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Abstract .  Under the reliability NBU/NWU conditions, the exponential distribu- 
tion is characterized by stochastic ordering properties which link the geometric com- 
pound with minimum order statistics or spacings of order statistics. This somewhat 
answers a question posed by Kakosyan, Klebanov and Melamed (1984, Characteriza- 
tion of Distributions by the Method of Intensively Monotone Operators, Springer, New 
York). We also show the related results based on the residual life in a renewal process 
and on record values. Finally, some fundamental properties of the NBUC/NWUC 
classes of life distributions are investigated. 
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1. Introduction 

Consider a sequence of independent and identically distributed (i.i.d.) nonnegative 
and nondegenerate random variables X, X1, X 2 , . . . , X n , . . .  with common distribution 
F(x )  P ( X  < x), x > 0. Assume that  ~, independent of { n}n=i, is a geometric 
random variable with parameter p E (0, 1), namely, P (y  = n) = p(1 - p ) n - 1  for n = 
1, 2 , . . . .  Then the random sum S,  _-- Y~-:=I Xn is called a geometric compound of the 
sequence {Xn}n~=l . The geometric compounding model is useful in many fields, such as 
risk theory, queueing theory, reliability and distribution theory (see Hu and Lin (2001) 
and the references therein). In this paper, we shall consider the characterization of 
exponential distribution through the properties of geometric compound. A remarkable 
characterization result can be stated as follows (Arnold (1973) and Azlarov et al. (1972)): 

(AADS) Under the geometric compounding model, pS~ has the same distribution 

as X (denoted pS ,  d X )  if and only if F is exponential. 
On the other hand, let Xl,n _< X2,n _< "'" ~ Xn,n be the corresponding order 

statistics of {Xk}~=l defined above. Then under the condition 
(C) limx--,o+ F ( x ) / x  = A for some ~ C (0, oc), 

the identity nXl ,n  d X (for some n > 2) characterizes F to be exponential (Gupta 
(1973); note that  without the condition (C), the conclusion fails). Based on this fact 
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and the above AADS result, Kakosyan et al. ((1984), p. 41) posed the question: 

(KKM) Under the condition (C), is it true that the identity pS,  d nXl,,~ (for some 
n > 2) is a characteristic property for the exponential distribution? 

The KKM question still remains unanswered. But, surprisingly, assuming the relia- 
bility NWU condition on F instead of the above crucial condition (C), the identity in the 
question does characterize F to be an exponential distribution. Moreover, in the next 
section we are able to weaken the identity condition to a stochastic inequality (Theorem 
2.1). The exponential distribution is also characterized by using stochastic ordering re- 
lationships between the geometric compound and spacings of order statistics (Theorem 
2.2). We show some related results based on the residual life in a renewal process and 
on record values (Theorems 2.3 and 2.4). Finally, some useful properties (which play 
crucial roles in Section 2) are further investigated in Section 3 (Theorems 3.1 and 3.2). 

2. Characterizations by stochastic inequalities 

To state the main results, we need more notations. Let Y and Z be two nonnegative 
random variables with respective distributions G and H. For convenience, denote G -- 
1 - G and H -- 1 - H. Then we say that  Y is smaller than Z in the stochastic order 
(denoted Y <_st Z) i f G ( t )  <_ H(t)  for all t _> 0, that Y is smaller than Z in the 
increasing convex order (denoted Y <-~cx Z) if fx~-G(t)dt <- f~-H(t)dt  for all x > 0, 
and that Y is smaller than Z in the Laplace transform order (denoted Y --~L Z) if 
E(exp( -sY) )  ~ E(exp(-sZ))  for all s > 0. The three kinds of ordering satisfy the 
implications: (i) if Y <_st Z then Y <_~cx Z and Z <_L Y, and (ii) if Y <_~cx Z with 
E(Y)  = E(Z) < c~, then Y _<L Z (see, e.g., Stoyan (1983), pp. 8-9, and Shaked and 
Shanthikumar (1994), pp. 83-93). Also, a distribution F on {0, c~) is said to be new 
better than used (NBU)_ if F(x +__y) <=__F(x)F(y) for all x ,y  > O, while F is new worse 
than used (NWU) if F(x + y) > F(x)F(y) for all x, y > 0. Using stochastic inequalities, 
we have the following characterization results. 

