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A b s t r a c t .  The class Ii0 , ~ C (0, c~], of f-divergences investigated in this paper is 
defined in terms of a class of entropies introduced by Arimoto (1971, Information and 
Control, 19, 181-194). It contains the squared Hellinger distance (for/~ = 1/2), the 
sum I(Q1 II (Q1 +Q2)/2)  +I(Q~ II (Q1 +Q2)/2)  of Kullback-Leibler divergences (for ~ = 
1) and half of the variation distance (for/3 = c~) and continuously extends the class of 
squared perimeter-type distances introduced by ()sterreicher (1996, Kybernetika, 32, 
389-393) (for j3 C (1,cx~]). It is shown that (IIo(Q1,Q2)) min(~'l/~) are distances of 
probability distributions Qt, Q2 for fl E (0, oo). The applicability of//0-divergences 
in statistics is also considered. In particular, it is shown that the/ /o-project ions  of 
appropriate empirical distributions to regular families define distribution estimates 
which are in the case of an i.i.d, sample of size n consistent. The order of consistency 
is investigated as well. 

Key words and phrases: Dissimilarities, metric divergences, minimum distance es- 
timators. 

1. Introduction 

m 

In this paper  we consider the intervals ~ = ( - c ~ ,  oo1, ~ +  = [0, c~), tP~o = (0, c~) 
and N0 = (0, c~]. Let  (X,..4) be a nondegenera te  measurable  space (i.e.I.AI > 2 and 
hence IxI > 1) and let Q(2d, A) be the  set of probabi l i ty  dis tr ibut ions on (X,.A). Fur- 
thermore ,  let 5 ~ be the set of convex functions f : /R+ ~-~ ~ which are finite on ~ o  and 
continuous on ~ + .  In addit ion,  let the function f* E jc  be defined by 

f * ( u ) : u . f ( 1 )  for u C ~ o .  

Remark 1. By set t ing 

0s(0)-{ ~ 
v .  f*  (0) 

*Supported by the EC grant Copernicus 579. 

for v----0 

for v > 0  
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for all f �9 ~ ,  it holds 

x 

DEFINITION 1. 
Q(X, A). Then 

(cf. Csiszs (1963) and Ali and Silvey (1966)) Let Q1,Q2 �9 

S ( q l )  II(Q1,Q2) = f ~2 "q2d# 

is called f-divergence of Q1 and Q2. (As usual, ql and q2 denote the Radon-Nikodym- 
derivatives of Q1 and Q2 with respect to a dominating a-finite measure #.) 

Let 

H(pl , . . . , pm)  = E g ( p i )  
i ~ l  

be an entropy of a discrete probability distribution (P l , . . . ,Pm) .  Then, according to 
Morales et al. (1996), g(t), t �9 [0, 1], must be a concave function with g(0) = g(1) = 0. 
In order to avoid trivial cases we assume 0 < g(t) < co for t �9 (0, 1). Then for m = 2 
the entropy H is given by the function h(t) = H(t, 1 - t), t �9 [0, 1], which is nonnegative, 

z and satisfies h(0) = h(1) = 0 and h(�89 �9 concave, symmetric with respect to t -- 
(0, co). Consequently, 

f ( u )  = (1 + u ) [ h ( 1 / 2 )  - + e 

is convex and satisfies f(1) = 0, f*(u) ~ f (u)  and f(0) = h(1/2) e (0, co). Using this 
representation, we obtain a class of f-divergences I/a ,/~ E (0, co], from a class of entropies 
due to Arimoto (1971), defined in terms of such concave functions h. Appropriate powers 
of our f-divergences are shown to be distances on a given space of probability distribu- 
tions. We also demonstrate that f-divergences, providing a metric, enable a comfortable 
treatment of statistical applications such as distribution and parameter estimation. 

The f-divergence If2 was introduced by Osterreicher (1982), and applied by him and 
by Reschenhofer and Bomze (1991) in different areas of hypotheses testing. Furthermore, 
it was shown by Osterreicher (1996) that for every f~ E (1, co) the square root of the 
Ira-divergence defines a distance on the set of probability distributions. This generalized 
a result achieved for ~ = 2 by Kafka et al. (1991). 

