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A b s t r a c t .  In this paper we consider the problem of testing for a variance change 
in nonstationary and nonparametric time series models. The models under consid- 
eration are the unstable AR(q) model and the fixed design nonparametric regression 
model with a strong mixing error process. In order to perform a test, we employ the 
cusum of squares test introduced by Incl~n and Tiao (1994, Y. Amer. Statist. Assoc., 
89, 913-923). It is shown that the limiting distribution of the test statistic is the sup 
of a standard Brownian bridge as seen in iid random samples. Simulation results are 
provided for illustration. 
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1. Introduction 

The problem of testing for a parameter change has attracted much attention from 
many researchers since the parameter change in the underlying model is occasionally 
observed in actual practice. Since the paper of Page (1955), a vast amount of relevant 
articles have appeared in the literature; for example, see Hinkley (1971), Brown et al. 
(1975), Zacks (1983), CsSrg5 and Horvs (1988, 1997), Krishnaiah and Miao (1988), 
Wichern et al. (1976), Picard (1985), and the articles cited therein. The problem of 
testing for a variance change has became an important issue in time series analysis 
since the variance is often interpreted as a risk in econometrics. Incls and Tiao (1994) 
considered the cusum of squares test for testing for a variance change. Their method has 
abundant merits since it is essentially a nonparametric test (distribution free), applicable 
to detecting multiple change points, and easy to understand and implement under a 
variety of circumstances; for instance, their test has been extended to GARCH (1, 1) 
models (cf. Kim et al. (2000)) and linear processes (cf. Lee and Park (2001)). 

In linear processes a variance change in the observations implies a change in one 
of the errors and the converse is also true. Thus a test for a variance change can be 
performed based on the errors rather than the observations themselves. Furthermore, 
the test based on the errors outperforms the one based on observations since the latter 
is subject to serious power losses when the data is highly correlated. Thus, if the time 
series under investigation is stationary and invertible (see Brockwell and Davis (1991), 
for the definition), then the former is naturally preferred (cf. Park et al. (2000)). In 
fact, the ease of application of the cusum of squares test lies in the fact that the limiting 
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distribution of the test statistic is the sup of a standard Brownian bridge. It has been 
shown by Lee and Park (2001) that  this result holds for stationary processes, but so 
far no attempt has been made to investigate its extension to nonstationary processes. 
The issue is intrinsically interesting and the result, if it turned out to be true, would 
merit special attention. Motivated by this, we considered the variance change problem 
in unstable processes (cf. Chan and Wei (1988)). 

In this paper, we also deal with a nonparametric time series model taking into con- 
sideration its practical importance. The nonparametric approach in time series analysis 
has been advocated by many authors due to its flexibility and robust features when 
no parametric models are easy to apply to data (see, for example, Truong and Stone 
(1992), Neumann and Zreiss (1998) and Hafner (1998)). In fact, the nonparametric 
time series approach has been well appreciated by practitioners as a preliminary search 
method aimed at establishing a final parametric model. Needless to say, the task of cor- 
rect modeling requires an analyst to be informed of the possibility of a variance change 
when she/he speculates as to its presence in given data set. Here we particularly concen- 
trate on the variance change problem in a nonparametric regression model with a strong 
mixing error process. 

The organization of this paper is as follows. In Section 2, we deal with the variance 
change test for the errors in AR(q) models, which cover both stationary and nonstation- 
ary models. In view of the result of Lee and Wei (1999), which shows that the residual 
empirical process from the AR(q) model with unit root 1 has a non-Gaussian process as 
its limiting process, one would likely guess that  the same phenomenon might occur in 
this case. However, on the contrary, the Brownian bridge result is shown to remain the 
same as in Inclgn and Tiao, and the cusum of squares test is still valid in this case. In 
light of this result, we discuss a goodness of fit test using the empirical process based 
on the squares of residuals. It is shown that  the empirical process in this case converges 
weakly to a standard Brownian bridge as long as the error distribution has a symmetric 
density, which is immediately applicable to a Gaussian test. 

In Section 3, we consider the variance change problem in a fixed design nonparamet- 
ric regression model whose error process is geometrically strong mixing. We show that  
under regularity conditions the cusum of squares test statistic behaves asymptotically 
the same as with iid random variables. 

