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Abstract .  The jackknife variance estimator and the infinitesimal jackknife variance 
estimator are shown to be asymptotically equivalent if the functional of interest is a 
smooth function of the mean or a trimmed L-statistic with HSlder continuous weight 
function. 
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1. Introduction 

This note concerns the asymptotic behavior of the jackknife variance estimator 
Vjack, especially regarding its relationship to the infinitesimal jackknife variance esti- 
mator vijac k. We consider, in particular, the variance estimates Vjack and Vijac k for 
smoothly trimmed L-statistics and for smooth functions of the sample mean. We prove 
t h a t  Vjack a n d  Vijac k are often asymptotically equivalent to one another in the sense that  

(1.1) vj~ck - vi j~k = Op(n -h)  

for some h > 0. The equivalence of vjack and Vijac k c a n  sometimes be used to prove 
that  Vjack is asymptotically normal, but-- remarkably-- i t  also holds even when these 
estimators are not asymptotically normal. 

These issues are relevant to the following scenario of statistical practice: One wishes 
to estimate some functional T(p) of an unknown population distribution p, and, to this 
end, one draws n samples from the population and uses T(Cn) to estimate T(p),  where 
en is the empirical distribution of the n samples. One would then like an estimate of the 
sampling variance of T(en). Two widely-used nonparametric estimates of this variance 
are Vjack and Vboot, the jackknife and bootstrap variance estimates. Having obtained 
one of these estimates, one naturally desires to know how accurate it is. To assess the 
accuracy of the usual Monte Carlo approximation of Vboot, one may use the jackknife- 
after-bootstrap technique of Efron (1992). This note concerns the asymptotic behavior 
of Vy~ck and a closely related estimator Vijack, the infinitesimal jackknife. 

Beran (1984) showed that vj~k,  Viya~k, and Vboot are asymptotically equivalent, 
and asymptotically normal, if the functional T(p) has a well-behaved second-order func- 
tional derivative. While the proof of Beran (1984) requires a strong statement of the 
Dvoretsky-Kiefer-Wolfowitz inequality to handle the asymptotics of Vboot, the asymptotic 
equivalence of Vjack and vi j~k is easier to prove, and does not require second-order differ- 
entiability of T. Indeed, we shall see that  Vja~k and Vijac k a r e  asymptotically equivalent 

555 



556 ALEX D. G O T T L I E B  

if T has a well-behaved first-order derivative and vijack is consistent as an estimator of 
the variance of T(c~). 

The equivalence of Vjack to Vijac k c a n  help one to determine the asymptotic variance 
of the former. For example, Gardiner and Sen (1979) have carefully studied the asymp- 
totic normality of Vijack in the context of L-statistics. We shall see in Section 4 that  
their work establishes the asymptotic normality of Vjack, too, thanks to the equivalence 
of vj~k and vij~k for variance estimation of L-statistics. 

Sometimes vj~k and vijack are asymptotically equivalent even when they are not 
asymptotically normal. Consider, for example, the estimation of the variance of a func- 
tion g of the sample mean. If g is once, but not twice, continuously differentiable, then 
Vja~k and vij~ck may not be asymptotically normal, yet they will satisfy (1.1) as long as 
g~ is HSlder continuous of order h. 

After the necessary definitions are presented in the next section, we prove in Sec- 
tion 3 that  Vjack and Vijac k a r e  asymptoticMly equivalent as estimators of the variance of 
smooth functions of the sample mean. In Section 4 we discuss the asymptotic normality 
of vja~k as an estimator of the variance of trimmed L-statistics. 

2. Background and definitions 

Let p be a probability measure on a sample space A'. Given n samples from A', 
sampled independently under the probability law p, one desires to estimate the value 
T(p) of some real functional T on the space P(A') of all probability measures on 2(. 
Denote by en the map that  converts n data points x l , x2 , . . . ,Xn  into the empirical 
measure 

1 ~ 6(xi) (2 .1 )  s  X 2 ' ' ' ' '  Xn)  = It 
i = l  

where 5(x~) denotes a point-mass at xi. The plug-in estimate of T(p) given the data 
X ~ -  ( X l , . . .  , x n )  is 

(2.2) Tr, : T(en(X)). 

Suppose Tn is an asymptotically normal estimator of T(p), i.e., suppose the distribu- 
tion of nl/2(Tn - T(p)) tends to Af(0, a2). The jackknife is a computational technique 
for estimating a2: one transforms the n original data points into n pseudovalues and 
computes the sample variance of those pseudovalues. 

