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Abstract .  The article provides a refinement for the volume-corrected Laplace- 
Metropolis estimator of the marginal likelihood of DiCiccio et al. The correction 
volume of probability a in DiCiccio et al. is fixed and suggested to take the value 
a = 0.05. In this article a is selected based on an asymptotic analysis to minimize 
the mean square relative error (MSRE). This optimal choice of c~ is shown to be 
invariant under linear transformations. The invariance property leads to easy imple- 
mentation for multivariate problems. An implementation procedure is provided for 
practical use. A simulation study and a real data example are presented. 

Key words and phrases: Bayes factor, Laplace approximation, marginal probability, 
Markov chain Monte Carlo. 

1. Introduction 

Computing marginal probabilities (or normalizing constants) is an important and 
fundamental issue in Bayesian inference. For simple cases such that  the likelihood p(y I 6) 
and the prior p(O) are analytically tractable, the integration f p(y I O)p(O)dO, namely the 
normalizing constant, can be evaluated. For complex models, the integration may not 
be analytically feasible and various approximations can be applied. Similar difficulty 
in computation may also be present when evaluating Bayes factor is of interest. The 
computation can be even more complex when other integrations are required to derive 
the likelihood, such as the case of hierarchical models. One of the asymptotic approxi- 
,nations to the above integral is Laplace's method (see, for instance, Erkanli (1994); Kass 
et al. (1990); Kass and Vaidyanathan (1992); Hsiao (1997); Lindley (1980); Mosteller 
and Wallace (1964); Tierney and Kadane (1986)). Recently the enhancement of com- 
putational methods such as Markov chain Monte Carlo (MCMC) has helped greatly in 
obtaining posterior samples. With the simulated posterior sample, statistics can be de- 
rived to provide estimates such as the posterior mode, mean, and covariance. This result 
helps the applicability of Laplace's method in constructing a normal density approxima- 
tion to the integrand (see, for instance, Chib (1995); Lewis and Raftery (1997); Tierney 
(1994)). This approach is referred to as Laplace-Metropolis method. 

Based on the Laplace-Metropolis method, DiCiccio et al. (1997) took one step fur- 
ther to improve the method by the correction of a small volume around the posterior 
mode. They suggested using a volume of probability a around the mode to correct 
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and to improve the point estimate obtained by the Laplace-Metropolis method. They 
suggested a default value of a = 0.05, when the size of the posterior sample is between 
10,000 and 100,000. This choice may, however, vary from case to case. For instance, 
when the posterior distribution is skewed, the accuracy of approximation depends highly 
on the precision of the estimated mode and thus a volume of 0.05 probability around 
that point may be as sensitive as is the point estimate of mode. In this article, we derive 
the optimal choice for c~ based on an asymptotic analysis to minimize the MSRE. 

The rest of the article is arranged as follows. In Section 2 we give a brief liter- 
ature review of the progress from the Laplace approximation to the volume-corrected 
Laplace-Metropolis method. In Section 3 we derive the optimal choice of a for volume 
correction. The optimal choice is shown to be invariant under linear transformations of 
prior parameters. Simulation studies including univariate and multivariate data  and a 
real data example are presented in Section 4. Concluding remarks are given in Section 5. 
Proofs are in the Appendix. 

2. Literature review 

2.1 Second order Laplace approximation 
Let ~(8) -- - n  -1 {logp(y I 8)+logp(8)},  where n is the sample size of observations y. 

Write the marginal probability, or the normalizing constant, as C = f exp{-ng(8)}dS. 
The idea of Laplace approximation is to approximate C by the integration of leading 
terms (up to the quadratic ones) of Taylor series of f(8). The approximation is given by 

(2.1) C ~ CLap d J  e -"e(~ r 8", Z*) = (2~r)d/2lE*[1/2e-"e(a*)' 

where r p, A) denotes a normal density with mean # and covariance matrix A, 8" is 
the mode of t(8) and 

(2.2) 
~.___: (nc~)2~(8) )-1. 

082 o=o* 

The approximation has error order CLap = C{1 + O(n-1)}.  See Olver (1968), and 
McClure and Wong (1983). 

For application of the Laplace approximation to marginal probabilities or Bayes 
factors, see Chow (1981), Jeffreys ((1961), Section 5.31), and Kass and Raftery (1995). 
Later, Hsiao (1997) and Pauler et al. (1999) investigated the asymptotic order of 
Laplace's method and Bayes factor in the case where the mode occurs at the bound- 
ary. All these approximations require the evaluation of the mode 8" and the inverse 
Hessian matrix E*. To overcome the difficulty in estimating 8" and E*, and to utilize 
the MCMC method in generating the posterior sample of 8, hybrid methods of combining 
posterior simulation and Laplace approximation were proposed and studied by several 
authors. These are known as Laplace-Metropolis type methods. 