THEOREM 2.1. Under the geometric compounding model, assume that N > 1, 
independent of {Xn}n~=], is an integer-valued random variable and let XI,N = 
rain{X1, . . . ,  XN }. 

(a) If (i) F is NWU and (ii) pS~ ~_st NXI,N,  then F is exponential. 
(b) If (i) F is NBU, (ii) E(X)  < cc and (iii) NXI,N <<_st psi ,  then F is exponen- 

tial. 

COROLLARY 2.1. Under the geometric compounding model, 
(a) /f (i) F is NWU and (ii) pSv <-st nXI,n for some n > 2, then F is exponential; 
(b) if (i) F is NBU, (ii) E(X)  < cc and (iii) nZl,n <-st pSL, for some n > 2, then 

F is exponential. 

To prove Theorem 2.1, we need the following lemmas. The first crucial lemma is a 
refinement of Lin and Hu's (2001) Theorem 2 and will be used in the sequel. It extends 
the above AADS result; for further extension see Theorem 3.1 below. Recall that a 
distribution F on [0, c~) is said to be in the /:-class of life distributions if its mean # 
is finite and if its Laplace transform L satisfies the relation: L(s) <_ 1/(1 + its) for all 
s > 0. For applications and properties of the/:-class of life distributions, see, e.g., Klefsj5 
(1983) and Lin (1998). 
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LEMMA 2.1. Under the geometric compounding model, 
(a) if  X <_L ps i ,  then F E s and E ( X  2) < oo; 
(b) (i) if  pS~ <_~cx X and if  the coefficient of variation (CV) of X is equal to one, 

then F is exponential; (ii) i f  X <-~cx pSv and CV(X) = 1, then F is exponential; 
(c) if  p S ,  <_st X ,  then F is exponential. 

PROOF. (a) As in the proof of Lin and Hu's (2001) Theorem 2, set k(s) = 1 / L ( s ) -  
1, s >_ O, where L(s) = E ( e x p ( - s X ) ) .  Then it follows from the assumption X <L pS,, 
that for fixed s > 0 and n :> 1, 

k(s) > k(ps) > . . .  > k(pns) __ k,(Onpns), where On e (0,1). 
s - ps - - pns 

The last term tends to k'(0 +) - limB-_.0+ k'(s) = - L ' ( 0  +) = E ( X )  as n ---* oo (Royden 
(1988), p. 265). Therefore E ( X )  <_ k(s ) / s  < oc, or, equivalently, L(s) <_ 1/(1 + sE(X) )  
for s > 0. This means that F E /2 and hence E ( X  2) < cc (see, e.g., Lin (1998), 
Theorem 5). 

(b) Suppose that pS~ <_~cx X and CV(X) = 1. Then we have E{(pS~,) 2 } = E ( X  2) < 

oc (Hu and Lin (2001), Lemma 1) and pS.  d X by Theorem 2.1 of Huang and Lin (1999). 
Using the AADS result we conclude that F is exponential. The second part can be proved 
similarly. 

(c) Suppose pS ,  <_st X .  Then pS~ <_icx X and X <_L PSv. The latter implies that 
E ( X  2) < oc by part (a), and the former together with the fact E(pS~) -- E ( X )  < oo 
implies that pS~ <_L X .  Hence pS~ and X are equal in Laplace transform. This means 

that pS ,  d X and hence F is exponential. (The proof is somewhat different from the 
previous one.) 

o o  LEMMA 2.2. Let X ,  {Xn}n=l and N be the same as in Theorem 2.1. 
(a) If  F is NWU, then NX1, N <-st X .  
(b) I f  F is NBU, then X <_st N X I , N .  

PROOF. Note that for x > 0, we have 

(2.1) 
o O  (3<3 

P(NX1 ,N  > x) -- E P ( N  = n )P(nXl ,n  > x) -- E P ( N  -- n)(-ff(x/n)) n. 
n = l  n = l  

Suppose F is NWU. Then (F(x /n) )  n < F(x).  Applying this result to identity (2.1) 
yields that P ( N X I , N  > x) < -fi(x) = P ( X  > x) for x > 0; namely, N X I , N  <-st X .  This 
proves part (a). Part (b) can be proved by a similar argument. 