Finally in Section 4, we report simulation results for our cusum tests introduced in 
Sections 2 and 3. 

2. Test in AR(q) model 

In this section we consider the problem of testing for a variance change in the 
unstable AR(q) model: 

(2.1) X t  - - / ~ l X t - 1  . . . . .  / ~ q X t - q  = s 

where et are iid random variables with Eel = 0, Ec 2 = a 2 and Ee~ < ec. We assume 
that  the corresponding characteristic polynomial ~ has a decomposition 

r  = 1 - j31z . . . . .  /3qZ q 

l 

= (1 - z)a(1 + z)  b H ( 1  - 2cOSOkZ + z2 )dkr  

k=l  
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where a, b, l, dk are nonnegative integers, Ok belongs to (0, ~r) and r  is the polynomial  
of order r = q - (a + b + 2dl + . . .  + 2dr) tha t  has no zeros on the unit disk in the  complex 
plane. 

Let X t  = ( X t , . . . ,  Xt -q+l ) ' ,  where X t  = 0 for all t < 0. Let )1. 
~n : X t - l ~ t - 1  E X t - l X t ,  

t = l  t = l  
n > q ,  

be the least squares es t imate  of /3  ---- ( i l l , - . .  ,~3q) t based o n  X 1 , . . .  ,Xn. Then the resid- 
uals are 

^ l  

~t = Xt --/3nXt-1, t = 1,. . .  , n .  

As mentioned earlier, our goal is to test  the following hypotheses:  
H0: the et have the same variance a 2 vs. 
H i :  not Ho. 
In order to perform a test,  we employ the cusum of squares test s tat ist ic  T~ based 

on the residuals: 

1 k n 

(2.2) T n -  ~/ngr-~ n l<k<_nmaX t ----n t , 

where ^ 2 n -  1 n ^ n t% ---- ~ t = l  e4t - ( n-1  Y]~t=l ~2)2. Then we have the following result.  

THEOREM 2.1. Under Ho, as n ---+ co, 

(2.3) Tn ~ sup IW~ 
O<u<l 

where W ~ denotes a standard Brownian bridge. We reject Ho i f  Tn is large. 

P R O O F  OF THEOREM 2.1. Since 

~ 2  __k ~2 --__ 1 k 
v/~ t n t ~ ~2__n e 

t = l  t=l 

+ E 4 - - - -  
t = l  t = l  

and 
1 

i n a x  
l < k < n  v ~ v a r ( c  2) 

it suffices to show that  

k Tt 

~2 _ ~2 
n v / -  ~ t t 

sup IW~ 
O<u<l 

(2.4) 

and 

(2.5) 

1 t=~l k m a x  - - =  gt 2 - ~ c~ = OR(l) 
l<k<n 4?2 t = l  

~2 L var(~i~). 
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Note that  

1 t=~ t=~ ~ L e t ) e t  max ~t 2 _ e2 1 l<k<n ~ t --~ l<k<nmaX ~ (et -- (it) 2 -~- 2 t = l  (~t -- ~- In -~- 2 I In ,  

where 
k n n 

1 1 1 
I n =  m a x  E ( ~ t  - et) 2 -  E ( ~ t  - s 2 -  E { ( ~ n - t ~ ) ' X t _ l }  2, 

l < k < n ~  t = l  - -  v ~  t = l  V ~  t= l  

1 k 1 k 
IIn = m a x - - =  t~=l(~t -s  = max = ~ ( ~  - - ~ ) ' X t _ , e  t . l<k<n k in  l<k<n x/n = n 

As in Lee and Wei (1999), in order to show the negligibility of In and IIn, we 
decompose the time series into several components so that each component has its own 
distinct characteristic roots. 

Let 

ut = r  - B)-aXt,  

vt = r + B)-bxt ,  

xt(k) = r - 2cosekB + B2)-dkxt,  k = 1,. . . , l ,  

zt = ~b(B)~ -1 (B)Xt, 

where B denotes the back-shift operator. For convenience, set 

Ut ---- ( t t t , . . . , U t - a + l )  t, Vt ---- (Vt , . . . ,V t - -b+l) ' ,  

Xt(]g ) ~- ( x t ( k ) , . . . , x t_2dk_Fl (k ) ) ' ,  Zt = ( Z t , . . . , Z t _ r + l ) ' .  