2.2 Laplace-Metropolis method 
Simulate a sample 8(1), . . . ,  8 (m) from the posterior distribution. Based on the pos- 

terior sample, there are various estimators for the posterior mode 8" and the inverse 
Hessian matrix E*. Let them be denoted as ~ and E respectively. For instance, ~ can 
be the posterior sample mode or the posterior sample mean, and E can be the inverse 
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Hessian of the log-posterior evaluated at ~) or a sample covariance. Chib (1995) and 
Lewis and Raftery (1997) suggested to estimate the mode and covariance matrix based 
on the posterior sample. Hsiao et al. (2000) employed the method in hierarchical models 
for spatial data  and termed it the double Laplace-Metropolis method. 

2.3 Volume-corrected Laplace-Metropolis method 
DiCiccio et al. (1997) proposed a local volume correction for the hybrid Laplace- 

Metropolis method to improve the accuracy. Let 

(2.3) 

(2.4) 

Bo.~.(~) = {0 e n~: ( 0 -  o*)ffr / ) -~(e-  0") < ~} ,  

= fB r o*, r~*)dO = ~(Bo.,~. ;o*, z*). 
0* ,1~* 

Let P(Bo. ,E.  I Y) = fBe.,~, p(O I y)dO, which is the posterior probability of B0*,~.., and 

let P ( B o . , z .  I Y) be the proportion of the sampled posterior values inside B0*,E.. For 
all 0 in the prior support, the following equalities hold: 

C - F 
e -he(~ e -'~e(e) r 0, E) 

- -  X 

p(0ty) r 0,~,) p(ely) " 

Therefore, DiCiccio et al. proposed a volume-correction modification: 

e -n~(~ a 
(2.5) 5w - • A 

r 0", E*) P(Bo*,z* I y)' 
where 0" and E* can be estimated based on simulated posterior sample as discussed in 
Subsection 2.2. It was reported in DiCiccio et al., based on their simulation experience, 
that the mean square relative error M S R E  = E(C/Cvc  - 1) 2 was stable as a function 
of a, except when the skewness was extreme. They suggested a -- 0.05 as a default 
value. However, this correction factor can be sensitive to both the shape of the posterior 
density and the accuracy of the mode estimate 0, and it can also be affected by the size 
of posterior sample. 

3. Optimal volume-corrected Laplace-Metropolis method 

The optimal choice of a is derived based on an asymptotic analysis to minimize 
MSRE. We assume the following conditions, which are the common conditions for the 
Laplace approximation. 

ASSUMPTIONS. The function exp{-ng(0)},  as a function of 0, (i) has continuous 
second derivatives, (ii) is uni-modal with an interior mode 0*, and (iii) its tails decrease 
fairly rapidly so that the integral f exp{-ng(0)}d0 converges for all sufficiently large n. 

3.1 The univariate case 
Let cr* = (nff'(O) Io=o.) -1/2. Recall that Bo.,~.(5) = {0 E R : I ~ - O*l/a* < 5}. 

Then, we have 

(3.1) E ( C / C ~ -  ~)~ 
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_ {  e -'~e(~ r . _ (  e -he(~ c~ - 1  
- r p(O* l Y) r  l Y) 

2 
r E (P(Bo ' Y) P(O* I Y) ) 

- p2(/9*ly ) *~~ r 0", a*) 

To select the optimal c~ minimizing the MSRE, we find, equivalently, that  

arg minE~>0 ( P ( B ~  ]y) 
2 

p(O* l y) 

THEOREM 3.1. Assume assumptions (i), (ii) and (iii) hold, then the argument 
minimizing (5 is given by 

+p(o* l y)i  ' 

where the second derivative p1,(/9, [ y) is taken with respect to O. 

When the posterior distribution is normal, the denominator in (3.2) is zero. There- 
fore, the optimal (5 is infinity, resulting in c~ -- P = 1. When 5 is infinity, the correction 
is done over the entire real line resulting in correction factor one. The effect of correction 
factor being one is equivalent to no correction at all. Therefore, there is no need to do 
volume correction when the posterior distribution is truly normal. In fact, the Laplace 
type method is a normal approximation to the posterior. When the posterior is truly 
normal, it becomes a parametric problem and obviously there is no need to do correc- 
tion from the parametric point of view, which agrees with the theoretical phenomenon 
(5 = c~. As for the case of (5 ~ 0, or equivalently c~ ~ 0, the correction volume shrinks 
to a degenerated point, then the correction factor becomes 

r (5))/P(Bo.,z. (5) I y) r 0", z*)/p(0* I y)- 

As a function of 0, the posterior p(0 I Y) is proportional to p(y I O)p(O). When 
P(Y I O)p(O) is known, then quantities 19" and a* may be derived analytically. Otherwise, 
they can be estimated from the posterior sample. Expression in (3.2) also involves the 
unknown quantities p(0* I Y) and p"(0* I Y)- Again, they should be estimated based on 
the posterior sample. The following proposition provides an easy means for practical 
usage. 

