ( 3  

= [1  - F ( O o  - ha)]e ~t + F(Oo - h b )  + exp{ita(u)}duF(Oo - h u )  

= [1  - F ( O o  - h a ) ]  c o s  t + F ( O o  - h b )  + i [ 1  - F ( O o  - h a ) ]  s i n  t 

- hf(Oo) .~b exp{itG(u)}du 

- h f b  exp{itG(u)}[f(Oo - hu) - f(Oo)]du. 
Ja 
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Tab le  4. 

q = 0.75. (e -x )  

n o m i n a l  level  0.8 0.9 0.95 0.99 

n = 20 h = n - ~  0.801 0.885 0.950 0.990 

h = n -0"75 0.803 0.880 0.951 0.991 

h = n - 1  0.803 0.874 0.957 0.993 

S E L M  0.786 0.874 0.952 0.994 

B S E L M  0.789 0.883 0.954 0.994 

A d i m a r i  0.804 0.892 0.962 0.992 

S.M. 0.842 0.916 0.954 0.985 

n =  50 

n = 100 

h = n - ~  0.804 0.902 0.950 0.990 

h = n - ~  0.809 0.902 0.951 0.989 

h = n - 1  0.812 0.903 0.952 0.989 

S E L M  0.807 0.903 0.953 0.990 

B S E L M  0.808 0.904 0.954 0.990 

A d i m a r i  0.807 0.903 0.946 0.991 

S.M. 0.830 0.922 0.961 0.990 

h = n -~  0.806 0.902 0.951 0.989 

h = n - ~  0.806 0.901 0.951 0.989 

h = n - 1  0.805 0.898 0.952 0.989 

S E L M  0.803 0.898 0.952 0.989 

B S E L M  0.803 0.900 0.952 0.989 

A d i m a r i  0.806 0.896 0.948 0.989 

S.M. 0.828 0.917 0.959 0.991 

We shall show shortly tha t  the conditions imposed on K imply that  for each c > 0, there 
exists c' > 0 such that  

f (4 .2 )  s u p  (b - a)  - 1  exp{ita(u)}du 
[ t l>e 

Note that  for h sufficiently small, 

(4.3) 

(4.4) 

< 1 - 3~'. 

b 
a I f (O o - h u )  - f ( O o ) l d u  < ( b -  a ) f ( O o ) d ,  

111 - F(Oo - ha)] cost  + F(Oo - hb) + i[1 - F(Oo - ha)] s in t  I 

_< [1 - F(Oo - ha)]  + F(Oo - hb) 

f = 1 - h f (Oo - h u ) d u  

<_ 1 - h ( b  - a ) f ( O o ) ( 1  - e ' ) .  

Combining (4.1)-(4.4) gives 

I I ( t ) l  <_ 1 - h ( b -  a ) f ( O o ) ( 1  - ~') + h ( b -  a ) f ( O o ) ( 1  - 3e') + h ( b -  a ) f ( O o ) d  

= 1 - h ( b -  a ) f (Oo)e ' .  
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Table 5. 

q = 0.9. (N(0,  1)) 

nominal  level 0.8 0.9 0.95 0.99 

n = 20 h = n - ~  0.777 0.851 0.886 0.908 

h = n -0'75 0.769 0.842 0.873 0.893 

h = n -1  0.760 0.838 0.868 0.883 

SELM 0.872 0.954 0.995 1.000 

BSELM 0.880 0.957 0.997 1.000 

Adimar i  0.888 0.956 0.983 0.996 

S.M. 0.834 0.929 0.972 0.997 

n = 5 0  h = n - ~  0.787 0.889 0.940 0.988 

h = n - ~  0.780 0.894 0.938 0.989 

h -- n -1  0.771 0.896 0.937 0.989 

SELM 0.778 0.905 0.941 0.994 

BSELM 0.783 0.908 0.944 0.994 

Adimar i  0.798 0.895 0.940 0.991 

S.M. 0.855 0.941 0.975 0.995 

n = 100 h = n - ~  0.792 0.897 0.949 0.988 

h = n -~ 0.793 0.900 0.951 0.987 

h = n -  1 0.800 0.900 0.953 0.987 

SELM 0.796 0.896 0.950 0.987 

BSELM 0.799 0.898 0.950 0.987 

Adimar i  0.821 0.902 0.934 0.992 

S.M. 0.831 0.922 0.961 0.993 
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F i n a l l y  w e  c h e c k  (4 .2 ) .  O b s e r v e  t h a t  

~.ab m rG(u~) 
exp{itG(u)}du ---- j~l= ]G(~j_I) exp{i tu}dG-l(u) '  

w h e r e  G-l(u)  is  t h e  i n v e r s e  f u n c t i o n  o f  G ,  w h i c h  is u n i q u e l y  d e t e r m i n e d  i n  e a c h  s u b i n -  

t e r v a l  (uj-1, uj). 
f G(u~) D e f i n e  L(u) = dG- l (u) /du  = 1/K(G-I(u)) .  S o  I a ( ~ j _ ~ ) [ L ( u ) l d u l  = u ~  - U i _ l .  

