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A b s t r a c t .  The  charac ter iza t ion  of the  least  concave m a j o r a n t  of Brownian mo- 
t ion by P i t m a n  (1983, Seminar on Stochastic Processes, 1982 (eds. E. Cinlar,  K. L. 
Chung and R. K. Getoor) ,  219-228, Birkh/iuser,  Boston)  is tweaked,  condi t ional  on 
a ver tex point.  The  jo int  d i s t r ibu t ion  of this  ver tex point  is derived and is shown 
to be genera ted  with  ex t reme ease. A procedure  is then out l ined  by which one can 
cons t ruc t  the  least  concave m a j o r a n t  of a s t anda rd  Brownian mot ion  p a t h  over any 
finite, closed subinterval  of (0, oo). This  const ruct ion  is exact  in d is t r ibut ion .  One 
can also const ruct  a l inearly in te rpo la ted  version of the  Brownian mot ion  p a t h  (i.e. 
we cons t ruc t  the  Brownian mot ion  pa th  over a grid of points  and  l inearly interpo-  
late) corresponding to  this  least  concave ma jo ran t  over the  same finite interval.  A 
discussion of how to t r ans la te  the  aforement ioned const ruct ion  to  the  least  concave 
m a j o r a n t  of a Brownian br idge is also presented.  

Key words and phrases: Brownian motion,  least  concave majoran t .  

1. Introduction 

The least concave majorant of Brownian motion captures the limiting behavior of 
estimators in a few order restricted problems when the parameters fall on a boundary 
(equality of some or all the parameters). These boundaries are typically the null hy- 
potheses in statistical tests involving order restrictions of the parameters. As such, the 
least concave majorant of Brownian motion captures the limiting null behavior of these 
order restricted test statistics. The least concave majorant of Brownian motion is fairly 
complex as a process and great strides have been made in understanding its behavior. 
Most notable are the papers by Groeneboom (1983) and Pitman (1983) which character- 
ize this process. Groeneboom (1983) and Carolan and Dykstra (2001) also discuss the 
marginal behavior at a fixed point of this process. These results notwithstanding, any 
particular functional of the least concave majorant of Brownian motion may simply be 
too complex to convey its distribution in a closed form. Statisticians may then be forced 
to simulate these functionals in an at tempt to table their (estimated) distributions. 

We discuss later in the paper how the least concave majorant of Brownian motion 
maps to the least concave majorant of a Brownian bridge. Functionals of the least 
concave majorant of a Brownian bridge are typically what statisticians are concerned 
about. The steps by which the least concave majorant of a Brownian bridge is presently 
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constructed (approximately) typically consist of constructing Brownian bridge values 
over a finite grid, linearly interpolating, and then determining the least concave majorant 
of this interpolated path. The "appropriateness" of this type of construction procedure 
depends on the spacing of the grid points, the number of grid points, and the functional 
desired. Clearly, the more grid points, the better. As an example, suppose the functional 
is the area under the least concave majorant of a Brownian bridge. The procedure would 
most likely do well in capturing the behavior of this area for a large grid of equally spaced 
times, but it is clearly biased downward. Adding more points to the grid can only serve 
to raise (or maintain) the least concave majorant and thus perhaps increase the area. 
Another example of a functional is the longest horizontal run over which the least concave 
majorant of a Brownian bridge is linear. The common procedure outlined above should 
not perform well for this particular functional as any additional grid points have the 
chance to "break" a linear segment into two linear segments (or even consolidate linear 
segments). 

This paper addresses the construction (exactly) of the least concave majorant of 
Brownian motion over any closed subinterval of (0, oo). This in turn can be used to 
construct the least concave majorant of a Brownian bridge over any closed subinterval 
of (0, 1). If this procedure were used for the purposes of simulating the area under the 
least concave majorant of a Brownian bridge, one would still be forced to approximate 
the least concave majorant near time zero and time one, but a bound on how far our 
estimated area is off could be obtained and one could choose the interval sufficiently large 
as to guarantee our simulated area is correct to any epsilon amount. If this procedure 
were used for the purposes of simulating the longest horizontal run over which the least 
concave majorant of a Brownian bridge is linear, the distribution could be simulated 
exactly, choosing the interval sufficiently large so that  the lengths of the unconstructed 
regions are shorter than the longest horizontal run in the constructed region. 