PROPOSITION 3.1. The quantity 5op t in (3.2) is invariant under location and scale 
transformation of O. That is, one can scale or shift the posterior variable and still get 
the same 5opt using the scaled/shifted posterior. 

Proposition 3.1 allows us to use linearly transformed posterior sample in calculating 
5opt. It does not seem much of use for the univariate case, as there is not much trouble 
in getting estimates of p(/9* I Y) and p"(/9* I Y) from the posterior sample. However, later 
in the multivariate case, it becomes tedious in computation when deriving the estimates 
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of p(0* [ y) and its second derivatives p(2)(8* I Y). It would be helpful that we first 
standardize the posterior sample. 

Implementation. Often the posterior sample is cheap to obtain, we can make the 
posterior sample size as large as we prefer. In calculating 5opt, we need estimates of 
p(O* [ y) and p"(O* [ y) for plug-in. Here we adopt kernel estimates i5 and ~", which are 
described below. Let G be the standard Gaussian kernel and let ~Y(t) = (t 2 - 1)G(t). 
Take 

mhi l m  i :1  (0"  - 0(i)) -hl (3.3) 15(t?* [ y) -- E G 

1 ~ - ~ W ( 0 * - 0  (~)) 
(3.4) p"(O* [ y) -- mh 3 ~=1 -h2 

where hi and h2 are bandwidths for kernels 6 and )4; respectively. Rules of thumb for 
bandwidths are given by 

(3.5) hi -- a* (v~m)- l /5  = .9330a.m-1/5, 

(3.6) h2 = a* 12_ m = .87303.m_1/9. 

The set of bandwidths (3.5) and (3.6) are derived based on criterion to minimize the 
mean square error for estimates of p(O* [ Y) and p"(O* [ y). See Appendix for details on 
theoretical background. Note that one may use other types of kernels for G and W as 
well. 

3.2 The multivariate case 
Suppose that 0 = (01,. . . ,  0d) are d-dimensional parameters. Recall Bo.,~.. (5) and 

a defined respectively in (2.3) and (2.4). Similar to the univariate case, we have 

2 
r E p 2 (  o* [Y) (/5(B0 *l Y) r 0*, lY) ) (3.7) E(C/Cvc - 1) 2 = ~" 

To select the optimal (~ minimizing the MSRE, we find, equivalently, the minimizing 6 
in the following theorem. 

THEOREM 3.2. Assume assumptions (i), (ii) and (iii) hold, then the argument 
minimizing 6 is given by 

{ d(d + 2)2p(0 * l y)r(d/2 + 1) ) W(d+a) 
(3.8) 6opt = \ m~d/:]E,--~i~tr(~p(2)-(V-[ ~-~-dp(O, [ y) } 2_ , 

where p(U)(O, [ y) is a d • d matrix with (i, j)-th entry given by 02p(O * [ y)/O0~O~. When 
E* is diagonal, we have 

(3.9) (~opt : ( d d(d + 2)2p(O. , y)F(d/2 + i ) .  )W(d+4) 

m= /2 I],=1 [E _l( ;)2O2p(O * I y)/Oo  + dp(0* I y)12 



660 SU-YUN HUANG ET AL. 

PROPOSITION 3.2. The quantity 5opt in (3.8) /s invariant under invertible linear 
transformation of O. Then, one can use the standardized posterior sample, or any other 
linear transformed posterior sample, in calculating 5opt. 

Implementation. By Proposition 3.2, we first standardize the posterior sample 
and denote the standardized posterior sample by r/(1),...,~?(m). The optimal volume- 
corrected Laplace-Metropolis method can then be applied to 7/. Notice that C can be 
derived from 

c = fp( lo)po(O)dO 

The optimal 5opt can be now calculated based on the new variable y using equation (3.9) 
with al . . . . .  ad ---- 1. The density function p(~?* [ y) and its second derivatives can be 
estimated by the standardized posterior sample 

(3.10) 

and 

(3 .n )  

1 f i H G  }tl ' 
j= l  i=l  

o2 (v * l y ) _  1 -n ;  
j = l  ,=1 ~ )tl ' 

where ~* stands for the mode (which is zero after standardization), and G and }/Y are as 
defined before. Rules of thumb for bandwidths hi and h2 are given by 

(3.12) 
and 

(3.13) 

hi = (2d/2dm)-l/(4+d) 

/( .02351(4 + d) (2r) ~/2 ~ 1/(8+d) 
h2 \ / ' 

which are derived based on minimizing the mean square error for estimates of p(r/* I Y) 
and p(2)(~, I Y). 