Given the data x = xa, x 2 , . . . ,  xn, the jackknife pseudovalues are 

Qni = nTn(en) - (n - 1)T(gni ) i = 1, 2 , . . . ,  n 

with s as in (2.1) and 

1 
(2.3) = 5(x ) 

jr 

The jackknife variance estimator is 

(2.4) V j a c k ( X l , X 2 , . . . , X n )  -- _ _  

n 

1 E ( Q n  ~_Qn)2 
n - 1  

i=1 
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where Qn = 1 ~ Qnj. The  variance es t imator  vjack is said to be consistent if v j~k  --~ a 2 
n 

almost surely as n --* c~. Sufficient condit ions for the consistency of V j a c k  a r e  given in 
terms of the functional  differentiability of T. An early result of this kind states  tha t  v j~k  
is consistent if T is s t rongly Fr~chet differentiable (Parr  (1985)), and it is now known 
tha t  vja~k is consistent even if T is only continuously Gs  differentiable as defined 
in Shao (1993). 

A functional  derivative of T at  p, denoted  OTp, is a linear functional  tha t  best  
approximates  the behavior  of T near  p in some sense. For instance, a functional  T on 
the space of bounded  signed measures At  (X) is Gdteaux differentiable at  p if there  exists 
a continuous linear funct ional  OTp on At  (X) such tha t  

lim I t - l (T(p  + tin) - T(p) ) - OTp(m)l = 0 
t---*O 

for all m E A t ( X) .  The  concept  of Hadamard  differentiabili ty is more relevant to statis- 
tical asymptotics ,  for the f luctuat ions of T(Cn) about  T(p) are asymptot ica l ly  normal  if T 
is Hadamard  differentiable at p. A functional  T : :P(]~) -~ ~ is Hadamard differentiable 
at p if there  exists a continuous linear functional  OTp on At  (lt~) such tha t  

lim ]t-~(T(p + trot) - T(p) ) - 0T,(m)l = 0 
t---*O 

whenever {mt}tcR is such tha t  limt--.o mt = m and mt(]~) = 0 for all t, the topology 
on At (R)  being the one induced by the norm Ilmll = suptcR{Im((-oo,  t])l}. If T is 
Hadamard  differentiable at p, the variance of nl/2T(en) tends  to 

(2.5) = Epr 

as n --* cx~, where Cp(x) is the influence function 

(2.6) Cp(x)---OTp(6(x) - p )  

(this can be shown via the Del ta  Method  using Donsker 's  theorem (van der Waar t  
(1998))). The  infinitesimal jackknife estimator (Jaeckel (1972)) of a 2 is obta ined by 
subst i tu t ing the empirical measure en for p in (2.5): 

E 2 (2.7) vijack = 

3. Functions of the mean 

When  q is a measure,  we denote  f xq(dx) by ~ if the integral is defined. Let  g E 
C 1 (l~) and let 

T(m) = 9(m) 

be defined for all finite signed measures m with finite first moment .  The  functional  
derivative at m of T,  evaluated at  q, is OTm(q) = g ' (~ )~ ;  the influence function (2.6) 
is Cm(x) = g ' (~) (x  - ~ ) .  Suppose tha t  Xl ,X2 , . . .  are iid p, and p has a finite second 
moment .  Let  Tn denote  the plug-in es t imator  defined in (2.2). Th en  the asymptot ic  
variance of nl/2(Tn - T(p)) is 

(3.1) 
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Let Vhack and voa~k denote the jackknife and infinitesimal jackknife variance estimates 
of ~2. 

PROPOSITION 3.1. I f  g~ is Hhlder continuous of order h > 1/2 (with global Hhlder 
constant) and p has a finite moment  of order 2 + 2h then 

vh.~k - Vir  = O ~ ( n - a ) .  

PROOF. Setting A , i  = (Q , j  - Q~) - r (xi), formula (2.4) for vh,~k yields 

E 2 1 E 2 2 u i n 
(3.2) Vjack e . r  ~ " r 1 6 2  1 2 

i = 1  i----1 

The second te rm on the right hand side of (3.2) is Op(1/n)  since 

n 
E 2 1 _ t - - 2  ~" r  -----n r = nl E g ( ~ n )  (x, _ ~__~n)2 

i = 1  i = 1  

converges almost surely to a 2. 
To control the last two terms on the right hand side of (3.2) we need a bound on A~i. 