From the former literature on the subject, the powers of f-divergences defining 
distances are known for the subsequent classes. For the class of Hellinger divergences of 
order s C (0, 1) given by f(~)(u) -- 1 + u -  (u ~ + u 1-~), already Csiszs and Fischer (1962) 
have shown that  the corresponding maximal power is min(s, 1 - s). For the following two 
classes the maximal power coincides with their parameter. The class given in terms of 
f(~) (u) = 11 - u s [1/~, a E (0, 1], was introduced by Matusita (1964) and investigated by 
Boekee (1977), Liese and Vajda (1987) and many other authors. The previous class and 
this one have the special case s -- c~ = �89 in common. This famous special case was already 
investigated by Matusita (1955). The class given by ~a(u) = I1 - u[1/~(1 + u) 1-1/~, 
a E (0, 1], and investigated in Kafka et al. (1991), Example 3, contains the special case 

1 introduced by Vincze (1981). O ~  



A NEW CLASS OF METRIC DIVERGENCES 641 

2. Preliminaries 

Let us restate some results from Kafka et al. (1991) which are basic for the s tatement  
and proof of the main result of this paper. For further information on f-divergences we 
refer to the monograph by Liese and Vajda (1987) and the paper of Osterreicher and 
Vajda (1993). 

Provided 

(fl) f(1) = 0 and f is strictly convex at 1 and 

(f2) f*(u) =-- f(u)  

it holds for any Q1, Q2 E Q(X, .4) 

(M1) If(Q1, Q2) _> 0 with equality iff Q1 -- Q2, 

(M2) / f(Q1,  Q2) - - / f  (Q2, Q1) 

respectively. If, in addition to (fl) and (f2), an a C ~ o  exists such that  

(f3,c~) the function h(u) - (1 - u~) 1/a f(u) , u E [0, 1), is nonincreasing 

then, according to Kafka et al. (1991), Theorems 1 and 2, the power 

pa(Q1, Q2) = [/f(Q1, Q2)] ~ 

of the f-divergence satisfies for all Q1, Q2, Q3 c Q(X, .At) the triangle inequality 

(M3,~) pa(QI, Q3) _< p~(Q1, Q2) + pa(Q2, Q3). 

Remark 2. Note that  by virtue of Jensen's inequality 

f(u)+f*(u)_l+u - . . . .  l + u l  f ( u ) +  Ul+u f ( 1 )  >f(1) ' -  

Therefore (fl) and (t"2) imply f(u) > 0 for all u C ~ + \ { 1 } .  The validity of (f3,a) for 
any a e ~ o  implies f(0)  < c~ (aft property (f3) in Lemma 1). (Provided that  ,4 is 
infinite, this property is-- together  with (fl) and (f2)--a necessary condition so that  the 
associated f-divergence allows for the definition of a metric.) Moreover, it can be easily 
seen that  if 0 </3  < a then (f3,/3) follows from (f3,a). 

The following remark is a consequence of Kafka et al. (1991), Propositions 5 and 6. 

Remark 3. Let (fl) and (f2) hold true and let a0 E (0, 1] be the maximal a for 
which (f3,a) is satisfied. Then the following statement  concerning a0 holds. If for some 
ko, kl, Co, cl c ff~o 

f ( 0 ) . ( l + u ) - f ( u ) ~ c 0 . u  k~ for and 

f(u) ~ c l .  I ~ -  11 k~ for u T 1 

then ko _< 1, kl _> 1 and ao _< min(ko, 1/kl)  _< 1. 
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3. Definition of f~-divergences 

Let us start with the following class of entropies due to Arimoto (1971) 

{ 1_~1 a l l  - (t 1/~ + (1 -- t)l/~) ~] if C~ e ~ ) \ {1}  

h~(t) = - [ t l n t + ( 1 - t ) l n ( 1 - t ) ]  if c~=1 
m i n ( t , l - t )  if a = O ,  

where we make use of the convention 0 ln(O) = 0 and define the corresponding class of 
convex functions f/~ by f/3(u) -- (1 + u)[hl/~(1/2) - hl/~(u/(1 + u))], u ~ [0, oo), 

1 u~)l/f t (I + u)l if • E s 
1 - i/~ [(i + - 2 ~/~-~ 

f~(u) = ( l + u ) l n ( 2 ) + u l n ( u ) - ( l + u ) l n ( l + u )  if r  
l i  - ~ 1 / 2  i f  ~ = oo .  