In calculating the optimal volume, we plug in kernel estimates for posterior p(O I Y) 
and its second derivatives p(2)(0 I Y). One may question the applicability of the den- 
sity estimates when the dimensionality of ~ is large. In the original volume correction 
method, the correction ratio ~(/3(B I Y))-~ is based on a uniform kernel density esti- 
mate (proportion of counts for posterior sample falling into a ball B is the same as a 
kernel density estimate using uniform kernel over the ball B) at the mode with a default 
bandwidth corresponding to the 5% probability volume. When dimension is high, this 
default value becomes less reliable. The optimal choice based on an asymptotic analy- 
sis becomes more helpful, as it uses other information in assessing the right correction 
volume. As for the deficiency of high dimensional function estimation, the deficiency is 
due to the data  sparseness. With low cost of generating posterior samples, the tension 
of data sparseness can be reduced by simulating sufficient posterior data. Moreover, the 
kernel estimates for p(8 = 0 I Y) and its second derivatives p(2)(/9 = 0 I Y) are simply 
two plug-in values among some other quantities used for selecting a. We do not need to 
estimate the entire density function nor the entire second derivative function. We need 
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their estimates at one single point, the mode, which is a high density point with denser 
posterior sample data around. The data  sparseness is not so critical for high density 
points. Furthermore, the variance of kernel density estimate for a d-dimensional p(O I Y) 
is of order m-lh  -d. This high variation is diminished quite a lot in the calculation 
of optimal correction volume, as we can see from Theorem 3.2 that 5 has p(O I Y) to 
the power of 1/(d + 4). In all, the high dimensionality is not a critical issue here for 
computing the optimal volume. A step-by-step procedure is provided in Example 4.2 for 
illustration. 

4. Examples 

4.1 Simulation study 
A comparison study is carried out for the 5% volume-corrected Laplace-Metropolis 

estimates and the proposed optimal selection. 

Example 4.1. Samples of various sizes are generated from four different distribu- 
tions, standard normal (symmetric, light tails), t with degrees of freedom 3 (symmetric, 
heavy tails), gamma(i,1) (boundary mode) and gamma(2,1) (highly skewed) as nominal 
posteriors. The volume-corrected and the optimal volume-corrected Laplace estimates 
are computed. One hundred replication runs are carried out for each distribution with 
m posterior observations (m = 1000, 10000 or 100000) simulated in each replication. 
The mean square relative error is used to evaluate the performance of the estimates. 
The mean and standard error of the MSREs from these 100 replications are tabulated 
in Table 1. 

It is clear from the table that the optimal volume-corrected Laplace-Metropolis esti- 

Table 1. The numbers are average MSRE and its s tandard error (se). There are 100 replications 
in each computat ion with simulated data  of size m. The 0* here is the sample posterior mode 
for the first three distributions and the sample posterior mean for Gamma(I ,1) .  

MSRE (se) 

Distribution optimal vol. cor. vol. cor. 

m = 1000 

N(0,1) 9.79e-4 (1.29e-4) 2.36e-2 (3.30e-3) 

t(3) 5.35e-3 (4.43e-4) 1.21e-2 (1.87e-3) 

Gamma(2,1) 1.70e-3 (2.61e-4) 1.63e-2 (2.31e-3) 

Gamma(i ,1)  2.51e-3 (2.98e-4) 1.18e-2 (1.73e-3) 

m = 10000 

N(0,1) 1.53e-4 (1.92e-5) 2.01e-3 (2.49e-4) 

t(3) 1.01e-3 (1.13e-4) 1.05e-3 (1.19e-4) 

Camma(2,1) 4.25e-4 (7.04e-5) 1.55e-3 (2.19e-4) 

Camma(1,1) 1.53e-4 (1.92e-5) 2.01e-3 (2.49e-4) 

m = 100000 

N(0,1) 3.04e-5 (5.98e-6) 2.15e-4 (3.23e-5) 

t(3) 3.56e-4 (2.61e-4) 4.29e-4 (6.55e-4) 

Gamma(2,1) 8.05e-5 (1.16e-5) 1.47e-4 (2.09e-5) 

Gamma(I ,1)  1.46e-4 (1.76e-5) 2.43e-4 (3.42e-5) 
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mate achieves better accuracy than the 5% volume correction method. The advantage is 
apparent even when m is only 1000. The performance is also stable across distributions 
with light or heavy tails, boundary or interior mode, being symmetric or highly skewed. 