PROOF OF THEOREM 2.1. (a) Suppose that F is NWU and pS~ <st NX1,N.  
Then NX1,N <st X by Lemma 2.2(a), and hence pS ,  <<_st X .  This implies that F is 
exponential by Lemma 2.1(c). 

(b) Suppose that F is NBU, E ( X )  < oc and N X I , N  <st p s i .  Then by Lemma 
2.2(b), we have X <<_st N X I , N  <st pS~ and E ( X )  = E(pSv) < oc. This implies that 

X d p S ,  (see, e.g., Shaked and Shanthikumar (1994), p. 8) and hence F is exponential 
by the AADS result. The proof of the theorem is complete. 
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For order statistics XI,~ <- X 2 , n  ~_ "'" ~_ X n , n ,  define the normalized spacings 
Dk,n : (n - k + 1)(Xk,n - Xk- l ,n )  for k = 1 ,2 , . . .  ,n, where X0,~ - 0. It is known 

that the identity Dn,~ d X (for some n > 2) is a characteristic property of the expo- 
nential distribution among the continuous distributions. Puri and Rubin (1970) proved 
this characterization result for the case n = 2. As for general results, see, e.g., Rao 
and Shanbhag ((1994), Theorem 8.2.5). We shall now investigate the characterization 
of exponential distribution by stochastic ordering relationships between the geometric 
compound and the random spacing DN,N. Namely, using DN,N instead of NX1,N,  we 
have the counterpart of Theorem 2.1. 

THEOREM 2.2. Under the geometric compounding model, assume that N > 1, 
independent of {Xn}n~_l, is an integer-valued random variable and that F is a continuous 
distribution. Further, let DN, N : X N , N  -- X N - - I , N ,  where XN,N = max{X1 , . . . ,  XN} .  

(a) If  (i) F is NBU and (ii) pS~ <_st DN,N, then F is exponential. 
(b) / f  (i) F is NWU, (ii) E ( X )  < cc and (iii) Dg,N <-st p s i ,  then F is exponential. 

To prove Theorem 2.2, we need the following lemma. 

LEMMA 2.3. Let X,  {X,~}n~=I, N and DN, N be the same as in Theorem 2.2. 
(a) I f  F is NBU, then DN,N ~st Z .  
(b) I f  F is NWU, then X <_st DN,N. 

PROOF. For x > 0, we have 

oo 
P(DN,N > x) = P ( N  : 1 )P (X  > x) + Z P ( N  : n)P(Xn,n - Xn- l , n  > x). 

n : 2  

Since F is continuous, the order statistics {Xk,,~}'~=l form a Markov chain (see, e.g., 
Galambos and Kotz (1978), p. 38) and hence we can write, for n > 2 and x > 0, 

(2.2) 
~0 ~176 

P(Xn,n - Xn- l , n  > x) = n(n - 1)(F(t))n-2-fi(t + x)dF(t) .  

Suppose that  F is NBU. Then it follows from identity (2.2) that for n >_ 2 and x > 0, 

~0 (X) 
P(Xn,n - Xn- l , n  > x) < n(n - 1)(F(t))n-2-ff(t)-ff(x)dF(t) -- -if(x). 

Therefore P(DN,N > x) < 2nCC=l P ( N  = n)-ff(x) = -if(x) = P ( X  > x) for x > 0. 
Namely, DN,N ~_st X.  This proves part (a). Part  (b) can be proved by a similar argu- 
ment. 

PROOF OF THEOREM 2.2. (a) Suppose that F is NBU and pS~ <_st DN,N. Then 
by Lemma 2.3(a), we have pS~ <_st DN,N ~_st X ,  and hence F is exponential due to 
Lemma 2.1(c). 