Our procedure for the construction of the least concave majorant of a Brownian 
bridge over any closed subinterval of (0, 1) will generally result in better estimates of 
functionals of the least concave majorant of a Brownian bridge and hence is quite de- 
sirable. Two specific examples in the literature where this procedure could have been 
utilized are in the papers by Woodroofe and Sun (1999) and Wu et al. (2001). In these 
papers, the authors obtain a penalized, order restricted test statistic whose null limit- 
ing distribution is f[K~,c(t)]2dt, where K~,c is the left-hand slope corresponding to K0,~ 
which is the least concave majorant of "a Brownian bridge process minus the indicator 
function ci(0,1)". Thus, Woodroofe and Sun lower a Brownian bridge by c > 0 every- 
where except the endpoints and then take the least concave majorant in order to obtain 
K0,~. K0,c can equivalently obtained by taking the least concave majorant of the Brow- 
nian bridge, lowering the function by c everywhere except the endpoints, and taking 
the least concave majorant again. Our construction procedure outlined in this paper 
can be used to construct K0,~ over the entire interval [0, 1] simply by constructing the 
least concave majorant of the Brownian bridge over a sufficiently large interval so that  
our constructed process is below c at our endpoints of construction and neither of our 
endpoints is a maximum. 

In Section 2, we discuss Pitman's  (1983) characterization of the least concave majo- 
rant of Brownian motion. It is this characterization on which we base our construction 
procedure. The following three sections discuss how one can construct the least concave 
majorant of a Brownian motion over any closed, subinterval of (0, c~). In Section 6, we 
discuss how one can (approximately) construct the associated Brownian motion path 
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over the same interval of construct ion as the least concave majorant .  We conclude with 
Section 7 which discusses how to construct  the least concave majorant  of a Brownian 
bridge over any closed, subinterval of (0, 1) and how one can (approximately)  construct  
the associated Brownian bridge pa th  over the same interval of construct ion as the least 
concave majorant .  

2. Pitman's characterization of { K ( t )  : t >_ O} 

Define the process {K(t )  : t _> 0} to be the least concave majorant  of a s tandard  
Brownian motion process {W(t)  : t _> 0}. P i tman  (1983) notes early in his paper  tha t  the 
process {K( t )  : t _> 0} will almost surely form a piecewise linear curve. P i tman  denotes 
the random set of all ver tex  t imes  by V C (0, c~), a vertex t ime being the location where 
a change in slope occurs in the process {K(t )  : t > 0}. Groeneboom i1983) showed with 
probabil i ty  one, for 0 < s < t < c~, the set of vertex times V has a finite number  of 
points in (s, t) and a countably  infinite nmnber  of points in each of the intervals ( 0, s) 
and (t, ~ ) .  P i tman  states in order to isolate a point  in V, we could fix b > 0 and consider 
the unique line with slope b that  is tangent  to { K i t  ) : t > 0}. P i tman  defines Tb to be 
the last t ime this line touches {K(t )  : t _> 0}. Given Tb is a point in V, P i tman  proceeds 
to index the points of V relative to ~'b, defining V0 to be q-b, Vn to be the n- th  point  in V 
after Vo, and V_~ to be the n- th  point  in V before Vo. Thus,  V = {V~ : i C Z}  almost  
surely. 

For i E Z - {0}, P i tman  defines (we alter indices /nota t ion  slightly) 

{ V~ - Vi_l i _ > l  
Ti= V~+I-V~ i_<-1 

and 
[K(V/) - K ( V i _ I ) ] / T i  i ~ 1 

[K(V/+I) - K ( V i ) I / T i  i < - 1  

Thus,  c~ is the slope of the til-th linear segment of ( K i t )  : t >_ 0} after Vo (or before V0 
if i is negative) with horizontal run Ti, see Fig. 1. P i tman  notes tha t  the entire process 
{K(t )  : t > 0} is characterized by the set of r andom variables {(Ti ,  a i )  : i c Z - {0}}. 
P i tman  gives the joint dis tr ibut ion of these random pairs (his Theorem 1.1) as the 
following: 

�9 c~1 is uniformly dis t r ibuted on (0, b) and conditional on {cq, c~2,. . . ,  c~n}, C~n+l is 
uniformly dis t r ibuted on (0, c~,,). 