Remark 4. As for the corresponding entropies, r = 1 and /~ = oo are limiting 
cases, i.e. it holds limz__.l f5(u) = fl(U) and lim~--.oo fh(u) = foo(u). Furthermore, it 
holds fl/2(u) = (1 - v~)  2. Therefore 

(Q1,02) = / ( v / ~  - vfqT)2d# = H2(Q1,02) b ,  j2 

is the squared Hellinger distance. In addition, 

Ij,~(QI,Q2) = I ( Q 1  O l + Q 2 ) - b / (  01-t- 02 

- I . ( , 1 , §  

where I and H are the classical information divergence (f-divergence for f (u)  = u In u), 
respectively Shannon's entropy and 

1 V II~(Q1,Q2) = ~ (Q1,Q2) 

where V is the total variation (f-divergence for f (u)  = I1 - u  D. The appeal of the special 
e a s e  

given by f~(u) = 2[v/1 + u 2 - (1 +u)/v/2], is its geometric interpretation (of. Osterreicher 
( 1 9 9 2 ) ) .  

Finally note that the limiting case If1 (Q1, Q2), which is a symmetric form of the 
f-divergence I(Q1 I] (Q1 + Q2)/2) considered by Lin (1991), is part of the identity 

I(Q1 II Qa) + I(QI }l Qa) = 21((Q1 + Q2)/2 ]] Qa) + 111 (Qi I] Q2) 

exploited by Csiszgr (1975). 
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The introductory properties of the following lemma enable the class f~ to define f-  
divergences. With (fl)-(f3) it provides basic properties for the corresponding distances. 
The limiting case/3 = c~ will be excluded from the rest of this section. 

LEMMA 1. The class of functions fz ,  /3 E (0, co) satisfies ff~ E ~', (fl) and (f2). 
Furthermore 

(f3) f , (0)  e (0, ~ ) ,  

in particular, 

1 [1 --  2 1 / 8 - 1 ]  if /3 • 1 
f~(0) ---- 1 -- 1//3 

ln(2) if /3 = 1 

(f4) f~(u) = { - -  
1 + U/3) 1//3_ 1Ul3_ 1 1 - 1//3 [(1 - 2 '/~-1] if /3 r 1 

ln(2) + ln(u) - ln(1 + u) if /3 = 1 

and hence f~(1) = 0 

(f5) f'~'(u) =/3(1 + uZ)l/Z-2u ~-2 > 0 and hence f~'(1) =/321/~-2. 

PROOF. The properties f~ E ~-, (fl) and (f2) hold according to the basic properties 
of entropies. The properties (f3)-(f5) are also obvious. [] 

The following remark is a consequence of Kafka et al. (1991), Propositions 5 and 6. 

Remark 5. (f3) and the application of Newton's Binomial formula (1 + x )~ -=  
~-~=o (?) xi for Ixl < 1 and a E ~ yield 

fz(O)(1 + u) - fz(u) = { - -  
1 [ ~ ( 1 / i / 3 )  ] 

1 - 1 / / 3  u -  u ~i if / 3 r  
i=1 

( l + u ) l n ( l + u ) - u l n ( u )  if / 3 = 1 ,  

and hence, for u ~ 0 the asymptotic equality 

1 _l/3U if / 3 < 1  

fz(0)(1 + u) - fz(u)  ,,, u if /3 > 1 

- u  ln(u) if / 3=1 .  

Since, owing to (fl), (f4) and (f5), 

(f6) iz(~)  ~ Z ~ / z - 3 ( ~  _ 1)2 



644 FERDINAND OSTERREICHER AND IGOR VAJDA 

for u --* 1, the maximal a �9 ( 0, co) satisfying (f3,c~) with f(u) replaced by f~(u) - - i f  
there is any- -mus t  be ao <_ min(~, 1/2) (cf. Remark 3). 

LEMMA 2. The function 

~(~)=  
(1 - uZ) 1/~ if ~ �9 (0, 1 /2)  

fe(~) 
(1 - V ~ )  ~ 

f~(~) if ~ �9 [*/2, ~) 

defined for all u �9 [0, 1) satisfies 

0 if ~ �9 (o,1/2) 
~ ( u ) =  2~-~/~ 

if ~ �9 [1/2, oo) 

and {1/2(u) ~ 1. For fl E (0, 1/2)U(1/2, oc) this function is strictly monotone decreasing. 

PROOF. The first s tatement is a consequence of (fl), (f4) and (f5). The  second 
one is obvious. Now for the proof of the monotony of {Z for/3 E (0, 1/2): Owing to 
1 - 1/8 < 0 it holds 

1 (1  - uZ)l/~-lu ~-1 
~ ( u ) -  1 -  1/Z f~(u) 

for all u e (0, 1) since 

s,(~) < 0 

v~(~) = - ( 1  - : / Z ) [ f ~ ( ~ )  + ( u ' - ~  - ~ ) A ( u ) l  

= 2121/f~-2(1 + u l -z )  - (1 + uf~) l / z - l ]  > 0. 