E x a m p l e  4.2. A multivariate normal distribution and a product-gamma distribu- 
tion are taken as nominal posteriors. The normal distribution is a 10-dimensional one 
with zero mean and covariance matrix given by 

~10 

1 0.2 0 0 0 0 0.5 0 0.3 0 

0.2 3 0.6 0 0 0 0 0.4 0 0.2 

0 0.6 7 0 0 0.3 0 0 0.1 0.5 

0 0 0 4 0.2 0 0 0 0.4 0.3 

0 0 0 0.2 6 0 0.4 0.2 0.4 0 

0 0 0.3 0 0 8 0 0.2 0.3 0.6 

0.5 0 0 0 0.4 0 2 0 0.1 0.3 

0 0.4 0 0 0.2 0.2 0 5 0.2 0.2 

0.3 0 0.1 0.4 0.4 0.3 0.1 0.2 7 0 

0 0.2 0.5 0.3 0 0.6 0.3 0.2 0 3 

The product-gamma distribution is referring to the product of coordinate-wise 
gamma(2,1) densities. Here we consider a 10-dimensional product-gamma as the nomi- 
nal posterior. One hundred replication runs are carried out for each distribution with m 
posterior observations. The average MSRE and its standard error based on 100 replica- 
tions are reported for each nominal posteriors. Here we use the 10-dimensional normal 
with posterior sample size m -- 1000 as example to provide a step-by-step procedure. 

1. Compute hi and h2 using (3.12) and (3.13) (for univariate case, using (3.5) and 
(3.6) instead) with d -- 10 and m = 1000. 

2. Simulate a random sample of size 1000 from N(0, El0) and standardize the sam- 
ple. In steps below, when posterior sample is called upon, refer to the standardized 
version. 

3. Compute 15(0) and 15(2)(0) using (3.10) and (3.11) (for univariate case, using (3.3) 
and (3.4) instead). 

4. Compute the optimal 6 using (3.9) with ~r~ = o-~ . . . . .  a~o = 1, d = 10, 
m = 1000 and with 15(0) and 15(2)(0) from step 3 above. 

5. Compute C = CLa p X correction factor, which is 

= 5 • 

counts of sampled posterior inside the ball B o d ( ~ o p t ) / l O 0 0 '  

where I is a 10-dimensional identity matrix. 
6. Compute MSRE= ( C / C  - 1) 2 with true C = 1/r El0) = (27r)51E101 t/2. 
7. Go to step 2 and repeat for 100 runs. 
8. There are 100 MSREs from the 100 runs. Report the average and its standard 

error. 
Results for the two nominal posterior distributions are listed in Table 2. The optimal 

method often achieves MSRE one decimal less than that  of the 5% one. Its standard 
errors are smaller too. Note that  this is a simulation example with 100 replication runs. 
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Table 2. The  numbers  are average MSRE and  its s t anda rd  error  (se). There  are 100 replications 
in each computa t ion  wi th  s imula ted  d a t a  of size m. The  0* here are the  sample  poster ior  modes. 

MSRE (se) 

Dis t r ibu t ion  opt imal  vol. cor. vol. cor. 

d---- 10, m = 1000 

N(0,  E l0 )  2.84e-3 (2.85e-4) 4.43e-2 (1.59e-3) 

p roduc t -Gamma(2 ,1 )  1.75e-1 (7.50e-3) 4.31e-1 (1.11e-2) 

d ---- 10, m ---- 10000 

N(0,  Y]10) 3.21e-4 (1.21e-4) 3.37e-3 (4.38e-4) 

p roduc t -Gamma(2 ,1 )  9.35e-2 (2.20eo3) 4.15e-1 (4.41e-3) 
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When calculating C in a real data example, perform steps 1 to 5 only, and then report 

4.2 Toxicological experiment data 
Example 4.3. We consider another example for the purpose of illustration. This 

was a toxicological experiment involved 16 female rats treated with a chemical diet during 
their pregnancy and lactation period. For each rat in its own litter, the number of pups 
ni and the number of survived pups Yi at the 21st day were recorded. Listed below are 
the data given as fractions yi/ni. 

12/12, 11/11, 10/10, 9/9, 10/11, 9/10, 9/10, 8/9, 

8/9, 4/5, 7/9, 4/7, 5/10, 3/6, 3/10, 0/7. 