(b) Suppose that F is NWU, E ( X )  < oc and DN,N ~st pSv. Then by Lemma 

2.3(b), we have X <st DN,N ~st pS~ and E ( X )  = E(pS , )  < c~. Therefore X d p s i .  
This implies that F is exponential by the AADS result. The proof of the theorem is 
complete. 
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Next, we shall show two more characteristic properties of the exponential distribu- 
tion through the residual life in a renewal process defined below. Let X,  X 1 , X 2 , . . . ,  
X n , . . .  be a sequence of i.i.d, nonnegative and nondegenerate random variables with 

o o  n common distribution F.  Define the renewal process {Sn}n=l by S~ = ~-]k=l Xk for 
n > 1. For t > 0, let N(t)  be the number of points Sn in the interval [0, t] and let v(t) be 

the residual life at time t, i.e., ~(t) = SN(t)+l -- t. If E ( X )  < c~, the identity v(t) d X 
(for some t > 0) characterizes the exponential distribution among the continuous dis- 
tributions (see Isham et al. (1975) or Galambos and Kotz (1978), p. 94). It is natural 

to ask the question: Under what conditions, is it true that the identity pS~ d ~(t) (for 
some t > 0) characterizes the exponential distribution? We shall try to answer this 
question. In the next result we don't require the continuity condition on the underlying 
distribution F;  instead, we assume the reliability N B U / N W U  property of F.  

THEOREM 2.3. Under the geometric compounding model, 
(a) i f  F is NBU and pSv <_st "/(t) for  some t > O, then F is exponential; 
(b) if  F is NWU, E ( X )  < oc and V(t) <_st pS ,  for  some t > O, then F is exponen- 

tial. 

PROOF. Recall that the residual life ~(t) has the properties: 
(i) if F is NBU, then v(t) <_st X for each t > 0; 
(ii) if F is NWU, then X _<st v(t) for each t > 0 

(see, e.g., Barlow and Proschan (1981), p. 169). These together with Lemma 2.1 imply 
the required results. The proof is complete. 

Finally, we give two characteristic properties of the exponential distribution through 
the spacings of record values defined below. Let X,  X1, X 2 , . . . ,  X n , . . .  be a sequence of 
i.i.d, nonnegative random variables with common continuous distribution F.  Define the 
record times {T(n)}~_ 0 by T(0) ---- 1 and T(n)  = min{m : m > T ( n - 1 ) ,  Xm > XT(~-I)} 
for n > 1. Then {XT(n)}n~__O is called the record values of the sequence {Xn}n~__l. It is 

d 
known that if XT(n) -- XT(~-I) = X for some n > 1, then F is exponential (see Lau and 
Rao (1982) and Witte  (1988)). As before, using the geometric compound we have the 
following result. 

THEOREM 2.4. Under the geometric compounding model with F being continuous, 
(a) if  F is NBU and pS~ <_st XT(n) --XT(n-1) for  some n > i, then F is exponen- 

tial; 
(b) i f  F is NWU, E ( X )  < oo and XT(,~) - X T ( n - 1 )  <_st pS ,  for  some n > 1, then 

F is exponential. 

PROOF. Recall the Markov property of record values: P(XT(n) > X I X T ( n - 1 )  = 

y) = F (x ) /F (y )  for x >_ y (see Shorrock (1972) or Azlarov and Volodin (1986), p. 27). 
Then we have 

(2.3) 

f 
P(XT(n) - XT(n-1) > X)  = / 0  P(XT(n) > x + z [ XT(n-1) ---- z)dUn-l (Z)  

: SQ F~-i~Z)dJ~n-i(z )x~tz) for all x~ O, 
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in which Hn-1 denotes the distribution of XT(~-I) and Q is its support. Therefore, 
(i) if F is NBU, then XT(n) -- XT(~-I) <_~t X for all n > 1; 
(ii) if F is NWU, then X <_st XT(~) - XT(~-I) for all n >_ 1. 

Lemma 2.1(c) then completes the proof. 

3. Extensions 

Lemma 2.1 plays a crucial role in the previous results. We shall now consider its 
possible extension. In the geometric compounding model, replace the random variable 
v by the Pascal (negative binomial) random variable v~ having mass function 

where p C (0, 1) and ~ is a positive integer. The resulting Pascal compounding model 
has realistic applications in sickness and accident insurance (Grandell (1997), Preface). 
We now extend Lemma 2.1 to the following. 

THEOREM 3.1. Under the Pascal compounding model, 
(a) i f  E~=I  Xn ~L pS~., then F E s and E ( X  2) < (x); 
(b) pS~. <_~t ~ : = 1  Xn i] and only i / F  is exponential. 