The  latter holds because of ~Z(1) = 0 and since for/3 E (0, 1/2) 

U/3~(72) /2  ~-~ (1 -- ]~) 21/f~-2 -- 1 -~- ?.t] 3 ]  j < 0. 

The proof of the monotony of (~ for/3 E (1/2, c~)\{1} can be taken almost literally 
from that  of Lemma 2 in C)sterreicher (1996). [] 

THEOREM 1. Let ~ E (O, co). Then p~(Q1,Q2) = [II~(Qi,Q2)] min(f~'l/2) defines a 
metric on the space Q(X,.4). 

PROOF. This assertion is clear from Lemma 2 and from what is said after property 
( f3 ,~) .  [] 

Remark 6. As already mentioned in Remark 4, the f-divergence for the case fl = 
oc equals half of the variation distance, i.e. 

1/ 
/ / ~ ( Q 1 , 0 2 )  = ~ /ql - q2[d# 
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and therefore is a metric. Owing to Iql - q21 = ql + q2 - 2min(q~,q2) and fqld# = 
f q2d# = 1 it equals 

If~ (Q1, Q2) = 1 - 2bl/2(Q1, Q2) 

1 [Q1 (q2 > ql)+Q2(ql > q2)l is the minimal Bayes risk with respect where b1/2(Q1, Q2) = 5 
to the prior distribution (�89 �89 i.e. the weighted probability of error when testing the 
hypothesis Q1 against the alternative Q2. 

4. Properties of fz-divergences 

All divergences If, (Q1, Q2), ~ �9 (0, c~], satisfy (M1)-(M3,a) with a = min(~, 1/2) 
for fl < oo and a = 1 for fl = (x~. In addition to the triangle inequality considered 
in (M3,a), all these divergences satisfy the following weaker triangle inequality: For 
arbitrary Q1, Q2, Q3 �9 Q(X, A) 

/],(Q1, Q3) _< 21/s- [b,(Q1,Q2) + Is,(Q2,Q3)]. 
This is trivial for /3 = c~. For /~ < cc Theorem 1 and the application of Jensen's 
inequality to the concave function x ~-~ x s yields 

1 i s  1 . is , i s  /~(Q1,Q3) ~ ~[ $~(Q1 Q2) + y~(Q2,Q3)] (cf. Theorem 1) 

[If, 2 i f , ( Q  ) I s  < (Q1, Q2) _ 2, Q3 

which already implies the desired result. 
Other properties of the divergences under consideration can be derived from the 

properties of general f-divergences presented in Liese and Vajda (1987). In particular, 
for arbitrary Q1, Q2 �9 Q(X, ,4) and f/~(0) given by (f3) 

II~(Q1,Q2) <_ 2fz(0), 

where the equality holds if and only if Q1-LQ2. 
We sharpen the last inequality in terms of V(Q1,Q2)/2. The following theorem 

thus enables estimating the Bayes risk bl/2(Q1, Q2) by means of the f/~-divergences for 
suitable large/3 �9 ~ o  arbitrarily closely. 

THEOREM 2. Let t3 �9 (0, c~]. Then for all Q1, Q2 �9 Q(X, ,4) 

Cz(V(Q1, Q2)/2) < If~ (Q1, Q2) _< Cz(1) �9 V(Q1, Q2)/2, 

where the function r : [0, 1] H ~ defined by 

r = { - -  
1 

1 - 1/~ ([(1 + x)z + (1 - x ) ~ ]  1 / ~  - 21 / /~ )  i]  ~ �9 ~0\{1}  

( l + x )  l n ( l + x ) + ( 1 - x ) l n ( 1 - x )  if ~=1 ,  

if f =cr X 

is convex, strictly monotone increasing and satisfies r -- 0 and r = 2fz(0). The 
maximal difference between the above upper and lower bound 

d(/3) = sup [ r  r 
x~[0,1] 
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lim d(/~) = d(cc) = O. 
/~---*oo 

PROOF. In order to achieve the first assertion of the theorem we use terminol- 
ogy and results of Corollary 1 and Theorem 2 from Feldman and Osterreicher (1989) 
which we refer to below. Note, however, that  the result follows equally well from (8.26) 
and Proposition 8.28 in Liese and Vajda (1987). Lower and upper bound follow from 
Corollary 1 applied to the function 

1 - x )  
r = cf , (x)  = ( l + x ) f ~  ~ , 

where the latter follows, by virtue of Theorem 2 (d), from the validity of (f2) for the 
functions fp. The properties of the function r follows from Theorem 2 (a)-(c), and the 
properties (fl) and (f2). 