T h i s  i m p l i e s  t h a t  L is i n t e g r a b l e  o n  t h e  i n t e r v a l  Ij = (aj, bj) w h o s e  e n d p o i n t s  a r e  G(uj) 
a n d  G(Uj_l). H e n c e  (4 .2 )  f o l l o w s  f r o m  R i e m a n n - L e b e s g u e ' s  l e m m a .  

D e f i n e  wj = wj(Xj)  = G ( ~ )  - q, Yj = wj - Ewj,  j = 1, . . .  , n ,  a 2 = V a r Y 1  = 

q (1  - q) + O ( h ) ,  Pr  = E [ Y I [  r ,  Xv = v - t h  c u m u l a n t  o f  Y1, ~ r  = E l ~ [  ~. 

L E M M A  4.2.  Let s > 3, there exist two positive constants C 1 ( 8 ) ,  6 2 ( 8 )  depending 
only on s, such that for all t in R satisfying 

nl/2 
Itl < 61(s) 1/(8_2), 

qs 



698 W A N G  Z H O U  A N D  B I N G - Y I  J I N G  

Table 6. 

q = 0 . 9 .  (e - x )  

nomina l  leve! 0.8 0.9 0.95 0.99 

n = 20 h = n - ~  0.776 0.853 0.883 0.903 

h = n -0"75 0.765 0.847 0.876 0.892 

h = n -1  0.757 0.845 0.875 0.886 

SELM 0.863 0.959 0.997 1.000 

BSELM 0.870 0.962 0.998 1.000 

Adimar i  0.860 0.958 0.976 0.996 

S.M. 0.864 0.960 0.990 0.999 

n = 5 0  

n = 100 

h = n - ~  0.795 0.903 0.949 0.992 

h = n -0 '75 0.784 0.908 0.949 0.993 

h ---- n - 1  0.776 0.912 0.948 0.993 

SELM 0.783 0.916 0.951 0.996 

B S E L M  0.786 0.917 0.953 0.997 

Adimar i  0.791 0.910 0.951 0.994 

S.M. 0.836 0.919 0.961 0.991 

h = n -~  0.793 0.898 0.951 0.989 

h = n -0-75 0.799 0.900 0.954 0,988 

h = n -1  0.803 0.901 0,954 0.988 

SELM 0.799 0.896 0.952 0.988 

B S E L M  0.800 0.897 0.953 0.988 

Adimar i  0.802 0.902 0.955 0.988 

S.M. 0.818 0.910 0.949 0.986 

one has for all (~, 0 < c~ < s, 

E e x p [ a v f ~  3 j ) -  E n - ~ / 2 [ ) ~ ( i a - l t ; { x ~ } )  
r = 0  

C 2 ( s )  ~Ts[itls_ a + i t[3(s_2)+a]e_t2/4 ' 
-- n (S -2 ) /2  

where  P l ( z ;  { X v } )  =  3z3 2 ,  2(z; { X v } )  =  4_4_ = 
-4T. t ~  ~ - ~  ~ 5!  - -  3 ! 4 !  ~ - -  

x~ ~9 For the general definition of tSr, see Bhattacharya and Rao (1976). - ~  . 

This is Theorem 9.10 of Bhattacharya and Rao (1976). And we follow the conven- 
tions of Bhattacharya and Rao (1976). In the following, r will denote the density 
function of the normal random variable with mean 0 and variance a s. O(x) and r 
mean the standard normal distribution and density respectively. 