�9 a - 1  has density bx -2  on the interval (b,c~) and conditional on {c~-1, (~-2 , . . . ,  
c~-a}, c~_(n+l) has density a _ n x  -2 on the interval (c~-n, cx~). 

�9 The sequences (c~n : n  > 1) and (c~n : n < - 1 )  are independent.  
�9 Condit ional  on { a i :  i �9 Z - {0}}, {a~T~ : i e Z - {0}} is a set of independent ,  

chi-square random variables each with one degree of freedom. 
The preceding characterization is very at tract ive.  However, this characterization 

is uncondit ional  of (Vo, K(V0)). Thus,  in order to directly use it to construct  the pro- 
cess {K(t )  : t > 0}, one would need to obtain  the  entire sequence (Ti,c~/) for i = 
- 1 , - 2 , - 3 , . . .  and construct  the vertex points based on the knowledge that  K(0)  = 0, 
noting that  

(v0,  K(Y 0) )  = . 
i i=--1 
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B r o w n i a n  M o t i o n  P a t h  8, I ts  L e a s t  C o n c a v e  M a j o r a n t  

K(VI) I ............................................................ .....: 

K(V_. 

K~-3~J-l, ri TM i < . ~ . > i < . :  ........... u ............. > ~ <  .......... : ......... ~. ..... 91  

V-2 V-I V0 Vl I J J V2 

Fig. 1. G r a p h  of a Brownian  mot ion  realization along wi th  i ts least  concave majoran t .  The  
g raph  was s imula ted  using the  procedures  out l ined in this  paper.  The  slopes and  vertex points  
are labelled. 

The following 3 sections tweak Pitman's characterization of {K(t)  : t > 0}, in order to 
allow one to construct { K ( t ) :  t > 0} over any closed subinterval of (0, c~). 

3. Choosing a star t ing point  

Pitman indexes the vertex points of {K(t) : t > 0} by fixing b > 0 and considering 
the unique line with slope b that  is tangent to {K(t) : t >_ 0}. Pi tman defines Tb to be 
the last time this line touches {K(t) : t > 0}. The point (Tb, K ( T b ) )  is a vertex point of 
{K(t)  : t > 0} such that the slopes of all linear segments of {K(t)  : t _> 0} before ~-b a r e  

at least b and after Tb are strictly smaller than b. We will use the point (75, K ( T b ) )  as a 
starting point for our construction of {K(t) : t  >_ 0}. 

Recall {K(t)  : t > 0} is defined to be the least concave majorant of a standard 
Brownian motion process {W(t) " t > 0}. The vertex times of {g ( t )  : t _> 0} are the 
locations where these two processes touch. Since the least concave majorant of the sum 
of a line and an arbitrary function is the sum of the line and the least concave majorant 
of the arbitrary function, then {K(t)  - bt : t > 0} is the least concave majorant of the 
process { W ( t ) - b t  " t > 0}. The processes {K(t) : t _> O} and { K ( t ) - b t  : t >_ O} 
have the same vertex times and corresponding left-hand slopes of the processes differ 
by b. Thus, if we wish to determine the location ~-b where the left-hand slopes of the 
process {K(t)  : t > O} change from being at least b to being strictly less than b, we 
can determine the location where the left-hand slopes of the process {K(t)  - bt : t > O} 
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change from being at least 0 to being strictly less than 0. This change in left-hand slopes 
from nonnegative to negative clearly occurs where {K(t) - bt : t > 0} achieves its last 
global maximum, which is also the location where {W(t) - bt : t > 0} achieves its last 
global maximum. Hence, 

Tb = SUp {X : W(x)  - bx = sup{W(u) - bu} } 

The associated value of K(Tb) is given by 

K(Tb) = sup{W(u) - bu} + bTb. 
u>_O 

We fix b = 1 and give the joint density of (~-1, K(T1)) in the following theorem. 

THEOaEM 3.1. The joint density of (T1, K(n) )  is given by 

g~l,K(,1)(t,y) = t--5~(y -- t)r 0 < t < y < cx~ 

where r is the standard normal density function. The proof can be found in the Appendix. 

The marginM density of the vertex time ~-1 is given in Carolan and Dykstra (2001), 
where ~-1 is denoted by X1 in that paper. Amazingly, observations from the bivariate 
density given in Theorem 3.1 can be generated with great ease, as described in the 
following lemma. 