In order to prove the limiting property of d(~) note that  r = 2fz(0) = 1 ( 2 -  1--1/f~ 
21/~) and furthermore, that ,  owing to Remark 5, 

D _ r  = lim f#(0) (1  + u) - f # ( u )  
uJ.0 ?~ 

= ~ o c  i for # � 9  (0,1] 

[ I - - i / #  for # e ( 1 , c o )  " 

Now let # �9 (1, c~). Since, in addition, r is nonnegative, convex and satisfies r  = 0 
it holds r _> max{0, r + D_r  - 1)}. Consequently 

d(#) < r (1 ~b#(1) ~ _ D_---~(1) ] 1 - 1 / ~  (2 - 21/#)(21/# - 1). 

From this the assertion follows since the derived upper bound decreases to 0 as fl T c~. [] 

THEOREM 3. Let/~ �9 (0, co). Then 

C f ~ ( x )  ~ ~ 2 1 / # - 1  �9 x 2 

r  ~ _ / 3 2  l / B - 1  �9 x 2 

for x 1 0 and 

Vx e [0, 1] <=~ # �9 (0, 3/2]. 

PROOF. 
the proof of Theorem 2. Now, let us extend the definition of 0# to [-1,  1] and let 

The first assertion can be easily seen from (f6) and the definition of r in 

x e ( -1 ,  i )  

for #7~1  
for /3 = 1 

~Pfl(X) ---- [r --/~21/~-1 �9 X2]/(/~21/~), 

and a#(x) = [(1 + x) # + (1 - x)#]/2. Then 

= ~ a lz /Z-1(x ) [ ( l  H- x)  # - I  - ( i  - x ) # - I ] / ( 2 ( #  - I ) )  - x 
~ ( x )  [ [ln(1 + x) - ln(1 - x)]/2 - x 

~ ( x )  ---- a l z /# -2 (x ) ( l  - x 2 )  # - 2  - 1 

and 
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and hence ~o~ (0) = V~ (0) -- 0. 
In order to prove or disprove ~o~(x) >_ 0 for all x ~ [0, 1] it suffices, owing to ~o~(0) -- 

0, to show tha t  ~oZ is convex on [0, 1] and strictly concave on a suitable subinterval  [0, 5] 
of [0, 1] respectively. 

At first let /~ E [1/2, 1]. Then the application of Jensen 's  inequali ty to the  concave 
function u ~-~ u z, u E [0, oc), yields a~(x) < 1 and sincc owing to 1/13 - 2 _< 0 - - t h e  

1 / f~ -2z  function u ~ u ~/~-2 is decreasing, consequently az (x) > 1. Owing to 13 - 2 < 0 this 
implies 

Now let 

~ ( x ) _ >  ( 1 - x 2 ) / ~ - 2 - 1 > 0  for all x e ( 0 , 1 ) .  

~(3) (x) ---- a~/~-3(x)(1 - x2)l~-agf~(x)/2 

be the third derivative of ~/~ where 

gz(x) = (1 - 2t3)((1 + x) z - (1 - x) z) + 3x((1 + x) z + (1 - x)Z). 

In the  sequel we will show ~(3)(x) > 0 for all x e [0,1) or ~(3)(x) < 0 for all 
x C (0, 5) for a suitable 5 E (0, 1) since, owing to ~ ( 0 )  = 0, consequent ly ~Z is either 
convex on [0, 1] or str ictly concave on [0, 5], respectively. 

Next  let ~3 E (0, 1/2). Then since 1 - 2/3 > 0 and since the function u ~-~ u ~ is 

increasing, every factor of gz and hence of p(Z 3) is nonnegative on [0, 1). Consequent ly  
~Z is convex. 

