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A b s t r a c t .  This  paper  is concerned with cross-val idat ion (CV) cr i ter ia  for choice of 
models,  which can  be regarded as approx ima te ly  unbiased es t ima tors  for two types  
of risk functions. One is AIC type  of risk or equivalent ly the  expec ted  Kullback-  
Leibler  d is tance  between the  d is t r ibut ions  of observat ions under  a cand ida te  model  
and  the  t rue  model.  The  other  is based on the expected  mean squared error  of  
predict ion.  In this  paper  we s tudy  asympto t i c  proper t ies  of CV cr i ter ia  for selecting 
mul t ivar ia te  regression models  and  growth curve models  under  the  assumpt ion  t h a t  
a cand ida te  model  includes the  t rue  model.  Based on the results,  we propose  thei r  
corrected versions which are more near ly  unbiased for their  risks. Through  numerical  
exper iments ,  some tendency  of the  CV cr i ter ia  will be also pointed.  

Key words and phrases: CV cri ter ion,  correc ted  versions, growth curve models,  
model  selection, mul t ivar ia te  regression models,  risk. 

1. Introduction 

This paper is concerned with cross-validation (CV) criterion for choice of model (see, 
e.g., Stone (1974)) which could be considered as an approximation for a risk. We consider 
two types of risks for selecting multivariate regression and growth curve models. One is 
(i) AIC type of risk or equivalently the expected Kullback-Leibler distance between the 
distributions of observations under a candidate model and the true model. The other is 
(ii) the expected mean squared error of prediction. 

CV criteria for the risks (i) and (ii) have used as alternatives to AIC (Akaike (1973)) 
and Cp (Mallows (1973)), respectively. It is known (Stone (1977)) that  the AIC is 
asymptotically equivalent to the CV criterion for the risk (i) in the i.i.d, case. Some 
corrected versions of AIC and Cp have been proposed in multivariate regression models 
by Sugiura (1978), Berdrick and Tsai (1994), Fujikoshi and Satoh (1997), and in the 
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growth curve model by Satoh et aL (1997), etc. These corrections are intended to 
reduce bias in the estimation of risks. The purpose of this paper is to study some 
refinement on asymptotic behaviors of the CV criteria in the two important multivariate 
models, i.e., multivariate regression models and growth curve model. More precisely, 
we derive asymptotic expansions for the bias terms in the CV criteria for overspecified 
model including the true model. The results reveal some tendency of the CV criteria. 
Further, using the results we propose corrected versions of the CV criteria, which are 
more nearly unbiased and which provided better model selections in small samples. 
Through numerical experiments it is shown that  our corrected versions are similar to 
asymptotic behaviors of the corrected AIC and Cp. In general, CV criteria might be 
used for more complicated models. The tendency of CV criteria pointed in this paper is 
expected to be useful for such models. 

The present paper is organized in the following way. In Section 2 we state two types 
of risks and the corresponding CV criteria. In Section 3 we obtain corrections of CV 
criteria for selecting multivariate regression models. In Section 4 we obtain corrections 
of CV criteria for selecting growth curve models. Some numerical studies are also given 
to see how well our corrections work. 

2. Risk functions and CV criteria 

Let Yl , . . .  ,Yn be independent p-dimensional random variables, 
( Y l , ' ' "  , Y n )  t" 

expressed as 

and let Y = 
Suppose that  under a candidate model M, (-2)log-likelihood can be 

g(o) = E ( - 2 ) l o g  f(Yi; r/i, E) 
i=1 

n 

i = l  

where O is the set of unknown parameters under a candidate model M, and E[y i I M] = 
r/i, Var[yi I M] = E. Consider 

(2.1) z a(o) = E* 

where E* denotes the expectation with respect to the true distribution of Y. Let g(Y) 
be the density function of Y under the true model M*. Then, note that  2 times the 
Kullback-Leibler distance between the distributions of Y under the true model M* and 
a candidate model M can be expressed as 

AA(O) + 2E* [log{g(Y)}]. 

The second term in the above expression is common for different candidate models, and 
so we may ignore the second term when we are interesting in comparison with different 
models. Let E*[yi] = r/*, Var*[yi] = E*. When M* is normal, we have 

AA(O) = nlog IE[ + n t r ( E - 1 E  *) 
n 

+ E t r{E- l ( r / ;  - r/i)(r/; - r/i)' } + nplog 2~r. 
i=1 
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A well known AIC type of risk is defined by 

(2.2) R A  ~-" E* [A A (E))], 

where O is the maximum likelihood of O under a candidate M. Akaike (1973) proposed 
AIC = g(~) + 2rn, where m is the dimension of O under a candidate M, as an estimation 
for (2.2). Here, we are interesting in examining the corresponding CV criterion 

n 

: E 
i=1 

where (~[-i] is the maximum likelihood estimation of O under M, based on the observation 

matrix Y(-0 obtained from Y by deleting Yi. Similarly we use the notations,/li[-il ,  E[-~], 
etc. 

On the other hand, we may consider the risk R p  based on the standardized mean 
squared error of prediction. Let 

Ap(O)  = E* tr{E*-l(Yi - ~Ti)(Yi - ~?i)' 
Li=I 

~2~ t r{E*-I  * �9 
= - - nil'}  + rip. 

i=1 

Then the expected mean squared error, Rp  is defined by 

(2.3) = E* [zxp(o)]. 