LEMMA 3.1. I f  U is a standard uniform random variable and independently, T is 
a chi-square random variable with 3 degrees of freedom, then 

(T1,K(T1)) d (T(1 - v~)2,T(1 - v~)) .  

The proof can be found in the Appendix. 

Of course, one may not wish to fix b at 1. Since {K( t ) :  t ~ 0} d { b K ( ~ ) :  t > 0}, 
see Carolan and Dykstra (2001) for details on proving this rescaling property of the least 
concave majorant of Brownian motion as well as for details on proving the time reversed 
property and Doob's transformation discussed later in this paper, then 

(%,K(%)) ~ ( ~ ' r l ,  b K ( r l ) )  =d ( ~ T ( 1  - v"-U) 2, I T ( I -  " , /U)) .  

where U is a standard uniform random variable and independently, T is a chi-square 
random variable with 3 degrees of freedom. Thus, we can easily simulate (Tb, K(Tb)) for 
any arbitrary b. Just as Pi tman does in his characterization, we will now define V0 as % 
and continue our construction conditional on knowing (V0, K(Vo)). 
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4. Constructing {K(t)  : t  _> 0} beyond V0 

Pi tman utilized the path decomposition given in Williams (1974) in the derivation 
of his characterization of {K(t) : t > 0}. According to Williams' path decomposition, 

(4.1) {W(t) : 0 < t < V0} and {W(V0 + s) - W(Vo) - bs: s >_ 0} 

are independent. Pi tman was able to show from the process on the right of (4.1) that 
�9 the slope a l  corresponding to the process {K(t)  : t > 0} is uniformly distributed 

on (0, b) and conditional on the slopes {o/1, a 2 , . . . ,  an}, the slope an+l is uniformly 
distributed on (0, an). 

�9 conditional on the slopes {al ,  O/2,...}, the horizontal runs between vertex points 
Ti V / -  V~-I are independent with 2 = a i Ti having a chi-square distribution with 1 degree 
of freedom. 

Notice that the point (V0, K(Vo)) is the last point of the process on the left of (4.1). 
Thus, the process on the right is independent of our starting vertex point (Vo, K(Vo)). 
Hence, the information necessary to conditionally construct the vertex points to the right 
of our starting vertex point (V0, K(Vo)), is outlined in the preceding paragraph. 

In practice, the next n vertex points to the right of Vo can be obtained very quickly�9 
We recommend the following steps: 

1. Create a vector of n independent uniform (0, 1) realizations�9 Form the partial 
products of this vector followed by multiplying the vector by b; the result is the vector 
of slopes (O/1, O/2," " " , O/n)- 

2. Create a vector of n independent chi-square with one degree of freedom realiza- 
tions. Take this vector of chi-square realizations and divide it (coordinate-wise) by the 
vector 2 2 2 .  �9 O/n), the result is the (T1,T2,. . .  Tn) vector. O / 1 , O / 2 , ' :  , 

3. Form the partial sums of the (T1, T2 , . . . ,  Tn) vector and add Vo; the result is the 
vector (V1, V2, . . . ,  Vn). 

4. Form the partial sums of the product (coordinate-wise) of the vector (O/1, O/2,--., 
O/n) and the vector (T1, T2 , . . . ,  Tn), followed by adding K(Vo); the result is the vector 
( K ( V l ) , K ( V 2 ) ,  . . . , K ( V n ) ) .  

5. In practice, if n is not chosen large enough initially, we may need to continue to 
add R > 0 (random) coordinates to the end of the same uniform and chi-square vectors 
in steps one and two until we have constructed enough of the path for some criteria to be 
satisfied. For example, if we desire to construct {K(t)  : t > 0} over the interval [Cl, c2], 
then we choose R large enough so that  (or until) Vn+R >_ c2. 

Remark 4.1. Construction before V0, presented in the next section, can be avoided 
if b is initially chosen large enough so that  it is highly LIKELY that V0 falls to the left 
of cl, the left endpoint of the desired interval of construction [cl, c2]. We recommend 
choosing b 2 = 20/cl. 

5. Constructing {K(t)  : t > 0} before Vo 

Given the independence of the two processes in the path decomposition of Williams, 
it follows that given the slope b and the point (V0, K(Vo)), the behavior of {K(t)  : t > 0} 
before V0 can be obtained independently of the behavior after V0. The key to constructing 
{K(t)  : t > 0} before Vo is to translate {K(t)  : t > 0} to its time-reversed process, which 
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itself is distributed as the least concave majorant of a Brownian motion. It can be 
demonstrated that 

{ K ( t ) : t > o }  d { t K ( 1 )  :t>_O}. 