For the remaining case j3 E (1, oc) we have to investigate the crucial te rm g~ in 
more detail. Note  that  the value of the  first derivative 

g~(x) = /3(1 - 2/3)((1 + X)/3-1 ~- (1 - X) j3-1) -~- 3((1 + X) ~ + (1 -- X) z) 

+ 33x((1 + x) ~-1 - (1 - x) z - l )  

at the point  0 equals g~(0) = 4( 3 - ~)(t3 + 1). 
For the case t3 C (1,3/2] this value is g~(0) > 0. Since, in addition, g~ will turn 

out  to be  strictly convex and satisfies gp(O) = 0 it holds therefore g~(x) > 0 and thus 

~(3)(x) > 0 for all x e (0, 1). In fact, since 1 - 2~3 < 0, ~ > 1 and since the functions 

u ~-~ u ~-2,  u ~-* u ~-1 are decreasing resp. increasing, the second derivative of gB 

g~(x) = (1 - 2t3)~3(j3 - 1)((1 q- x) z -2  - (1 - x) ~-2) + 6~((1 + x )  j3-1  - (1 - ;T) /~-1)  

q- 313(t3 - X)x((1 q- x) ~-2 q- (1 - x)Z-2),  

is positive on (0, 1). 
Finally let/3 E (3/2, oo). Then  g~(0) < 0. Since, in addition, g~ is continuous,  

there is a 5 E (0,1) such tha t  g~(x) < 0 and hence ~(3)(x) < 0 for all x ~ [0,5). This  
completes the proof. [] 

Remark 7. Let k~ = max{k > 0 : kx 2 < r Vx E [0, 1]} and apply Remark  3 in 
Feldman and Osterreicher (1989) to the present class of f-divergences.  Then, by vir tue 
of the discriminant 

o ( f , )  - 5 
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and owing to k/~ < 2f}'(1) r D(f~) < 0 and 2f~'(1) =/321//~-1, it holds 

3 k/~ < ~2  l / p - 1  r /3 > 

This is equivalent to the second statement of Theorem 3. According to D(f~) = 
g~(0)t521//~-5 this reestablishes the associated result achieved in terms of g~(0) in the 
course of the preceding proof. 

5. Minimum f~-divergence estimates 

In this section we consider a subfamily P C Q(X,.4) of probability distributions 
and a random sample (X1, . . . ,  Xn) with independent X-valued components distributed 
according to a fixed element P0 E :P. By a distribution estimate of P0 we mean a 
mapping Qn : X n ~-+ Q(X,  .4) such that all probabilities Qn(A), A E .4, are measurable 
functions of the sample (X1, . . . ,  Xn). Of course, we are mainly interested in estimates 
pn : xn--+ p.  

We suppose that the ~-algebra .4 is countably generated. Then, by Theorem 1.30 
in Liese and Vajda (1987), each/-divergence satisfies the relation 

I / (Q~ ,Q2)=  sup ~ f (QI(A) '~  
Vc.A ~ Q-7-~ ] " Q2( A ), 

where the supremum extends over all finite partitions l) C `4 of the observation space 
X. This implies that for any Q E Q(X, `4) and any distribution estimate Qn, the f -  
divergence b (Q, Qn) is a random variable (measurable function of the sample). 

Barron et al. (1992) introduced a consistent distribution estimate Pn of P0 in total 
variation and in information divergence, i.e. satisfying the conditions 

V(Po, Pn) = op(1) or I(Po, Pn) = Op(1) 

respectively, under certain weak assumptions about :P (see Remark 4; the symbols on(l) 
and Op(cn 1) denote in this paper random variables satisfying the well known asymp- 
totic relations for nondecreasing sequences cn of positive real numbers). These authors 
also presented several statistical and information-theoretic arguments leading to these 
rather strong types of consistency. In fact, their arguments can be extended to motivate 
estimates consistent in f-divergences also for f E ~ different from f (u)  = I1 - u I and 
f (u)  = u lnu  (see Berlinet et el. (1997)). 

For dominated families P the distribution estimates Q,~ consistent in total variation 
reduce to the density estimates consistent in the Ll-norm (cf. Definition 1 with f (u)  = 
[1 - ul). As well known (cf. e.g. Devroye and Gy5rfi (1985)), typical density estimates 
consistent in the Ll-norm, such as the histogram estimates or kernel estimates with 
kernels of bounded support, are discontinuous. Densities of the estimates considered 
by Barton et al. (1992) are also discontinuous. This is an obvious drawback in cases 
where P consists of continuous densities. One approach of modern density estimation to 
cope with this problem is the wavelet smoothing of the density of Qn (see e.g. Hall and 
Patil (1995)). Another possibility presented already by Beran (1977, 1978) and Tamura 
and Boos (1986), and developed in GySrfi et al. (1994, 1996), Cutler and Codero-Brana 
(1996) and Pak (1996), is the projection of Qn onto P in an appropriately metrized 
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space Q(X, A). The result is a smooth estimate P~ C 5O. Gyhrfi et al. (1996) used the 
Kolmogorov distance on Q(A', A), the remaining papers used the Hellinger distance. 

These facts motivate the following definitions. 