Mallows' Cp in the usual univariate regression model can be regarded as an estimation 
for (2.3). Let ME be the full model of Y, which uses all the explanatory variables in the 
observed data set. Then we define the corresponding CV-criterion as follows: 

n 

CVp = E tr{Eg~-i] (Yi -- ili[-i])(Yi --/1i[-i l)'}, 
i=1 

where EF[-~] is the unbiased estimator for E *-1 under the full model MF based on 

the observation matrix Y(-i).  Note that  we have used ~]F[-~] not EEl-i] which is the 
maximum likelihood estimation of E* under MF based on the observation matrix Y(_~), 

because if we use EF~-~}, CVp is not asymptotically equivalent to Cp. 
One of our interests is to s tudy unbiased properties of CVA and CVp as estimators 

of RA and Rp,  respectively, in two important multivariate models. 

3. Multivariate regression models 

Suppose that a candidate model M is defined by multivariate normal regression 
model with k explanatory variables, i.e., 

M : Y ~ Nn• E |  
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where B is a k • p unknown parameter matrix and X -- (X l , . . . ,  x n ) '  is an n • k matrix 
with rank k. Then, the maximum likelihood estimators of B and E are defined by 

13 = ( X ' X ) - I x ' y ,  E = 1 y ' ( I n  - P x ) Y ,  
n 

where P x  = X ( X I X ) - I X  ' denotes the projection matrix to the space spanned by the 
columns of X. Let Y(_i) and X ( - i )  be the matrices obtained from Y and X by deleting 

their i-th rows, and/~[-il and F,[_i] be the maximum likelihood estimators of B and E, 
based on the observation matrices Y(- i )  and X(-i) ,  i.e., 

- 1  ~ 1 
~[-i]---- ( X ( - i ) X ( - i ) )  X ( - i ) Y ( - i ) '  ~[-i] -- n -  1 y ( ' - i ) ( In -1  - - P x ( _ , ) ) Y ( - i ) .  

Letting Yi[-i] = 131-i]xi, we can write the CV criteria as 

n 

(3.1) C V A  = E[loglE[_i] l  + tr{E~_lil(yi - Y i [ - i l ) (Y i  - ~)i[-il)'}] + nplog 27r, 
i = l  

n 

(3 .2 )  c v p  = Z - - 
i = 1  

respectively. Here, EF[-il  is defined by 

~F[--i] = 1 n -- kF - - p  - 2 Y ( ' i ) ( I n - 1  -- P x ( _ , ) ) Y ( - i ) .  

In this case, we assume the full model which uses all the explanatory variables in the 
observed data set is expressed as 

M F  : Y "~ N n x p ( X F B F ,  E F  ~ In) ,  

where, without loss of generality, X F  may be an n • k f  matrix decomposed as X F  = 
(X, XR). Note that  E* - -1  E . - 1  [EF[_~I ] = (see Lemma 3.2) when the full model includes 

the true model. Using relations X ~ _ i ) X ( _ i )  = X ' X  - x i x { ,  X~_i )Y(_ i )  = X ' Y -  x i y {  
and a general formula of inverse matrix (see, e.g. Siotani et al. (1985)), we can rewrite 
Yi - ~]i[-i] as follows. 

1 
Yi - Yi[-i] -- {1 - ( P x ) i i }  (Yi - Yi) ,  

where Yi = /3xi and ( P x ) i i  is the i-th diagonal element of P x .  Moreover, using the 
same reductions, we can rewrite E[_i] as 

(3.3) 

Therefore, 

n 

(3 .4)  

1 
El-i] - n -  1 

1 ] 
{1 - (Px)i~} (Yi - Y i ) ( Y i  - Y i ) '  �9 

E tr{E~li] (Yi - ~li[-i])(Yi -~ l i [ - i ] ) ' }  
i = 1  
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(3.5) 

n (n - 1)(Yi - Y/ ) 'E- : (Yi  - 9i) 

= E {1 - (Px) i~}[n{1  - (Px )~}  - (Y~ - Y i ) ' ~ - l ( y i  - -  Y i ) ] "  i=1  
n 

E tr{EF~-i] ( Y i -  Yi [ - i ] ) (Yi -  Yi[-i])'} 
i = l  

n n - k s  - p - 2  

= E (n - k s  - p - 1){1 - (Px)i i}  2 
i=1  
[ 

x I ( y  i ^ , - - 1  - - 

[ 
{ ( Y i  - -  ~ ) i ) ' ~ F l ( y i  - -  Y F i ) }  2 + 

(n - ky - - p -  1){1 -- (Pz . )~i}  - (Yi - ~]Fi) '~FI(y i  -- ~]Fi) 

Here, (PxF) i i  is the i- th diagonal element of P x F ,  and ~)Fi ---- / ~ X g i  and EF = 
( Y  - I 3 F X s ) ' ( Y  - 1 3 y X F ) / ( n  -- kF -- p -- 1), where /~s ---- ( X ' F X F ) - I X ' F  Y and XF  = 
( X F 1 , . . . ,  XFn) ' .  Note tha t  we can express (3.1) and (3.2) as the ones with less compu- 
tat ion by subst i tut ing (3.3), (3.4) and (3.5) to (3.1) and (3.2), since it is not necessary 
to calculate B[_i], E[_i], BF and EF[-i] ,  repeatedly. 