Thus, we can construct {K(t) : t _> 0} before V0 by constructing its time-reversed version 
{K*(t) : t _> 0} defined by {tK(}) : t _> 0} beyond some point and then mapping back. 
This is accomplished in the following manner. 

1. The translated time-reversed problem has initial vertex point (V0* , K*(Vo*)) = 

Vo J with initial slope b* = K(Vo) - bVo. 
2. Get the vectors (VI*, V2*,..., V*) and (K*(V~),K*(V.*2), ...,K*(V~n)) for the 

time-reversed process {K*(t) : t _> 0} in the same manner as in the previous section. 
3. We obtain the vector (V-m, V--(m--i),..., V_~) by taking the (coordinate-wise) 

reciprocal of the (1/1" , 1/2",... , Vm) vector and reversing the order of the vector. 
4. We obtain the (K(V_m),K(V_(m_I)),... ,K(V-1)) vector by dividing (coordi- 

nate-wise) the vector (K* (VI*), K* (V~*),..., K* (Vm)) by the vector (1/1" , V2*,... , V*) and 
reversing the order. 

5. In practice, if m is not chosen large enough initially, we may need to continue 
to add R* k 0 (random) coordinates to the same m-length vectors of uniforms and 
chi-squares formed in step two until we have constructed enough of the path for some 
criteria to be satisfied. For example, if we desired to construct {K(t) : t > 0} over the 
interval [cl, C2], then we choose R* large enough so that  (or until) Vm+R. k 1/0. 

Remark 5.1. Interestingly, given b and conditional on (Vo,K(Vo)), a-1 is uni- 
formly distributed over (b, K(Vo) ---E--o J and conditional on the vertex points 

(V0, K(Vo)), (V-l, K(V_I ) ) , . . . ,  (V--n, K(V_n)), 

a_(n+l ) is uniformly distributed over (a-n, K(V_.) V_. ). This falls out from the transfor- 
mation procedure. 

6. Constructing (approximately) the corresponding {W(t ) :  t >_ 0} 

Groeneboom (1983) states that  the behavior of the process {K(t) - W(t) : t > 0} 
between successive zeros (or vertex locations of K) Vi and Vi+l, i E Z,  is as independent, 
linearly time-transformed, rescaled Brownian excursions. Specifically, 

{K(t) - W(t) : Vi <_ t <_ V/+l , i E Z} 

d V/_b 1 _ v i ' ' O  IkV/+l  _ V i ]  

where {Wo(i)(t) : 0 < t _< 1}, i C Z,  are independent standard Brownian excursion 
processes. 

It6 and McKean (1974) note that a Brownian excursion process, denoted by { W~ (t) : 
0 < t _< 1}, is a nonhomogeneons Markov process over the unit interval with W~(0) = 
W~(1) = 0, marginal densities for 0 < t < 1 given by 

2y2 [ y2 ] 

fw~(t)(Y) = V/27rt3( 1 _ t) 3 exp 2t(1 : t) Y > 0 
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and transi t ion densities for 0 < s < t < 1 given by (x > 0) 

-- t~-s [ r 1 6 2  y + x  ~] \ l - t ]  

y2 

x x 2 
y > 0  

where r is the s tandard  normal  density. Note tha t ,  for t E [0, 1], W~(t) d v/t(  1 _ t)x] 
where X3 2 is a chi-square distr ibution with  three degrees of freedom. Also, the t ransi t ion 
density for 0 < s < t < 1 can be simplified to (x > 0) 

fw3(t),w3(8)(Y [ X) 

= ~ y { r  - u ) )  - r  + ~1)}  y > 0 u 

(l--s) (1 - t ) x  where c = (1-t)(t-s) and u - ( :-s)  " The  corresponding transi t ion distr ibution function 
is given by 

Fw3(t),w:)(8)(y t x ) = P(W~)(t)  <_ Y l W~)(s) = x) 

1 - {~(v/ -~(y  - u) )  + ~ (v / -c (y  + u ) ) }  

= - v ~ { r  - u ) )  - r  + u ) ) }  
y_>O. 