LEMMA 4.3. Let Z1, . . . , Zn be a sequence of standard normal random variables in- 
dependent of X1, X 2 , . . .  , Xn,  and let qn denote the probability density of v/-nY + n-Cvfn~7 , 

n 1 n where 1) = ~ E j = I  YJ and 2 = ~ E j = I  Z j .  Then for each pair of positive integers (c~, s), 
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3co(a, s) > 0 such that for all c > Co(a, s), 

q n ( x )  s--3 
sup(1 § I~] ~) - ~ n-J/~Pj(-r {X.})(x) 
xCR j=0 

as n -* oo, where Pj(-r  {Xv}) = P j ( - D ;  {X~})r 

= 0 ( n - ( ~ - 2 ) / 2 ) ,  

PROOF. Let Qn(t) -- Ee it(v~9+n-~/-~2). For each n, D~Q~, a - th  derivative of 
Q~, is integrable for 0 _< [a[ < s. Writ ing for [a I _< s, 

s - 3  

h n ( x  ) = x ~ an(X)  - E n - J / 2 p j ( - r  ; {~v})(x)  , 
j=o 

hn(t) = ( - i ) " D "  Qn(t) - E n - J / 2 p J ( i t ;  {:~v})exp - t 2 , 
j=O 

where P j ( - r  {Xv}) = P j ( - D ;  {~})0o , ;2 ,  y2 _ _  Var(Y1 + n - c z i )  ~-- 0 .2 "4- n -2c, 
~ =- v-th cumulant  of Y1 + n-~Z1, one has (by the Fourier inversion theorem) 

(4.5) hn(x) = (27r) -1 f f  e-UZhn(t)dt. 

Define ~ -- EI~-I(Y1 + n-cZ1)[ s. By Lemma 4.2 

C2(s) ~ s [ ( ~ _ l t ) s _  ~ ~- ( ~ _ l t ) 3 ( s _ 2 ) + l a l ] e _ ( 1 / 4 ) a - l t 2  
n (S -2 ) / 2  

Itl <_ ~ - l C l ( 8 ) l t 1 / 2 ~ s 1 / ( s - 2 )  =: ann 1/2. 

Since ~2 = a2 + n-2C __ q(1 - q) + n -2c + O(h), ~s = ~5-sEIY1 + n-cZ11 s, we have tha t  
if c > 0, an is bounded away from 0 as n -~ co. Hence we can suppose if n > no and 
c > 0, an ~ ao > 0, where ao is some constant.  In view of (4.5), (4.6) and (4.7), it ig 
enough to prove 

(4.8) ~ /Itl>aoMI2) [D~Q~(t)ldt = O(n-(S-2)/2)' 

dt  = O ( n - ( S - 2 ) / 2 ) .  
(4.9) /[tl>aonl/2) k j--~ 

(4.9) is true because of the presence of the exponential  term and ~2 _.  q ( 1 - q )  as n ~ c~. 
Simple calculations show tha t  for [t[ > aon 1/2, 

(4.10) [D~Q~(t)[ 

C3(8)(Pa -~-Pa--1 -[-"""-[-F1 -[- 1)n'~/25n-<~-'lEe~t/'g-~(Y'+n-:z')[, 

(4.6) Ihn(t)] _< 

for all t satisfying 

(4.7) 
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where fir = ElY1 + n-cZl[ r, r = 1, . . . , (~,  5 = suPltl>aon~/2 [Eeit/v~(Y'+n-r 
Lemma 4.1, 

Also we have 

8 < sup 
[tl>ao 

lEe itc((~176 < 1 - C(ao)h. 

By 

J(Itl>aonm/2 [Eeit / ~ (  Y~ +n-c zo  [dt 

< f [Ee it/'J-~n-cZ~ [dt 
Ylt [>aonl/~ 

O~ltl>aont/2 e-(t2/2)n-1-2Cdt 

< v '~n l /2+  c. 

So the integral in (4.8) is domina ted  by 

C4(8)(pc~ -+- Pc~-, -~-"""-~- Pl -J- 1)na/2+1/2+c(1 - C(ao)h) u 

< C4(s)(~fi~ + "fi~-I + " "  + ~fil + 1)n~/~+l/a+Cexp(-C(ao)nh) 
= o ( ~ - o , )  

for all al > 0 since nh/log n ~ ~ .  This  completes the proof  of (4.8). So we have 

sup [hn(x)] ~- O(n-(S-2)/2). 
x 

Since ~ ,  = X, + X~, where X~ is the v- th  cumulant  of n-~Z1, we have 

X~ = X~, v > 3 ,  
~2 = (72 _~_ n-2c .  

Thus if c > ~-~, we have 

,1 ( 3 )  
sup + ~ )  q~(x) - ~ n - J / ~ P ~ ( - r  { ~ v I ) ( x )  = O(n- (~-~) /~) .  

x j=O 

This  completes the proof. 