Now we examine biasedness properties of these criteria under  the assumption tha t  
the  candidate  model  M includes the true model M*. From our assumption we can write 
a s  

M* : Y ,., Nnxp(Xl~* ,  E* | In). 

Under  this assumption,  the risks (2.2) and (2.3) can be calculated as 

RA = E*[nloglEl]  + np(n  + k) n p k -  1 + np l~  

R p  = p(n  + k).  

We use the following lemma: 

LEMMA 3.1. Suppose that Y is distributed as N,~• E* | I,~). Then 

(i) /~[-i] ~ ikxp(B* ,  E* @ ( X ~ _ i ) X ( _ i ) ) - l ) ,  

(ii) (n - 1)E[-i] "~ W p ( n  - k - 1,  E * ) ,  

(iii) /~[-i], E[-i] and Yi are mutua l ly  independent ,  and similarly/~[_i],  EEl-i] and 
Yi are mutual ly  independent.  

(iv) E* [log ILl - log [E[-i] I] = ln-~{Pk + �89 + 1)} + O(n-3) .  

PROOF. The  first three results (i)~(iii) follows for a general result in mult ivariate 
normal  regression model, see, e.g., Anderson (1984). As for the result (iv), it can be 
obtained in the following way. Let S be distr ibuted as Wp(m, Ip), and let 

s = mlp + 

Then we have 

E[log IS]] = E t r (V)  - ~ t r (V 2) 
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( )  ] 1 1 3 1 t r (va)  + O(m_3) + 3  ~ tr(V3) - 4 

= - 21mp(p + 1) 1 12miP(2p 2 + 3p - 1) + O(m-3) .  

Using the above results, we obtain (iv). 

Moreover, we use the following lemma (see, e.g., Siotani et al. (1985)) in this and 
next sections. 

U-1 
LEMMA 3.2. Suppose that U is distributed as Wp(m, E). Then the expectation of 
can be expressed as follow. 

E(U_I )  _ 1 (m > p + 2). 
m - p - 1  

By using Lemmas 3.1 and 3.2, we can obtain the following expressions for two biases. 

BA = RA - E* [CVA] 
1 

= ~n{2kp + p(p + 1)} 

np(n § k) (n - 1)p ~ 1 
n - p - k - 1 - n ---p - ~ 2 i = l  {1 -- (Px)i i}  -'[- O ( n - 2 ) '  

+ 

B p  = R p  - E* [CVp ]  

n 1 

= P ( n + k ) - P E  { 1 - ( P x ) i i } '  
i=1 

where (A)ii denote the i-th diagonal element of a matrix A. In general, 0 < (Px)ii  <_ 1. 
Here it is assumed that 0 _~ (Px)ii  < 1. Therefore, we propose new corrections of CVA 
and C Vp  in multivariate linear model defined by 

(3.6) CCVA = eVA -Jr ~--~{2kp + p(p + 1)} 

np(n + k) (n - 1)p x -L, 1 

+ 2_, {1 - (Px) i i } '  n -- d l  ~ d l  "~']- i=1 

n 1 

(3.7) c c v p  = CVp + p(n + k ) -  P E  {1 - (Px) i i } '  
i=1 

where dl = k + p + 1. From our construction it holds that if a candidate model M is an 
overspecified model, then 

E*[CCVA] = RA + O(n-2),  E*[CCVA] = Rp.  

Next, we consider the properties of biases of CVA and CVp. Noting that y]~i~=l 1/ 
n 

{1 - (Px)i i}  >_ ~i=1{1 + (Px)i i}  = n + k, we have 

1 n p ( n + k )  (n 1)p ~-~ 1 
~-n{2kp+p(p+ 1)} + n - dl n---- d-1 ~ / - - ~ 1  i=1 {1 - (Px)i i}  <- O, 
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Table 1. Risks and average biases by eight criteria in 1,000 repetitions; n = 30, p = 6, the true 
model = {1, 2, 3}. 

AIC type Criteria 

Risks Biases & Frequencies (%) 

Model RA CV A CCV A AIC CAIC 

{1} 594.41 -8 .17  -5 .23  14.78 -4 .86  

(18.6) (9.5) (o.o) (4.8) 
{1, 2} 605.04 -12.49 -7 .46  21.03 -7 .26  

(oo) (o.o) (o.o) (o.o) 
{1,2,3}* 582.23 --9.97 --1.14 37.38 -1 .62  

(81.1) (89.3) (82.3) (95.0) 

{1,2,3,4}* 599.72 -13.89 --0.64 50.78 -1 .33  

(0.3) (1.2) (17.7) (0.2) 

Cp type Criteria 

Risks Biases & Frequencies (%) 

Model Rp CVp CCV p Cp CCp 

{1} 279.90 -11.03 -10 .59  -42.71 -36 .08  

(00) (o.o) (o.o) (o.o) 
{1,2} 281.35 -18.94 -17 .55  -38.78 -34.35 

(0.0) (o.o) (o.o) (0.0) 
{1,2,3}* 198.03 -3 .21 0.01 --2.24 -0 .03  

(90.5) (87.6) (79.8) (86.9) 

{1,2,3,4}* 204.01 -5 .03  0.05 0.01 0.01 

(9.5) (12.4) (20.2) (13.1) 

*denotes models including the true model. 