The data were analyzed by Williams (1975) and several others such as the BUGS group 
(Spiegelhalter et al. (1995)). For this treatment group, the observed y~ conditioning on 
qi, the survival rate for i-th litter, follows a binomial distribution, and qi is the proba- 
bility of survival for the i-th litter. Williams had shown that there existed significant 
variability among the 16 qi's, and therefore a distribution was considered to describe 
this heterogeneity. Here we choose a beta(a,/3) prior for the qi and next assume a 
uniform(0, 1000) for both hyperparameters a and/3 to indicate the unknown status of 
these two parameters. An alternative parameterization is to use parameters (~, w) given 
by ~ = a/(a +/3) and w = 1/ (a  +/3). The parameter ~ has a natural interpretation 
of being the mean while w can be viewed as a precision parameter. Consequently, the 
magnitude of w implies the deviation of the data from constant survival probability. The 
maximum likelihood estimate of (~, w) is (0.74, 0.47) indicating a high average surviving 
probability across all litters but great heterogeneity of surviving chances of these pups 
from different female rats. 

To calculate further the posterior probability, we focus on the estimation of the 
marginal probability, [/10 ] 

C = / HP(Yi [qi)P(qi J a,/3)dqi p(a,/3)dad/3, 
i-~1 

where p(. [ a,/3) is the prior probability density function for q~ conditional on given a 
and/3, and p(.,-) is the joint prior probability density function for a and/3. Note that  the 
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likelihood and prior can be written in terms of (~, w), if it is preferred. When choosing 
the beta prior for qi's, the integration over the 16 qi's are analytically feasible and a 
numerical integration over (c~,/3) can be carried out. The C value obtained by numerical 
integration is reported as ' true value' and is compared with Laplace type approximations 
below. 

Based on 5000 posterior sample points of c~ and/3 using BUGS program with 1000 
burn-in, the usual Laplace, volume corrected and optimal volume corrected Laplace- 
Metropolis approximations to log C are listed below. 

true Laplace vol. cor. optimal vol. cor. 

-42.6 -41.5 -41.6 -42.4 

Although the magnitude of these numbers look similar enough, their mean square relative 
errors in the original scale are much different, as listed below. 

Laplace vol. cor. optimal vol. cor. 

MSRE 0.4451 0.3996 0.0329 

The optimal volume correction gives the closest value to the true one obtained from 
numerical integration. If the estimated normalizing constant is used further to calculate 
the posterior probability of quantity of interest, it may have great influence as well. 
For instance, since the ratio of estimated posterior probability (15) to true posterior 
probability (P) equals C/C, it is possible that the ratio may become as small as 0.33 for 
the usual Laplace approximation, or 0.37 for the volume corrected approximation, while 
it remains 0.82, much closer to one, using the optimal volume correction. 

5. Concluding remarks 

We have demonstrated in this article how to select the appropriate correction volume 
for the Laplace-Metropolis method. We have also outlined implementation procedures 
for the method. The simulation study and the real data example both show that the 
proposed correction volume has better accuracy than the default choice of volume ct -- 
0.05. 

There are several advantages of the proposed method over the 5% version. Firstly, 
the optimal choice takes into account the shape of the target distribution. Secondly, it 
adapts to the size of the simulated posterior sample and adjusts the correction volume 
accordingly. Thirdly, when the distribution has boundary mode, the optimal volume 
correction version has better adjustability to lead to the right correction factor. Also, 
when multivariate parameters are of interest, the method can still be easily implemented 
and effectively calculated by first standardizing the posterior sample. 

Appendix: Theoretical details 

PROOF FOR THEOREM 3.1. Let 15(0" I Y) = P(Bo.,,,. I y)/(25a*). Notice that  
15(0" I Y) is actually a kernel density estimate using the uniform kernel K:(0) = 1/2 over 
[-1, 1], and the corresponding bandwidth is 5a*. 

argr~i~E(C/Cvc- 1) 2 
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2 
= a rg min E  ([ ' (B~ l Y) Io(0" !_y) 

~>o \ ~ r 

= arg min E ( /3(0* I Y) 
o>o ~ ( 2&r*)-I fuo. ,~* r 0", cr*)dO 

= arg min~ ( Ef)(O*]9) 
a>0 [ ~k (261*)-1 fBo*,o* r 0", a*)dO 

2 
p(o* l y) ) 

r o*, **) 
2 

p(o* Iv) ) 

( )} + Var  (25o. . )_  1 fBo.,** q}(O; 0", ff*)dO " 

Let k2 denote the second moment of the uniform kernel, then k2 = 1/3. Start with the 