LEMMA 4.4. Assume the conditions of Lemma 4.3. Let I3 be the class of Borel sets 
B C R that satisfy 

sup f e-O/2)~2dx = 0(~) 
BeB J (OB)" 

as e --~ 0, then for each integer s > 4, 

sop c B)  - ~ - J / ' p j ( - r  {>C,})(x)d~ = O(~-( ' -W') .  
BCI3 j=O 



EMPIRICAL LIKELIHOOD FOR QUANTILES 701 

(4.11) 

PROOF. Taking a = 2 in Lemma 4.3, we deduce tha t  for all c >_ c0(2, s), 

sup P ( v ~ f "  + v ~ n - ~ 2  �9 B) 
BC/~o 

8--3 
- Jfs E n - J / 2 p j ( - r 1 7 6 1 7 6  {XvI)(x)dx = O(n-(S-2)/2), 

j=O 

where B0 denotes Borel a-field. Pu t  5 = 5(n) = n -~/2. Now 

IP(v~17 �9 B) - P (v /~ l )  + v ~ n - ~ 2  �9 B)I 

_< IP(v~Y �9 B, [v/-~n-C21 < 5) - r ( v / ~  + v~n-C2 �9 B, Iv~n-~21 ~ ~)l 
+ I P ( v ~ ?  �9 B, Iv/-~n-~21 > 5) - P(v/-~f " + v ~ n - C 2  �9 B, Iv/-~n-C2] > 5)t 

<_ P(v/-~f " + v '~n-~2 �9 (OB) ~) + P(Iv~21 > nC/2). 
We may deduce from (4.11) tha t  if c >_ s - 2, 

sup P(v/-~f " + v/-~n-C2 �9 (OB) ~) = 0(n-(8-2)/2), 
BEt3 

and of course, P ( I v ~ 2 1  > n ~/2) = O(n -~) for all c > 0. Therefore 

sup I P ( v ~ Y  �9 B) - P ( v ~ Y  + v ~ n - ~ 2  �9 B)I = O(n-(S-2)/2). 
BCB 

Now, (4.11) implies the conclusion. 

LEMMA 4.5. Assume the conditions of Lemma 4.3. Then 

P(v/-n?/a < y) = (I)(y) - 6-~nn (y 2 - 1)r 

/' x4 , 2 )r ) 
- k-2-~nYiY - 3) + ~ n y ( y  4 - 10y 2 + 15) r  + O(tt-3/2).  

PROOF. Let t ing s = 5 in Lemma 4.4 gives the result. 

PROOF OF THEOREM 2.1. Bernstein inequality implies 

P(IF'n(Oo) - EFn(Oo)I >_ n -1/2+e) 

~2exp  ( 0 o _ X l )  ~ , 
2 Var G -~ + - m n  -1/2+~ 

where m satisfies P ( I G ( ~ - ~ )  - EG(-~- - - ) I  _ m) = 1 and e is some arbitrari ly small 
positive number.  Under conditions (i) and (ii), 

E[~n(Oo) = q + O(h 2) = q + O(n-1) ,  

V~ra(~ h = q(1 - q) + O(h). 
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Hence after neglecting a set with probabili ty O(n-2) ,  we have 

Write z - ~ . ( O o )  q 

�9 nk-oj 1 ~ 2 n  -1/:+r 
q 

�9 Taylor expansion gives 

1 - 2 q  + q2 
[(0o) = n q------~- (1 - z) + 

1 - q 2 3 ( 1  - q )  

1 . _ / ~ _ 2 -  q R 2 )  2 
= ( n + ~ g y - ~  5 

z-I  �9 Thus where R /~ ~n(Oo)-q _ _  , / ~  z-1 : :  X/rt ~ v "~v/(l_q)/q 

(1 -z) 2) 

+ O(n-1), 

(4�9 

+ O(n -1) 

1 . _/-~-~_2- q R  2 
P([(Oo) <_ x) = P R + " ~ V  1 - : q  5 + O ( n - 1 )  ~ x 

+ O(~-2)�9 

By the condit ion f ' ~  u K ( u ) G ( u ) d u  = 0, we have 

V a r G ( O ~  = q(X - q) + O(h 2) = q(X - q) + O(n-1) .  

Applying Lemma 4.5, after tedious calculations we have from (4.12) 

P([(Oo) <_ x) = P v~ _<n< v~ ) 
1 ~1 av/~ 11 av~ 1 
2+ 4 V~ 4+-~-+2 

= ~ ( v ~ )  - ~ ( - v ~ )  + o (n  -1) 
--  P ( x  2 < x )  + O ( n - 1 ) ,  

where a = l ~ _ q  23q�9 
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