543 

n 1 

{ 1 - ( P x ) . }  < 0  

From these results, we can see that  CVA overestimates asymptot ical ly  for RA and C V p  
overestimates exactly for Rp under overspecified models.  

Tables 1 and 2 give s imulation results of risks, average biases and frequencies of 
model  selected in two cases. Let X = ( x O ) , . . .  , x(k)).  A candidate  model  { j }  means the 
model  when we use x(j)  as the regressors. Similarly, the candidate model  {i,  j }  means 
when we use (x(i) ,  x(j)). The first case in Table 1 considers only  the  hierarchical models.  
In this case, the true model  is {1, 2, 3}. The next case in Table 2 is a normal multivariate 
model  whose true model  is {1, 2}. In both  cases n = 30 and p = 6. In order to compare 
with the four well known criteria: AIC, CAIC, Cp and CCp. These criteria are defined 
by 

{ 1  } 
A I C = n l o g l L l + n p ( l o g 2 n + l ) + 2  pk+-~p(p+l)  , 

n(n + k)p 
CAIC = nlog IEI + nplog 21r + 

n - k - p - l '  
Cp = (n - kF) tr(EF 1~,) + 2kp, 
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Risks and average biases by eight criteria in 1,000 repetitions; n = 30, p = 6, the true 

AIC type Criteria 

Risks Biases & Frequencies (%) 

Model RA CVA CCVA AIC CAIC 

{1} 620.17 -5.74 -2.98 15.20 -4.43 

(o.o) (o.o) (o.o) (o.o) 
{2} 588.07 -5.99 -3.14 15.35 -4.29 

(1.7) (1.1) (0.0) (0.1) 

{3} 623.84 --5.22 --2.39 15.61 --4.02 

(o.o) (o.o) (o.o) (o.o) 
{1,2}* 567.59 -5.81 -1.02 26.97 -1.31 

(97.6) (97.4) (86.1) (99.1) 

{1,3} 631.65 -10.18 -5.43 21.82 -6.47 

(o.o) (o.o) (o.o) (o.o) 
{2,3} 599.36 -9.69 --4.72 22.36 --5.93 

(o.o) (o.o) (o.o) (o.o) 
{1,2,3}* 583.11 --8.26 -0.09 38.20 --0.80 

(0.7) (1.5) (13.9) (0.8) 

Cp type Criteria 

Risks Biases • Frequencies (%) 

Model R p CVp CCVp Cp CCp 

{1} 445.68 -12.53 -12.22 -85.23 -81.03 

(o.o) (o.o) (o.o) (o.o) 
{2} 254.51 -5.20 -4.81 --27.97 -23.77 

(o.o) (o.o) (o.o) (o.o) 
{3} 479.85 -10.45 -10.09 -97.05 -92.85 

(o.o) (o.o) (o.o) (o.o) 
{1,2}* 191.88 --1.50 --0.28 --2.42 --0.32 

(91.4) (87.1) (81.7) (88.1) 

{1,3} 445.42 --37.70 -36.51 -80.85 --78.75 

(o.o) (o.o) (o.o) (o.o) 
{2,3} 257.17 --11.05 -9.70 -24.37 --22.27 

(o.o) (o.o) (o.o) (o.o) 
{1,2,3}* 197.97 -2.66 0.14 -0.03 -0.03 

(8.6) (12.9) (18.3) (11.9) 

Table 2. 
model = {1, 2}. 

*denotes models including the true model. 

CCp = (n - kg)  t r (EF1E)  + 
{2(n - kg)k  - (p + 1)(kg + k)} 

n - - k F  - - p - -  1 

where EF ---- Y ~ ( I n -  P x F ) Y / n .  From these tables, we can see tha t  CCVA and C C V p  are  

bet ter  estimators to their  risks than  CVA and CVp when a candidate  model includes the 
t rue model, respectively. Fur thermore ,  CCVA improves the biases even if a candidate  
model  does not include the t rue  model. On tile other  hand,  it notes tha t  CVA and 
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CVp become overestimations for their risks. From our simulation results, it can be also 
understood that our assertion is right. Making an additional remark, we can see that 
CCVA and CAIC, CCVp and CCp,  have similar performances, respectively. 

4. Growth curve models 

Suppose that a candidate model M is defined by the growth curve model, which was 
proposed Potthoff and Roy (1964), with q within-individual explanatory variables, i.e., 

M : Y '~ N n •  E | In) ,  

where E is a k x q unknown parameter matrix and B is a q x p within-individual design 
matrix with rank q. Here, A - ( a l , . . . , a ~ ) '  is an a x k between-individual matrix 
with rank k indicating whether each of individuals belongs to the j - th  (j = 1, 2 , . . . ,  k) 
population. Namely, if Yi belongs to the j - th  population, then the j - th  element of ai is 
1 and the others are 0. Therefore, without loss of generality, let nj  denote the sample 
size of the j - th  population, A is given by 

/ lnl 0 ... 0 ) 
0 ln2 "'" 0 

A ~ . . . �9 �9 

0 0 "'" lnk 

Then the maximum likelihood estimators of E and E are defined by 

-3 = ( A , A ) - I A ,  Y S - 1 B , ( B S - 1 B , ) - I ,  

= l ( y  _ A E B ) ' ( Y  - A '~B) ,  
n 

respectively, where S = Y ' ( I n  - P A ) Y / ( n  -- k). Let ~[_i1 and E[_i] be the maximum 
likelihood estimators of E and E, based on the observation matrices Y(- i )  and A( - i ) ,  i.e., 