where ~ is the s tandard  normal  survival function. 
Thus,  for t in between constructed vertex t imes Vi and Vi+:, 

W(t) -- g(t) - v/V~+I - ViWo O) ~ t-- ~ 
~k Vi + l - V i i  

= [t - � 8 8  + [~+1  - t l K ( ~ )  _ v / ~ + :  _ ~ W g ( ~ )  \ Y~+~- - ~  
V~+: - V~ 

So, to approximate the corresponding {W(t)  : t > 0} over the same interval we have 
constructed {K( t )  : t > 0}, we have the options of constructing {W(t) : t > 0} over 
a predetermined,  equally spaced grid or a grid tha t  accounts for the differing distances 
between neighboring vertex locations. One would typically construct  the corresponding 
{W(t) : t > 0} over the chosen grid and linearly interpolate. 

?. Constructing {K0( t ) :  0 < t < 1} and {W0(t) :  0 < t < 1} 

The procedure to construct  {K(t)  : t > 0} can also be used to construct the least 
concave majorant  of a Brownian bridge over any closed subinterval of (0, 1). We define 
{K0(t) : 0 < t < 1} to be the least concave majorant  of a s tandard  Brownian bridge 
process {W0(t) : 0 < t < 1}. By Doob's t ransformation,  we can define {W0(t) : 0 _ 
t < 1} to be { ( 1 - t ) W ( y ~ )  : 0 < t < 1}. It thus follows tha t  {K0(t) : 0 < t < 1} 

is given by {(1 - t )K(y~) : 0 < t < 1}. Thus, the set of constructed vertex points 
{(Vi, K(V~)) : i =- - m , . . . ,  n} of the process {K( t )  : t > 0} maps to the set of vertex 
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points {(l+v~, I_~V K(V/ ) ) :  i ---- - - m , . . . , n }  of the process { K o ( t ) :  0 < t < 1}. Thus,  
if one wishes to construct  {Ko(t)  : 0 < t < 1} over [c3, c4], we choose n so that  Vn > 
c4/(1 - c4) and m such tha t  V* _> (1 - c3)/c3. 

In order to construct  {Wo(t) : 0 _< t <_ 1} associated with {Ko(t)  : 0 < t < 
1}, one could map the gridded {W(t)  : t >_ 0} to {Wo(t) : 0 _< t _< 1} in the  same 
fashion as the vertex points  of {K( t )  : t _> 0} were mapped  to {Ko(t)  : 0 _< t _< 1} 
in the above paragraph.  Another  opt ion is to construct  {Wo(t) : 0 < t < 1} after the 
transformation.  From the t ransformat ion procedure,  it follows that  the  behavior of the 
process { K o ( t ) -  Wo(t) : t > 0} between successive zeros (or vertex locations of Ko) v~ 

- -  l-bVi 

V~+l i E Z ,  is also as independent ,  linearly t ime-transformed,  rescaled Brownian and 1+�88 
excursions. Specifically, 

{ Vi < t <  Vi+~l , i E Z }  
Ko(t) - Wo(t) : 1 +--~i - - 1 + Vi+l 

Wo(i) t - i +---Vii 
= 1 + � 8 8  1 + v~ ~ + 7  - v~ : 

l+V,  
/ 

V~ < t < V~+-----L-~ ,i  e Z ~  
l + V i  -- -- I + V / + I  J 

So, to approximate  the corresponding {W0(t) : 0 < t _< 1} over the same interval we 
have cons t ruc ted  {K0(t)  : 0 < t < 1}, we have the options of construct ing the process 
{W0(t) : 0 < t < 1} over a predetermined,  equally spaced grid or a grid tha t  accounts for 
the differing distances be tween neighboring vertex locations. Again, one would typically 
construct  the corresponding {Wo(t) : 0 < t < 1} over the chosen grid and linearly 
interpolate.  