Ep(O* I y) p(O* l y) 
(2&r*)-I fBo.,~,. r r 

p(O* t Y) + k2p"(O* I Y)@r*6)2/2 + 0(52) p(O* [ Y) 
r a*)+r  r 

{p"(o* I v)r o*, ~*) - p(o* I v)r o*, ~*)}(~'5)2/6 
= r 0", ~*) + ~ 

_- v~a*52{(~*)2p"( o* I y) + p(O* I y)} + 0(52), 
6 

where r 0", (~*) = ( V ~ o ' * )  -1 and r 0", a*) - -(27r)-1/2(a*)-3. 
The variance term above is given by 

(1.2) Var (251.)_a fBo. r 0*, a*)d0 

p(o* I v)./(.~*5) + o((ms) -1) 
{(25~*)-1 JBo. r o*, ~*)d0}2 

= r  + o  

= rn5 + o , 

where u = f_i 1 1C2(O)dO (u = 1/2 for uniform kernel). 
From (A.1) and (A.2), the mean square relative error is given by 

( A 3 )  MSRE ~ r 
p~(o* I v) 
( ~,*p(O*ly)) ~(~*)254{(~*)2p"( o* l y) + p(o* Iv)} 2 + 

x 18 m5 " 

Take the derivative of (A.3) with respect to 6, set it to zero and solve for 5. Then we 
get the stated optimal 5. [] 

first term above (without the square), we have 

(A.1) bias = 
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PROOF FOR THEOREM 3.2. Let v = 5dTrd/2lE*ll/2{r(d/2 + 1)} -1 be the volume 
of the ellipsoid Bo.,r~.. Notice that ~(0" I Y) = P(Bo.,r~. I y) /v  is an estimate for 
the posterior density p(O* I Y) with the following uniform kernel over an d-dimensional 
ellipsoid 

(A.4) ~(0) - r(d/2 + 1) 7rd/21E.i1/2 , for such 0 that OtE*-lO < 1, 

and the corresponding kernel bandwidth is 5. The optimal correction volume a is deter- 
mined by the argument minimizing 5 from 

arg mip Eo>u (P(B~ l Y) 

The bias of ib(0* ] y) is given by 

(A.5) 

where k2 is the second moment 
below: 

r(d/2 + 1) 
k2 -- 7rd/2 

= r(d/2 + 1) 
7rd/2 

2 
p(o* l u) ) 

r o*, p,*) 

k252tr(E*p(2)(O* l Y)) + o(52), 
ED(O* I Y) -P(O* l Y) = 2 

of the uniform kernel (A.4) and its value is computed 

r ( d / 2 + l )  
7rd/2 

r(d/2 + 
7rl/2r((d + 

r(d/2  + 
7rU2r((d + 

~0~ +.--+0~_<1 02601""  dO(, 

~o~<_1021~o~ +...+o~<1_o~ dOa " " " dOdd01 

It(d-I)/2 ~0 02(1 - O~)(d-1)12d01 
r((d+ 1)/2) ~<_1 
1) f 1 

./a t l /2(1 -- t)(d-1)/2dt 
1)/2) 
1) r(3/2)r((d+ 1)/2) 
1)/2) r(d/2 + 2) 

1/2 1 
d /2+ 1 d + 2  

The variance of 15(0" I Y) is given by 

(A.6) VariS(0* l Y) = p(O* l Y) 
m5 d 

Since that 

r(d/2+l) ( 1 ) 
7ra/2LE, i1/2 + o  ~ - ~  . 

r F, ( p(e* l u) 
E ( C / O v c -  1) 2 = ~ [-y-y _ v-1 f,,o. ~. ~(0;0",~*)~0 

The optimal 5 is given by solving the problem: 

arg min~ ( Ep(O*IY) 
o>o ( v-1 f.o.,~. r o*, ~*)dO 

2 

r 

v-1 fBo.,,~. r 0", a*)dO " 

2 
p(0* l y) ) 

r e*,~*) 
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By (A.5) and (A.6) and similar technique used in the univariate case, we have 

/A.7/ Va r( ) 
v-1 fBo.,r. r 0", a*)dO 

and 

(a.8) 

p(O* I y)r(d/2 + 1) 
mTrd/26dlE*]1/Ur 0", a*) 

2 

v-l fBo.,Z" r r 
2 

p(O* l Y) + k262tr(E*P(2)( O* [Y))/2 p(O: I__Y)_ 
r 0., ~.) + w(0. ,~.)  r 

( r O*'a*)k262 tr(E*P(2)(O* [ Y)) - 2w(O*,E*)p(O* [ y) ) 2 
2r 0, ,a ,)  

where w(O*, E*) is given by 

1/o w(o*,~*) = ~ (0-0")'r 
0* fiE* 

r 
J B  (0 -- 0 " ) ' ( ~ * ) - - 1 ( 0  -- O*)dO 

2V o* ,~* 

= r fo (021 +...+O~)lE*ll/2dO 
2v ~ +...+o] <_~ 

= r (02+...+02)d0 
2v ~+...+o~<1 

-dk262 
2(27r)d/2[E*]1/2 " 