A t - - 1  t - - 1  t - - 1  Bt)-I E[_i] = (A(_ i )A(_ i ) )  A(_ i )Y(_ i )S[_i]B (BS[_i] , 

~. 
E( - i )  - n-1 1 (Y(- i )  - A(_i)-[_i]B) (Y(-i)  - A ( - i ) ~ [ - i ] B ) ,  

respectively, where S[-i] = Y"(-i ( In--  1 - P A ( _ . , ) ) Y ( - i ) / ( n - k  - 1). Let Yi[-i] = B'~''-i[-i]ai . -  
In this model, CV-criteria can ~e written as 

(4.1) 

(4.2) 

n 

CVA = E [ l o g  [E[-i]I + tr{EU*~] ( Y i -  Y i [ - i ] ) ( Y i -  ~/i[-i])'}1 + nplog 27r, 
i = 1  

n 

c v p  = Z (v,  - u,E-ij)(vi  - YiI- , l ) '} ,  
i = l  

respectively, where 

1 n - k - 1  
= - PA(_,))Y(-,) = _ 2s[- i. S[-i] n - p - k - 2  n - p -  k 
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By using the  relations ]~_i)Y(_i) = Y ' Y -  YiY~, A~- i )A(- i )  = A ' A -  aia~ and 

A' i Y (~ )  = A ' Y  - aiy~ in the former sections, we can rewrite S[_i], F-[_i] and E[-il as (_)  - 

i n  the following forms. 

1 ] 
S[-il - n - k - 1 (n - k)(1 - (PA)ii} (Yi -- f l i)(Yi -- fli)' , 

i~ r,-1 BI~BS-1  .,l~-I -=[-i] = (A pA - a i a ~ ) - l ( A  ' Y  - aiYi)~[_i] ( [_i] z~ ) , 

~[_i1 _ 1 n - 1 {(Y - A~[_i]B) ' (Y  - A~[_i]B) 

- - B =i_~l~,)(u~ - B :.i_~l~,) }. 

Now we examine biasedness properties of these criteria under  the assumption tha t  
candidate  model  M includes the t rue  model  M*. Since M includes M*, we can write as 

M* : Y ~ Nn• E* | In). 

Then  the risk functions (2.2) and (2.3) can be calculated as 

RA = E*[nlog ]311 + nplog 27r 

n2(p - q) nq(n - k - 1)(~ + k) + + 
n - p + q - 1  ( n - k - p - 1 ) ( n - k - p + q - 1 ) '  

kq(n - k - 1) 
R p  = n p  + 

n - k - p + q - l "  

For the derivation, see, e.g., Satoh et al. (1997). 
We use the  following lemma (see, e.g., Siotani et al. (1985)): 

LEMMA 4.1. 
posed as 

q 

W - -  q / Wll 
p - q ~kW21 

Then it holds that: 

Suppose that W is distributed as Wp(n, E) and W and E are decom- 

p - q  q p - q  

W 1 2 )  E =  q ~ ~] 11 ~12 ) 
W22 ' p - q ~, E21 E22 " 

(i) Wll.2 -- Wzl  - W 1 2 W 2 2 1 W 2 1  ~ W q ( n  - p W q ,  Y]ql.2), ~-~11.2 = Y]ql -- ~-~q2~-']~21~-]21, 
(ii) w22 ~ wp_q(n ,~22) ,  

(iii) I f  El2 ---- O q x ( p - q )  then W12W221W21, Wll.  2 and W22 are mutually independent 

and W I 2 W ~ I W m  ~ Wq(p  - q, El1), 

(iv) When W22 is given, W12W221/2 ~ N(p_q)• I/2, ~11.2 @ Ip_q). 

Using the canonical form as in Gleser and Olkin (1970), results of Satoh et al. (1997) 
and Lemmas 3.1, 3.2 and 4.1, we obtain the following results. 

n 
1 

(4.3) E E*[log [El-ell] = E*[nlog 13[] - -~{p(p + 1) + 2kq} + O(n-2) ,  
i----1 

n 
(4.4) E E , [ t r ( ~ j d E , )  ] = n ( n -  1 ) ( p -  q) 

i=1 n - p + q - 2  



CORRECTED VERSIONS OF CV CRITERIA 547 

(4.5) 

(4.6) 

~(~ - 1 ) ( n  + 
(~ - k - p - 2 ) ( ~  

~A~ E*[tr{E~li]B'(~[_,]- E*)'aia'i(~[_i]- 
i=1 

_ ( n -  1 ) ( n -  k -  2)q 
- ( n - k  --p---'2~----]~ % ~  q - 2) 

n 

- k - 2 ) q  

- k - p + q - 2 ) '  

S*)BI] 

k +  
j=l nj 1 ' 

E E * [ t r { ~ ( l q B ' ( ~ [ _ i ]  ~ * "  a , , ~  - - - -  } a i  i ( = [ - i ]  - -  ~*)B}]  
i=1 

- (n :)~-= ~ q =  2) k + ~ nj---~- 1 " 
j= l  

Outlines of evaluations are shown in the Appendix. Suppose that n / u j  -- O(1) (1 _< j _< 
k). Then the biases BA and B p  can be evaluated as 