Appendix 

PROOF OF THEOREM 3.1. We seek to find the joint dis t r ibut ion of (T1,K(T1)) 
where 

~-1 = s u p { x : W ( x ) - x = s u p { W ( t ) - u } } u > _ o  and K(T1) = sup{W(u)  - u} + n .  
u_>O 

We begin by defining M = supu>_o{W(u) - u} and look to derive the joint  density 
of (~h, M )  using linear boundary  crossing probabili t ies of Brownian mot ion and the 
fact that  Brownian mot ion is a Gaussian process with the  Markov property.  Define 
Mt = supo<u<t{W(u ) - u}. The conditional survival function of Mt I W(t )  is given by 

-HM~lW(t)(mt l w) 
-= P ( M t  > mt  I W(t )  = w) 
= P ( W ( x )  crosses mt + x over (0, t) ! W(t)  = w) 

:exp[-2(mt)+(mt+t-w) +] 
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with conditional density of Mt I W(t) given by 

hMtIW(t)(mt I w) 

= 2 ( 2 m t + t - w ) e x p { - 2 m t ( m t + t - w ) }  mt > max(O,w- t ) .  

The density of W(t) is that of a normal distribution with mean 0 and variance t. The 
joint survival function of (71, M) is given by 

F~l,M(t,m) = P('o > t , M  > m) 

( s u p { W ( u ) -  u} > sup { W ( u ) -  u} ,M > m )  P 
\u>t O<u<t / 

/?Ji c ) = P sup{W(u) - u} > mr, M > m [ Mt = mr, W(t) = w 
o0 -t)+ \u>t 

�9 hM, tW(,)(m~ I w)fw(,)(w)dm, dw. 

The key to solving this double integral is to break the double integral into subregions. 
These subregions are chosen based upon their effect on the support of the conditional 
density of Mt I W(t) and the simplification of the conditional probability statement. We 
break the double integral into the following 4 regions 

t m f  f t + m f m  f t + m [ o o  ~ 
and  ~ + m ~ - t  / - -~ d O  ' d t  a w - - t '  J - - o o  J m  ' 

Over the first 2 regions, the conditional probability statement reduces to 

( s u p { W ( u ) -  u} >_ m t , M  > m ,Mr = mt, W(t) = w~ P 
\u>t / 

: P (sup{W(u) - u} > m [M, = mt, W(t) = w] 
\u>_t / 

= exp{--2(m + t - -  w)} 

and over the second 2 regions, the conditional probability statement reduces to 

P (sup{W(u) - u} > m t , M  >> m I Mt =mt ,  W(t) = w~ 
\u>t / 

= P (sup{W(u) - u} >_ rnt I Mt = mr, W(t) = w~ 
\u>t / 

= exp{-2 (mt  + t - w)}. 

We do not provide the tedious integration needed to obtain the joint survival function 
of (~h, M)  which is given by 

F~l,M(t,m) = P(T1 > t , M  > m) 
, - m  : exp,-2m   ( - - y ) -  

+ [1 + 2(t + ~n)]~ (t + m~ \--T] 
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where r is the s tandard  normal density and (I) is the s tandard  normal survival function. 
Differentiating, we obtain the joint density of (T1, M)  given as the following 

g l,M(t,m) 

- 2t13/2 [ ~ ( t + m ) 2 - 1 ]  e x p { - 2 m } r  ( ~ - - - ~ )  

2t3/2 \ ] 

A transformat ion is necessary to obtain the joint density of (~-1, K(T1)) -- (T1, M + T1). 
The Jacobian for this t ransformation is 1. Much simplification results and the joint 
density of (T1, K(T1)) is given by 

2 

where r is the s tandard  normal density function. [] 

0 < t _ < y < c o  

PROOF OF LEMMA 3.1. We have tha t  the joint  density of (T1,K(T;)) is given by 

g ~ l , K ( ~ l ) ( t , y ) = t - ~ ( y - - t ) r  0 < t < y < c ~  

where r is the s tandard  normal density function. Consider the t ransformation where 
(R, S) = ~ v ~ ' t  K(~I) V ~ )  or (7-1, K('rl)) = (S 2, RS). The Jacobian of this t ransformation is 

2s 2. Thus, the joint density of (R, S) is 

gR,s(r,s) = 4 ( r -  s)O(r) 0 < s < r < co. 

We can determine tha t  R d v ~  where T is a chi-square random variable with 3 degrees 
of freedom. Conditional on R, we see tha t  S has a linear density over [0, R] passing 
through the points (0,-~) and (R, 0), and so R is simply a scale parameter .  Thus,  

S d R(1 - v/U). Therefore, (R, S) d ( v ~ ,  x/~(1 -- V~) ) .  Finally, we have, 

(T1, K(T1)) = (S 2, RS)  d (T(1 - V ~ )  2, T(1 - v/-U)). [] 
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