Recall the nota t ion eni of (2.3). Since g is differentiable, g(e--~-)-g(K~',i) = g'(~ji) (e-~--K~-ni) 
for some ~/ji between ~ and c-~-, so tha t  

n n 

Q n i -  Q--~- n -  1 E ( g ( ~  ) _ g(-g~7~i))= n -  1 Eg , (~? j i ) (  ~ _-g-~7~i). 
n n 

j = l  j : l  

1 Therefore, since r (xi) = g~(-~n)(Xi - -C~) = n ~ j  g'(K-~n)(X, - x j) ,  

n n 
A~i -- (O~, - Qn) - r  - n - 1 ~-~g,(Tlhil(e__ ~ _ ~7~i1 -1 ~g ' (e - -~ l (x ,  - 

n n 
j = l  j = l  

n 

- s E ( v ' ( , J , )  - v ' ( ~ . ) ) ( x ,  - ~ j ) .  
- -  / t  j = l  

x j )  

But  g' is Hhlder continuous of order h and [~ji - ~ l  < max{l~-~ - K~nh [K~7,i - ~ l } ,  so the 
identi ty (n - 1)(en - e, i)  = 6x. - en implies tha t  

Ig' (~j i )  - g ' ( ~ ) l  -< c(J~--~ - ~ l  h + J ~  - ~ l  h) < c ( n  - 1 ) - h ( l ~  - x j i h +  I~ .  - x i l h ) ,  

where C is a global Hhlder constant  for gL It follows tha t  

n 

I A n i l  = C ( n -  1) - h l  E ( I ~ n  -- X j l  h -}-I~-nn-- x i l h ) (F~n  - X j l  -{- I~-nn -- Xi[ ). 
j = l  

With  this bound on Ani, and assuming tha t  p has a finite moment  of order 2(1 + h), it 
may  be shown tha t  

n 

n i = 1  
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and then, by the Cauchy-Schwartz inequality, that 

[ s = O p ( n - h ) -  
n 

Substituting the preceding estimates in (3.2) completes the proof. [] 

Consider g(x) = x - sgn(x)x 2. This function has a Lipschitz continuous derivative 
but  does not have a second-order derivative at 0. By Proposition 3.1, 

Vjack -- Vijack = Op(1/n). 

However, for some population distributions having mean 0, one can prove that Vijac k is 
not asymptotically normal, and simulations suggest that vj~ck-  Vboot is Op(1/V/~) rather 
than Op(1/n). This example shows that vj~ck is more closely related to vijack than it is 
t o  Vboot. 

4. Trimmed L-statistics 

Suppose that  g : (0, 1) ~ ]R is supported on [a, 1 - a] for some 0 < a < 1/2, and let 

(4.1) L(p) = p -1  (s)e(s)ds. 

Here p - 1  denotes the quantile function for p, i.e., P - l ( s )  = min{x : P(x)  > s} for 
0 < s < 1 where P denotes the cdf of p. A plug-in estimate for L is called a trimmed 
L-statistic, or a trimmed linear combination of quantiles. 

If the weight function ~ is continuous then L is Hadamard differentiable at all p C 
P(I~) (see, e.g., Lemma 22.10 of van der Waart (1998)), and so the L-statistics are 
asymptotically normal (an original reference is Stigler (1974)). The asymptotic variance 
a2 of the L-statistics may be estimated by vjar which converges almost surely to if2 if g is 
continuous (Parr (1985), Shao and Tu (1995)). The jackknife and infinitesimal jackknife 
would seem to be the only nonparametric methods of consistent variance estimation for 
L-statistics, aside from the bootstrap (Parr and Shucany (1982)). 

We turn now to the question of the asymptotic normality of vj~ck. In this regard, a 
variant of the L-functional (4.1) has been treated in the literature, namely 

(4.2) s = / xg(P(x))p(dx). 

If P is continuous and strictly increasing then/2 of (4.2) equals L of (4.1). Beran (1984) 
proves that vjack for s is asymptotically normal--and so is Vboot--if ~ is continuously dif- 
ferentiable and p has bounded support. Section 2.2.3 of Shao and Tu (1995) incorrectly 
claims that Vjack for s is asymptotically normal if g is Hhlder continuous of order greater 
than 1/2, and it also wrongly claims that the asymptotic variance equals Var(r where 
r is the influence function of s A detailed discussion of those errors is given in an un- 
published technical report (Gottlieb (2001)). Nevertheless, a reworking of Definition 2.6 
and Theorem 2.7 in Shao and Tu (1995) leads us to the following general proposition, 
which will presently be applied to the case where the T(en) are L-statistics: 
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PROPOSITION 4.1. Let en denote the empirical distribution of n lid samples from 
p, and let Vjack and vij~ck denote the jackknife and infinitesimal jackknife estimates of 
the variance of T(en). 