BA : RA -- E* [CVA] 

1 n(p  - q)(p - q + 1) 
= 2--~{p( p + l ) + 2 k q } -  ( n - p + q - 1 ) ( n - p + q - 2 )  

( n -  1 ) (n -  k -  2) 
- ( n + k ) q  ( n - k - p - 2 ) ( n - k - p + q - 2 )  

n (n  - k - 1) 
(~- k - p -  1 ) ( n -  k - p +  q -  1) f 

( n -  1 ) (n-  k -  2)q ~ 
- ( n -  k - ~ - -  2-~--~-=-~:~ q -  2) 7 ~  ~ j - 1  + O(~-2)' 

B p  = R p  - E* [CVp] 

_ kq(p - q) (n - k - 2)q ~-~k 1 
( n - k - p + q - 1 ) ( n - k - p §  - ( n - k - - p - + q - 2 )  jZ~ln j -  1" 

Therefore, we propose new corrections of CVA and CVp in growth curve model defined 
by 

1 n(p  - q)d2 
(4.7) C C V A  = C VA + ~n{p (p  + 1) + 2kq} - (n - d2)(n - d2 - 1) 

(n - 1)(n - k - 2)q f k 1 
- ( n - - ~ - - ~ ) ~ - d 3 - - - l )  \ n §  1 ] j = I  

n (n  + k ) ( n -  k - 1)q + 
( n -  d l ) ( n -  d3) ' 

q { k ( p - q )  k 1 } 
(4.8) C C V p  ~- C V p  ( n - d 3 - 1 )  (n-d3--)  + ( n - k - 2 ) E n j - ~  ' 

j-----1 

w h e r e d l = k + p + l ,  d 2 = p - q + l  a n d d 3 - - k + p - q + l .  In order to obtain more 
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Risks and average biases by eight criteria in 1,000 repetitions; n = 30, p ---- 6, k = 1, 
the true model = {1, 2,3}. 

AIC type Criteria 

Risks Biases & Frequencies (%) 

Model RA CV A CCV  A AIC CAIC 

{1} 594.78 -2.58 -0.55 12.82 -2.14 

(o.o) (o.o) (o.o) (o.o) 
{1,2} 597.07 -2.57 -0.36 14.70 -1.94 

(o.o) (o.o) (o.o) (o.o) 
{i,2,3}* 549.73 --2.82 --0.46 17.64 --0.24 

(88.4) (87.7) (81.5) (89.8) 
{1,2,3,4}* 551.44 -2.99 -0.53 18.46 -0.31 

(11.6) (12.3) (18.5) (10.2) 

Cp type Criteria 

Risks Biases ~ Frequencies (%) 
Model Rp C V p  C C V p  Cp CCp 

{1} 319.99 11.56 11.61 -29.91 --28.83 

(o.0) (o.o) (o.o) (o.0) 
{1,2} 324.29 21.84 21.93 -17.00 -16.50 

(0.o) (o.o) (o.o) (o.o) 
{1,2,3}* 183.35 --0.42 --0.29 -0.06 0.06 

(85.1) (84.8) (79.9) (81.9) 
{1,2,3,4}* 184.27 --0.50 --0.34 0.07 --0.01 

(14.9) (15.2) (20.1) (18.1) 

* denotes models including the true model. 

s imple expressions for C C V  A and C C V p ,  we can  omi t  the n -2  t e rms  in the expressions,  
since they  m a y  be considered to  be  small  in compar i son  wi th  the  correct ions of the  order  
O ( n - 1 ) .  So, 

n 1 ,  
C C V ~  = e V A  -- p(p + 1) -- q ~ n-~. 

j = l  

ccv  = cv,  - q Z 
j = l  nj" 

Next ,  we consider the  proper t ies  of biases of CVA and CVp .  From (4.8), it can  see 
t ha t  the bias of C V p  is a negat ive  valued. Not ing t h a t  )-~in__ 1 1 / (n j  - 1) ~ k / n ,  we can see 
t ha t  the  bias of  CVA is a negat ive  valued. Therefore ,  we can see t h a t  CVA overes t imates  
a sympto t i ca l ly  for _RA and  C V p  overes t imates  exact ly  for R p  under  overspecified models .  

Tables  3 and  4 give s imula t ion  results  of risks, average biases and  frequencies of  
model  selected in the  cases of  nested models.  The  first case is k = 1 and the  second case 
is k = 3. Let  B -- (b (1 ) , . . . , b (q ) ) ' .  T h e  candida te  model  {1} means  the  model  when  

! 
we use b(1 ) as the  regressors.  Similarly, the  candida te  model  {1, 2} means  when  we use 
(b(1), b(2))'. In  b o t h  cases n = 30, p = 6, q = 4 and  the  t rue  model  = {1, 2, 3}. In  order  
to compare  wi th  o ther  s t anda rd  criteria,  we p repa red  the  four ones : AIC and Cp, and  
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Risks and average biases by eight criteria in 1,000 repetitions; n = 30, p ---- 6, k = 3, 
the true model = {1, 2, 3}. 