DEFINITION 2. Let us consider f E 5 r and 5O c Q(X,A) .  An arbitrary esti- 
mate Q~ : X ~ ~ Q(X, .4) is said to be consistent in the f-divergence if the relation 
I](P0, Q,~) = Op(1) is satisfied for all possible distributions P0 C 7 ). If, in addition, co is 
a nondecreasing sequence of positive, real numbers tending to infinity as n -~ oo, then 
the estimate Q~ is said to be consistent of the order of c~ 1 in the f-divergence if the 
previous relation holds with Op(c~ 1) instead of op(1). 

DEFINITION 3. Let us consider an arbitrary estimate Qn : ,)fin ~ ~(,~',.~), the 
same function f C 7" and the same family 5O. Then the estimate Pf,~ : A '~ -* P is said 
to be an asymptotically minimum f-divergence estimate for Qn if 

(5.1) If(PI,~,Q~ ) <_ inf I~(P,Q~) + %(1). 
PET' 

If, in addition, cn is a sequence of real numbers with the same properties as in Defini- 
tion 2, then Pf,n is said to be an asymptotically minimum f-divergence estimate for Qn 
of the order of 5~ ~ if (5.1) holds with Op(5~ ~) instead of Op(1). 

We are interested in estimates Pi3,n ---- Pff~,n, ]~ E (0, co], which are asymptotically 
minimum fz-divergence estimates for a given distribution estimate Qn- If PIa,n is the 
fz-projection of Qn onto the subfamily 5 ~ in the sense of Chapter 8 in Liese and Vajda 
(1987), then it is an asymptotically minimum fz-divergence estimator for Qn of any 
order. 

Example 1. Let (A',.A) be the Borel line, )~ the Lebesgue measure, and 

Q(A) = )~((0, 1) N A), 
, ((Xnl , Xnn ) N A) 

qn(A) =  ((Xnl,Xnn)) 

for all A C A, where ( X n l , . . . ,  Xnn) is the ordered sample corresponding to (X1 , . . . ,  
Am). Let 7 ) be the class of all shifts of the distribution Q. Then the estimate 

Pcx) n(n) ="~ ( ( X n l  -'~Xnn- 1 Xnl -~-Xnn -~- 1) 2 ' 2 A n  

minimizes I i~  (P, Qn) on 5O, i.e. Po~,~ satisfies I i~  (P~,n, Q~) = i n f p ~  Ilo ~ (P, Q~). 

THEOREM 4. Let P C Q(X, A) be arbitrary, Po E P and let 3 c No. If  Qn is a 
consistent estimate of Po in the f3-divergence, then every corresponding asymptotically 
minimum f3-divergence estimate P3,n is also a consistent estimate in the f~-divergence. 
Let, in addition, Qn be consistent of the order of c~ 1 and let P3,n satisy (5.1) with 
%(1) replaced by Ov(5~ 1) and 5~1 = Ov(c~l). Then the previous statement holds with 
"consistent" replaced by "consistent of the order of c~ 1'' . 

PROOF. Put  c~ ---- min(~, 1/2) and p~(Q1,Q2) = I}~,(Q1,Q2) .  By Theorem 1, p~ is 
a distance on Q(,Y, A). Thus the triangle inequality implies 

p (Po, _< p (Po, q=) + q=). 
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By the definition of Pz,n (cf. (5.1)) 

pfl(P~,n,Qn) = I(]~(Pz,n, Qn) <_ [I$z(Po, Qn) + Op(1)] ~, 

so that 

G (P0, PZ,n) _< ( /~(P0 ,  Q n ) +  I/f, (Po, Q n ) +  op(X)]~ 1/~ 

The consistency statement is clear from this fact. Under the additional assumptions we 
similarly obtain 

CnG (Po, P,,n) <_ ([cnb, (Po, Qn)]" + [calf, (Po, + cnOAe;i)]") 1/". 

Thus the statement concerning the rate of consistency is clear, too. [] 

Unfortunately, there are no estimators Q~ satisfying the consistency assumption of 
Theorem 4 when P = Q(A', .4). In this respect we can formulate the following negative 
result. 

THEOREM 5. For every sequence of estimates Qn and every fl E (0, oc] there exists 
a Qo c Q(X,.4) and an ~ > 0 such that 

inf G (Qo, Qn ) _> 
n 

a.s. (almost surely). 