Let IIq' - qN denote the supremum of the absolute value of the difference between the 
cdf's of q' and q. Suppose that there exist positive constants C, 5, and h such that 

(4.3) T(q') = T(q) + OTq(q' - q) + n(q ' ,  q) 

for  all q', q with I[q' - PN, I[q - Pll < 5, where the remainder In(q', q)l <_ CIIq '  - qll l+h. 
Then 

v j ~ k  - vija~k = O p ( n  - h )  

i f  vij~ck is bounded in probability. 

The straightforward proof of this proposition proceeds like the proof of Proposi- 
tion 3.1 above, except that (4.3) is used to bound An~ in (3.2). 

Now, l e t / :  be a tr immed L-functional of the form (4.2) whose weight function s is 
Hblder continuous of order h. Upon integrating the right hand side of (4.2) by parts, 
it becomes easy to verify that s admits the expansion (4.3) near any p. Since Vijack 
converges almost surely, Proposition 4.1 implies that Vjack and Vijack are asymptotically 
equivalent. 

This equivalence allows us to conclude that Vjack is asymptotically normal for many 
L-functionals, for Gardiner and Sen (1979) have found hypotheses that guarantee the 
asymptotic normality of vijack for generalized L-functionals of the form (4.1). They 
begin by assuming that the cdf P of the population distribution is continuous. In this 
case  

Vijack = leone 2~,, = ] ]  ~(Pn(y))[Pn(y A z) - Pn(y)Pn(z)]g(Pn(z))dydz. 

In order to make contact with the work of Gardiner and Sen (1979), let us suppose that  
P is continuous and strictly increasing. Their hypotheses are general enough to apply 
to non-trimmed L-statistics, but too complicated to be repeated here. Suffice it to say 
that  their theorem applies under our current assumptions that  g is trimmed and that 
P has no jumps or flats, if it is assumed in addition that P does not have very heavy 
tails and that  g is piecewise continuously differentiable with Hblder continuity of order 
greater than 1/2 at the cusps. (Imagine, for example, a piecewise-linear g whose graph 
is shaped like a desert mesa; this is one of the weight functions recommended in Stigler 
(1973) for smoothly tr immed means.) In these cases vj~k is asymptotically normal as 
well, by Proposition 4.1. 

Acknowledgements 

The author would like to thank Steve Evans for his advice and encouragement, 
and also Rudolf Beran. Support from the ESI and WPI in Vienna and the START 
project Nonlinear Schrbdinger and quantum Boltzmann equations (FWF Y-137) is ac- 
knowledged. 

REFERENCES 

Beran, R. (1984). Jackknife approximations to bootstrap estimates, Ann. Statist., 12(1), 101-118. 



ASYMPTOTIC EQUIVALENCE OF JACKKNIVES 561 

Efron, B. (1992). Jackknife-after-bootstrap sample errors and influence functions, J. Roy. Statist. Soc. 
Ser. B, 54, 83-127. 

Gardiner, J. C. and Sen, P. K. (1979). Asymptotic normality of a variance estimator of a linear com- 
bination of a function of order statistics, Zeitschrift fiir Wahrscheinlichkeitstheorie und Verwandte 
Gebiete, 50, 205-221. 

Gottlieb, A. D. (2001). Asymptotic accuracy of the jackknife variance estimator for certain smooth 
statistics (preprint), http://lanl.arxiv.org/abs/math.PR/0109002 

3aecket, L. (1972). The infinitesimal jackknife, Bell Laboratories Memorandum, MM 72-t215-11. 
Parr, W. C. (1985). Jackknifing differentiable statistical functions, J. Roy. Statist. Soe. Ser. B, 4"/'(1), 

56-66. 
Parr, W. C. and Shucany, W. R. (1982). Jackknifing L-statistics with smooth weight functions, J. Amer. 

Statist. Assoc., 77, 629-638. 
Shao, J. (1993). Differentiability of statistical functionals and consistency of the jackknife, Ann. Statist., 

21(1), 61-75. 
Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap, Springer, New York. 
Stigler, S. M. (1973). The asymptotic distribution of the trimmed mean, Ann. Statist., 1, 472-477. 
Stigler, S. M. (1974). Linear functions of order statistics with smooth weight functions, Ann. Statist., 

2, 676-693. 
van der Waart, A. W. (1998). Asymptotic Statistics, Cambridge University Press, Cambridge. 