AIC type Criteria 

Risks Biases & Frequencies (%) 

Model RA e v  A C C V  A AIC CAIC 

{I} 589.23 

{1,2} 595.92 

{1,2,3}* 567.69 

{1,2,3,4}* 574.02 

-3.25 -0.11 19.24 -1.54 

(3.4) (2.1) (0.0) (0.3) 

-4.20 0.03 25.71 -1.29 

(0.0) (0.0) (0.0) (0.0) 
-5.51 -0.38 31.20 --0.52 

(91.9) (91.4) (81.2) (95.1) 
-5.53 0.33 35.29 0.12 

(4.7) (6.5) (18.8) (4.6) 

Cp type Criteria 

Risks Biases & Frequencies (%) 

Model R p CVp CCVp Cp CCp 
{1} 262.65 7.66 8.12 -20.14 -16.57 

(o.o) (o.o) (o.o) (o.o) 
12.64 13.48 -9.84 -8.20 

(0.0) (0.0) (0.0) (0.0) 
-1.32 -0.13 -0.38 0.01 

(88.7) (87.3) (78.8) (82.4) 
-1.22 0.28 0.71 0.46 

(11.3) (12.7) (21.2) (17.6) 

{1,2} 262.31 

{1,2,3}* 19o.23 

{1,2,3,4}* 193.25 

*denotes models including the true model. 
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corrected cr i ter ia  CAIC  and CCp which were proposed  by Sa toh  et al. (1997). These  
cr i ter ia  are defined by  

AIC = ~log 1~1 + ~p(log2~ + 1) + 2 kq + ~p(p + 1) , 

CAIC = n log  t~] + nplog  27r 

n2(p - q) nq(n - k - 1)(n -4- k) 
+ + 

n -  41 (n - d l ) ( n -  d3) ' 

Cp = n t r ( S - l ~ )  + 2kq, 

CCp = n t r ( S - l ~ )  + k (p+ q) - k ( p -  q ) ( n -  k -  q) 
(n - d3) 

From these tables,  we can  see t h a t  CCVA and CCVp are be t t e r  es t imators  to thei r  
risk functions t h a n  CVA and C V p  when  a candida te  model  includes the  t rue  model ,  
respectively. Fur thermore ,  CCVA improves  the biases even if a candida te  model  does 
not  include the  t rue  model .  On the  o ther  hand,  it m a y  be noted  t ha t  CVA and C V p  
become overes t imat ions  for thei r  risks. From our s imulat ion results,  it can be  also 
unders tood  tha t  our  asser t ion is right.  Making  an addi t ional  r emark ,  we can see t ha t  
CCVA and CAIC,  C C V p  and CCp, have similar  per formances ,  respectively. 
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Through the simulating experiments in Sections 3 and 4, we can see that  the correc- 
tions are necessary for CV criteria when the sample size n is small. The bias of Cp under 

overspecified model is small as tr(EF1E) = p, but, the bias of CVp is not so. Under 
overspecified model, the correction CVp is more important than one of Cp. Further, CV 
criteria have a tendency to overestimate their risks, even if it is in case of risk based on 
the Kullback-Leibler distance. This property is different from the one of AIC which is 
based on the Kullback-Leibler distance, because AIC has a tendency to underestimate 
for a risk. Moreover, the corrected versions of CV criteria have the same performances 
as the ones of other standard adjusted criteria, i.e., CAIC and CCp. Our conclusions are 
limited in the multivariate regression and growth curve models. However, we can expect 
that  there are such tendencies for other models. Making an additional remark, we can 
see that  CVp is asymptotically equivalent to Cp by using ~F not EF. Therefore, we 
must be careful when CVp is used, because it has the possibility that  the constant bias 
term is left. 
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Appendix 

The aim of this section is to state outlines of calculations of (4.3), (4.4), (4.5) and 
(4.6). 

A.1 Derivation of (4.3) 
Using the canonical reductions as in Gleser and Olkin (1970), we can write 

( T1ET2 Ok• ) ['2..I._E, 
Y = F1 \ O(n_k)xq O(n_k)x(p_q) 

under model M, where 7"1 : k x k and T2 : q x q are certain non-singular matrices and 
Fx : n x n and F2 : p x p are certain orthogonal matrices. Let Z = F~YF~, then 

E[Z] = ( 0 Ok• Var[vec(Z)] = A |  
O(n-k) xq O(n-k)• 

where (~ = T1ET2 and A = F2EF~. Let us decompose Z and A as 

Z = 

and let 

q p - q  q p - q  
k /tZll Z12 ) q f A l l  A12)  
n k k Z21 Z22 ' A = \ A21 A22 - p - q  ' 

V-~ Z21 (Z21 Z22) :  kY21 V22 

From Gleser and Olkin (1970), the maximum likelihood estimators of O and A are 

~) ~-- Zll - ZI2V221V21, 
n/~ = V + (Y12V221 ~ ! k Ip--q ] Z12Z12 ( V2-21V21 Ip_q ). 
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Further,  

151 = Ir2hr~l  = 1 ~-~[V11.2[IV22 -Jr- Z~2Zx21, 

where Vl1.2 -- Vn -�89 Note tha t  V is dis tr ibuted as Wp(n-k,A).  Then,  from 
Lemma 4.1 (i) and (ii), 

f~112 ~ w q ( n - k - p + q ,  Iq), G2-Wp_q(~,Ip_~), 
where  911. 2 ~ Al11.~2Vll.2AI11~ 2, A11. 2 ~ A l l -  AI2A21A21 and  922 ~ A-1/2(V22 -[- 
Z~2ZI2)A-1/2. Further,  ]5[ can be rewri t ten as 

[51=  (n-k-p+q)q[n4 n - k - p + q X  911.2 [1V22 IEI. 