PROOF. Observe that E{exp( - spS ,~ ) }  = (E{exp(-spS~)})  ~ and 
E { e x p ( - s ~ : =  1 Xn)}  = ( E { e x p ( - s X ) } )  ~ for s > 0. Then part (a) follows immedi- 
ately from Lemma 2.1(a). 

Next, we consider part (b). The proof of the sufficiency part is trivial and omit- 
X ted. It remains to prove the necessity part. Suppose that p S ~  <_st ~-~.n=l ,~. Then 

~-~:=lXn <_L p S ~  and hence E ( X  2) < ~ by part (a). Further, E ( p S ~ )  = 
E (~n=l  Xn) = t~E(X) < cx~. This together with the stochastic inequality assump- 

d ~ 
tion implies that p S ~  = ~-~n=l Xn and hence pS~ d X due to the above observation. 
By the AADS result, F is exponential. The proof is complete. 

Finally, we investigate the NBUC/NWUC classes of life distributions defined below. 
A distribution F on [0, c~) is said to be new better than used in convex ordering (NBUC) 
if 

C L (3.1) -F(y + z)dz <_ -F(y) F(z)dz  for all x, y > 0 

(see Cao and Wang (1991)). Similarly, F is new worse than used in convex ordering 
(NWUC) if the inequality in (3.1) is reversed. Clearly, NBU =~ NBUC and NWU =~ 
NWUC. We have the following convex-ordering inequalities for the NBUC/NWUC 
classes, which are counterparts of the above-mentioned stochastic-ordering inequalities 
for the NBU/NWU classes. For more properties and applications of these classes of 
life distributions, see Hendi et al. (1993), Li et al. (2000) and Willmot and Lin ((2001), 
p. 95). 

THEOREM 3.2. Let X ,  X1, X2, .  �9 �9 Xn, �9 �9 �9 be a sequence of i.i.d, nonnegative ran- 
dom variables with common distribution F,  and let DN,N, ~(t) and XT(n) be the same 
as in Theorems 2.2-2.4. 
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(a) I f  F is continuous and NBUC, then DN,N <_icx X .  
(b) I f  F is continuous and NWUC, then X <icx DN,N. 
(C) I f  F is NBUC, then 7(t) <icx X for each t > O. 
(d) I f  F is NWUC, then Z < ~  7(t) for each t > O. 
(e) I f  F is continuous and NBUC, then XT(n) -- XT(n-i)  <~cx X for each n > 1. 
(f) I f  F is continuous and NWUC, then X <icz XT(n) -- XT(n-1) for each n > 1. 

PROOF. To prove part (a), recall from identity (2.2) that for n _> 2 and x > 0, 

L= I5 L= P(Xn,n - Xn- l ,n  > z)dz = n(n - 1)(F(t)) n-2 -ff(t + z)dzdF(t) .  

If, in addition, F is NBUC, then for x > 0, 

(3.2)L ~ 

(3.3) 

L 
O0 - -  LOO 

P(Xn,n - X n - l , n  > z)dz < F(z)dz  

= L ~ 1 7 6  

n(n - 1)(F(t))n-2-F(t)dF(t) 

Namely, Dn, n <_icx X for each n >_ 2. Next, we have that for x > 0, 

L ~ P(DN,N > z)dz 

(3.4) 

L=- :L = P ( N  = 1) F(z)dz  + P ( N  = n P(Dn,n > z)dz 
n=2 

L= s )f= <_ P ( N  = 1) -P(z)dz + P ( N  = n -F(z)dz 
n = 2  ox  

--- L ~176 -ff(z)dz, 

in which the inequality is due to (3.2) and (3.3). Therefore, DN, N <--icx X.  This proves 
part (a). If F is NWUC, a similar argument applies with inequalities in (3.2) and (3.4) 
reversed, so part (b) is proved. As for parts (c) and (d), we can apply Barlow and 
Proschan's ((1981), p. 169) argument, while for parts (e) and (f) we apply the argument 
in (2.3). The proof is complete. 

Acknowledgements 

The authors would like to thank the referees for helpful comments which improve 
the presentation of the paper. 

REFERENCES 

Arnold, B. C. (1973). Some characterizations of the exponential distribution by geometric compounding, 
SIAM J. Appl. Math., 24, 242-244. 