It is left to check that 5opt in (3.8) is the minimizing argument for the sum of (A.7) and 
(A.8), which is straightforward and is omitted here. [] 

PROOF FOR PROPOSITION 3.2. Take transformation 77 = C10 + C2, where C1 is 
an arbitrary d • d full rank matrix and C2 is a d-vector. Then the posterior mode of r/ 
is ~* = C10" + C2, the conditional pdf of ~ given y is p(y [ z/) = p(ylO)[Cl[ -1 and the 
inverse Hessian at ~* is 

0 log(p(y l ~)p(v)) ) -~ 
* _~ . = C 1 E * C  ~. 

The optimal 5 derived in Theorem 3.2 based on y is then given by 

( d(d + 2)2p(,* I y ) r (d /2  + 1) / 1/(d+4) 
5opt,n = kmTrd/21E~---~-~t~;(-~7 [~-~7-dp( , ,  i y)} 2 / 

{ d(d + 2)2p(O*ly)]Cll-iF(dl2 + 1) ~ 1/(d+4) 

t m~d/2[E * [1/2]C1 [{tr(E*p(2) (0" [ y))]Ca 1-1 + alp(O* ] y)[CI ]-1 }2 ) 
( d(d + 2)2p(0 * I y)r(d/2 + 1) ~ 1/(d+4) 

= \mTrd/2[E*[1/2{tr(E*p(2)(O* [ y)) + dp(O* [ y)}2 ] = 5opt. 
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That is, the optimal 6 derived based on z], denoted by (~opt,n, is the same as the optimal 
derived based on 0, denoted by 5opt. [] 

Theoretical background for rules of thumb (3.5) and (3.6). The asymptotic mean 
square error for ~5(0" I Y) is 

2 2 4 p(0*ly)  
"~ hi + 2v'~mhl" 

Thus, the optimal bandwidth minimizing the above asymptotic mean square error is 
given by 

( p(e* I y) 1/5 
hi = \ 2v~(- i~:  F-y) )2m ] 

The rule of thumb (3.5) is obtained by using a normal reference density with mean 0" 
and variance a* for p(0 I Y). That is, plug in 1/v/2~ for p(0* I Y) and -1/yr2~ for 
p"(O* l y ) above. 

The asymptotic mean square error for/3"(0* I Y) is 

( )2  3p(O*,y) E(~"(O* I Y) - p"(O* I y))2 ,~ 12p(4)( 0. I Y) h42 + 
4! 8v/-~mh~ 

Thus, the optimal bandwidth minimizing the above asymptotic mean square error is 
given by 

J'hP(0* I-Y) 2 ~1/9 
h2 : 8V/-~(P(4)( 0. [Y)) m ]  

Again, by approximating p(O I Y) by a normal reference density, we can get the rule of 
thumb (3.6). [] 

Theoretical background for rules of thumb (3.12) and (3.13). 
square error for 

mh de ~ l ~  (~?~J)~ ,ol ) 
j=a i=1 

is given by 

( ~ 0 2 P Q I  * l y ) )  
(A.9) E(15(~* ]y) -p(T]* l y)) 2 ~,~ i=l 20~2 

The optimal hi is given by 

2 
h 4 + 

The asymptotic mean 

p(n* l y) 
(2v~)dmh~" 

By using the standard normal density as a reference density for p(7/] y), then p(~/* ] y) 
is replaced by (2~) -d/2 and y]~d 1 02p(~l * I Y)/O~? 2 is replaced by -d(27r) -d/2. Thus, we 
have the rule of thumb (3.12). 

-2 
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The asymptotic mean square error for 

02P(V * l Y) 1 ~ 
mh + d V ' w  -hi ' 

j= l ~ 1  ~, 
e#i 

is given below. For i = 1, 

* l y) J Y) /  
(A.10) E \ ~ 0,12 

/ 

= bias 2 + Var 
2 

\ 4!p1(,; ]y) +i=2 2~i(i]]Y-) ] 

3p(,* l u) 
• I y)h  + 2d+27rd/2mhd+4 ' 

where Pi(~i l Y) = f p ( v ] Y ) d ~ l " ' "  d~ i - ld~+~. . ,  d~d. Then the optimal h2 is given by 

Use the standard normal density as a reference density for p(~ I Y)- Then we can get the 
rule of thumb (3.13). 
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