Therefore 

log t51 = log I~1 + log n-k-p+ql rt~rll. 2 

+log 1(/-22 + q l o g ( n - k - p + q )  
n 

From Lemma  3.1 (iv), 

1 f~,~.~ ] 
E* [log n - k - p + q  

- lnq(q + 1) 

1 
12n2 {q(2q 2 + 3q - 1) + 6q(q + 1)(k + p - q)} + O(n-a), 

1 
- 2 n  ( p  - q ) ( p  - q + 1) 

1 
12n2 (p - q){2(p - q)2 + 3(p - q) - 1} + O(n-a). 

These imply tha t  

E*[log 1511 = log [E*I - l__:_{p(p + 1) + 2kq} - - -  c + o(n-3), 
12n 2 

where 

c--- q(2q 2 + 3 q - 1 ) + 6 q ( q + l ) ( k + p - q )  

+ (p - q){2(p - q)2 + 3(p - q) - 1} + 12q(k + p - q)2. 

Replacing n by n - 1 in the  above result yields 

n*[log ]Ei_ijl] = log [r*l - ~ .  {p(p + 1) + 2kq} 

1 {c + 6p(p + 1) + 12kq} + O(n-3) ,  
12n 2 
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and hence 
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E*[ log  ]E[-i]t]  = E*I log  I L l ]  - 1 ~-~n2 {p(p + 1) + 2kq} + O(n-3).  

This implies (4.3). 

A.2 Derivation of (4.4) 
From Satoh et al. ((1997), pp. 283), we have 

E . [ t r ( ~ _ l E . )  ] = n(p - q) + (n + k ) (n  - 1)q 
n - p + q - 1  ( n - k - p - 1 ) ( n - k - p + q - 1 ) "  

Therefore, replacing n by n - 1 and summing from 1 to n yield the result (4.4). 

A.3 Derivation of (4.5) 
In the computat ion of (4.5), we use notations in Satoh et al. (1997) as 

q p - q  

W = (n - k ) H ' E * - I / 2 S E * - I / 2 H  = q ( Wll W12 ) 
p - q  ~.W21 W22 ' 

Z = ( A ' A ) - I / 2 A ' ( Y -  A E * B ) E  *-1/2 = (Z1 Z2), 

where H = (//1 //2) is a p x p orthogonal matrix and H1 is defined by 

H1 = E * - I / 2 B ' ( B E * - I B ' ) - I / 2 .  

Then W and Z are independent each other and distributed as 

W ~ W p ( n  - k, Ip), Z ~. Nkxv(Okxv ,  I~p). 

We can express ~-1  and (A 'A)I /2(  ~- - S*)BF~ *-1/2 as 

~-1  = nE . -1 /2  H U - 1 H , E . - 1 / 2 ,  

( ) (A 'A)I /2(  ~- - E*)BE *-1/2 = Z \ -W2~ W21 HI '  

respectively, where 

u-l= ( wVI~2 
-w~1w21wVl !2 

On the other hand, note that  

where 

-1 -1 ) 
- W l l 2 W 1 2 W 2 2  

(W22 At-Z~Z2) -1 -t- W221W21W11!2W12W221 

E,  [tr{~_!i]B,(k ~ , ,  , a  _ - - ) a i a ~ ( :  - e * ) B } ]  

E*[tr{~[-lilB,(~ - , , , , a ,  a ,1 /2n = - -  e.., ) V. , ,~t(_i) . ,~(_i))  u g i ( _ i  ) 

x (A{_ i )A(_ i ) ) l /2 (k  - E*)B}], 

! --1/2 I ! --1/2 O~(-o = (A(-0A(- i ) )  a i a ~ ( A ( - o A ( - o )  �9 
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Let W(-i) and Z(-i) be the ones defined from W and Z by replacing n, A and Y to 
n - 1, A(-i) and Y(-i)- Then the previous expression can be computed as 

( n -  1)E* [tr{ ( 1 Iq - 1  ~ - W ( - i ) 2 2 W ( - i ) 2 1  ) W(-li) l l '2(Iq -- W<_i)12W<_i)22 ) 

Z~ )Q )Z( )}1 x - i  i(-i  - i  �9 

If Yi belongs to the j-th population, then 

Qi( - i )  --  d i a g { O , . . . , O ,  (nj  - 1) - 1 , 0 , . . . , 0 } .  

U s i n g  th i s  r e su l t  a n d  L e m m a  4.1 a n d  y i e ld s  t h e  r e s u l t  (4.5).  

A.4 Derivation of (4.6) 
Using the same notations as in Subsection A.3, we can get 

E* [tr{~[-l lB'(~ ~ * ,  , ~  - : ) a , a , ( :  - - = * ) B } ]  

n -  k -  p -  2 E * l t r { ~ - l ]  B ' ( k [ - . i  - , x t g a ,  a ,1/2z-~ 
= n - 1  - - ~'~ } [21(- i )" l ( - i ) )  (,di(-i) 

I A '  A ~l/2~a x ~ (-i) (-i)j ~ : - E * ) B } ] .  

Therefore, we can obtain the result (4.6). 
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