PROOF. According to Remark 6 and the Theorem of Devroye and Gyhrfi (1990), 
this assertion holds for fl -- c~, i.e. for every sequence of estimates Qn there exists a Qo 
and an ~o > 0 such that 

inf Iy~ (Q0, Qn) -- inf V(Qo, Qn)/2 >_ eo a.s. 
n n 

This fact and Theorem 2 imply infn Is~(Q0, Qn) >_ eft(e0) > 0 a.s. [] 

In spite of the negative result of Theorem 5, there exist estimates Qn, as assumed 
in Theorem 4, i.e. consistent for all Po from a wide variety of families :P C Q(A', .4), and 
even consistent of the order of Cn I = n -~  for appropriate (~ E (0, 1]. 

Example 2. Let (A', .4) be the Borel line and let Qn be the histogram estimate 
of Berlinet et al. (1995) for partitions of F~ into intervals of size hn = const �9 n -1/2. If 
7 ) c Q(X, .4) is the family of all distributions with continuously differentiable densities 
then these authors showed that P0 E 7 ~ implies V(Po, Qn) = Op(n-1/3), i.e. Qn is 
consistent of the order of c~ 1 = n -1/3 in the fo~-divergence. Let fl E ~0 .  Then by the 
upper bound in Theorem 2 Qn is consistent of the same order in the ffl-divergence. 

Example 3. Let Q(A', ,4) be as in the previous example. Gy6rfi et al. (1996) proved 
that, under relatively mild restrictions on P C Q(A', A), the Kolmogorov distance pro- 
jection Pn of the classical empirical distribution 

1 ~ 6xi (5.2) 0 n  n 
i = 1  
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- ---- n -1 /2  in the f~-divergence. As onto 7 ~ is a consistent estimate of the order of c n 1 

in Example 2, we obtain the same order of consistency of P~ in every fn-divergence, 
/3 � 9  

E x a m p l e  4. Let Q(2c', A) be arbitrary and let S be a finite measurable subset 
of X. Furthermore, let P be the family of all distributions with support  S then the 
empirical distribution Q~ given by (5.2) satisfies Q~ �9 :P and is a consistent estimate of 
the order of Cn 1 = n -1/2  in the f~-divergence. This fact is a consequence of the central 
limit theorem. By Corollary 1 of Morales et  al. (1995) Qn is consistent of the order of 
Cn-2 = n -1  in  a n y  fn -d ive rgence ,  /3 �9 ~ 0 .  Since Qn �9 7:) it  holds  Pn,n = Qn for all  
/3 �9 t%. 

Conc lud ing  R e m a r k .  Let us briefly mention the applications of fn-divergences, 
/3 �9 ~0 ,  in the model of Example 4 with P containing only some of the distributions 
with support  S. This is typically satisfied if :P = {P0 : 0 �9 O} is a parametrized family 
of distributions supported by S. In this case the estimates Pn,n - Poz,n depend on/3 and 
in general differ from the relative frequency estimate Qn given by (5.2). If the parameter  
is identifiable in P (i.e. if P01 ~ P02 for all 01 ~ 02) then these distribution estimates 
P0~,~ define in a one-to-one manner  point estimates 0n,n,/3 �9 ~0 .  

Estimates minimizing the f-divergences Iw~ (P0, Qn), a �9 ~ ,  for the functions f = 
~ �9 ~ defined by 

u - l - l n u  if a = 0  
~ ( u )  = a u  + 1 - a -  u a 

a ( 1 - a )  if a � 9  

1 - u + u l n u  if a = l  

(cf. Section 2 in Liese and Vajda (1987) or Read and Cressie (1988)) were studied by 
Lindsay (1994). This class yields only for a = 1/2 a metric divergence, namely the 
squared Hellinger distance (cf. e.g. Basu and Lindsay (1994)). The family of estimates 
0*,n, a C Ir obtained by replacing the functions fn C $" by ~a C ~ obviously differs 
from the family 0n,n ,/3 C fit0, of estimates given above. 

Lindsay (1994) introduced in the model under consideration the robustness of esti- 
mators against outliers (and inliers). Members fn of our class satisfy, owing to 
l i m u ~ c o  f~(_u) _ f~(0), (f2) and (f3) 

fn(0) = lim f n ( u )  e (0, oo) 
U----* Oo U 

and therefore Assumption 10 in Lindsay (1994). (Note that  Lindsay's functions G corre- 
sponds to our functions f via G(5) -- f ( 5  § 1).) Consequently his Proposition 12 yields 
that  our class I j ,  (Q, P ) , /3  E ~0 ,  of metric divergences fulfils Lindsay's outlier stability 
property (21). 
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