Azlarov, T. A. and Volodin, N. A. (1986). Characterization Problems Associated with the Exponential 
Distribution (translated from the Russian by Margaret Stein, translation edited by Ingram Olkin), 
Springer, New York. 



506 CHIN-YUAN HU AND GWO DONG LIN 

Azlarov, T. A., Dzamirzaev, A. A. and Sultanova, M. M. (1972). Characterizing properties of the 
exponential distribution, and their stability, Random Processes and Statistical Inference (Russian), 
No. II, 94, 10-19, Izdat. "Fan" Uzbek, SSR, Tashkent. [MR 48 (1974) 3150] 

Barlow, R. E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing. Probability 
Models, 2nd ed., To Begin With, Silver Spring, Maryland. 

Cao, J. H. and Wang, Y. D. (1991). The NBUC and NWUC classes of life distributions, J. Appl. 
Probab., 28, 473-479 (Correction: ibid. (1992). 29, p. 753). 

Galambos, J. and Kotz, S. (1978). Characterizations of Probability Distributions. A Unified Approach 
with an Emphasis on Exponential and Related Models, Lecture Notes in Math., 675, Springer, New 
York. 

Grandell, J. (1997). Mixed Poisson Processes, Monogr. Statist. Appl. Probab., 77, Chapman ~: Hall, 
New York. 

Gupta, R. C. (1973). A characteristic property of the exponential distribution, Sankhyd Ser. B, 35, 
365-366. 

Hendi, M. I., Mashhour, A. F. and Montasser, M. A. (1993). Closure of the NBUC class under formu- 
lation of parallel systems, J. Appl. Probab., 30, 975-978. 

Hu, C.-Y. and Lin, G. D. (2001). On the geometric compounding model with applications~ Probab. 
Math. Statist., 21, 135-147. 

Huang, J. S. and Lin, G. D. (1999). Equality in distribution in a convex ordering family, Ann. Inst. 
Statist. Math., 51,345-349. 

Isham, V., Shanbhag, D. N. and Westcott, M. (1975). A characterization of the Poisson process using 
forward recurrence times, Math. Proc. Cambridge Philos. Soc., 78, 513-516. 

Kakosyan, A. V., Klebanov, L. B. and Melamed, J. A. (1984). Characterization of Distributions by the 
Method of Intensively Monotone Operators, Lecture Notes in Math., 1088, Springer, New York. 

KlefsjS, B. (1983). A useful ageing property based on the Laplace transform, J. Appl. Probab., 20, 
615-626. 

Lau, K.-S. and Rao, C. R. (1982). Integrated Cauchy functional equation and characterizations of the 
exponential law, Sankhy5 Set. A, 44, 72-90 (Corrigendum: ibid. (1982). 44, p. 452). 

Li, X., Li, Z. and Jing, B.-Y. (2000). Some results about the NBUC class of life distributions, Statist. 
Probab. Lett., 46, 229-237. 

Lin, G. D. (1998). Characterizations of the s of life distributions, Statist. Probab. Lett., 40, 
259-266. 

Lin, G. D. and Hu, C.-Y. (2001). Characterizations of distributions via the stochastic ordering property 
of random linear forms, Statist. Probab. Lett., 51, 93-99. 

Purl, P. S. and Rubin, H. (1970). A characterization based on the absolute difference of two i.i.d, random 
variables, Ann. Math. Statist., 41, 2113-2122. 

Rao, C. R. and Shanbhag, D. N. (1994). Choquet-Deny Type Functional Equations with Applications 
to Stochastic Models, Wiley, New York. 

Royden, H. L. (1988). Real Analysis, 3rd ed., Prentice-Hall, New Jersey. 
Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications, Academic 

Press, New York. 
Shorrock, R. W. (1972). A limit theorem for inter-record times, J. Appl. Probab., 9, 219-223 (Correction: 

ibid. (1972). 9, p. 877). 
Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models (translation from the 

German edited by Daryl J. Daley), Wiley, New York. 
Willmot, G. E. and Lin, X. S. (2001). Lundberg Approximations for Compound Distributions with 

Insurance Applications, Lecture Notes in Statist., 156, Springer, New York. 
Witte,  H.-J. (1988). Some characterizations of distributions based on the integrated Cauchy functional 

equation, Sankhy5 Ser. A, 50, 59-63. 