Since Xo = 0, we have Uo = Vo -- Xo(1) . . . . .  Xo(1) = Zo -- 0. 
According to Chan and Wei (1988), there exists a q • q nonsingular matrix Q such 

that 

= ' x't(1),... 4 ( 0 , 4 ) '  Q X~ (4,  ~'~, 
and there exist block diagonal matrices Sn = diag(Jn, Kn, i n ( i ) , . . .  ,in(1), Mn) such 
that 

n 

(2.6) S ~ Q ~ _ X ~ _ ~  , ~ ' ~ '  t--1 '~5 ~'n 
t = l  

! ! 

~ p  diag Jn ~ - l ~ h _ l J ~ , . . . , M n  Zt-l~t-1 
t = l  t = l  

= op(1), 

where Jn, K n , L n ( 1 ) , - . . , L n ( l ) , M ,  are a x a,b • b, 2dl • 2 d l , . . . , 2 d l  • 2dl and r x r 
matrices�9 Moreover, it holds that 

/ I - - 1  ^ (Q Sn) (~n - ~) ~P (2.7) 

( s  ~ - 1 ~ - 1  ~- i~t  
t = l  t= l  

( M n l ) - I  t= l  Z t - l~J t -1  E Z t - l ~ t t = l  
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= Op(1). 

Here, for any sequences of r.v.'s {X,}  and {Y~}, Xn "-~g Yn means tha t  X n - Y n  = Op(1). 
First ,  note tha t  In -- Og(1/v'~), since 

n 

(2.8) E { (~n -- t~) ' X t -1  }2 : Op(1),  
t=l  

which is due to (2.6) and (2.7). 
In order to deal with IIn, note tha t  

(2.9) SnQ E Xt- le t  : 
t=l  

Jn E Ut-ls 
t=l 

k 

Mn E zh-let 
t=l 

Then, in view of (2.7) and (2.9), we have tha t  

IIn "JR max  ( j ~ ) - t  , l < k < n  ~ "ll"t-lUt-1 
t=l  

which is no more than  

• u t - l e t  J .  ut_le~ 
t=l  t=l 

n k 

E ~ - l e t  Mn ~- le t  
t= l  t= l  

(2.10) ~ (Sn) -1 Ut_l'ltt_ 1 max E 
t=l t=l l <_k<_n t=l  

- I - ' ' ' n t -  ~ (Mn I) Z t - l Z t - 1  Zt- le t  l<k<nmaX 2;t_1s t , 
\t=l t=l -- -- t----I 

where If" II denotes the Euclidean norm. Since the first term in each summand in (2.10) 
is Op(1) by Chan and Wei (1988), we only have to deal with the second terms. 

Now, we show that 

k 

(2.11) max J~ E u t - l e t  = Op(1).  
l<k<n t= l  

Recall tha t  (1 - B)aut = et and u0 = 0. Set ut(j) = (1 - B)a-Jut, j = 0 , . . . ,  a - 1, 
and Ut = (ut(a),. . .  ,ut(1))'. By (3.13) of Chan and Wei (1988), there exists an a x a 
matr ix  M such tha t  M u t  = Ut and Jn = N ~ I M  where Nn = d i a g ( n a , . . .  ,n) .  In this 
case, we have 

, 

t=l  t=l  t= l  
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so that  

) (2 .12)  m a x  < n - 2 j  m a x  
l < k < n  t = l  j = l  l < k < n  t = l  

k 
Since {~-~t----1 U t - l ( j ) ( t , ~ k  ~-  O' (s  : t < k ) }  forms a martingale, by using the first sub- 
martingale inequality of Theorem 3.8 in Karatzas and Shreve (1988), p. 13, we have that 
for any 5 > 0, 

P m a x  Ut-l(j)et > 5 < -~E ut-i(j)s 
l < k < n  - -  - -  

- - t = l  

Note that for all t and j ,  

and 

E 

2 

Eu2t (j) <<_ t2j-l a 2, 

Hence, 

n n 

---- E Eu~-I(J)a2 <- E ( t -  1)2J-la2 -< n2Ja4" 
t : l  t : l  

2 

and the right hand side of (2.12) is OF( l ) .  This proves (2.11). 
Meanwhile, in a similar fashion, we can show that 

J, 

J (2.13) max Kn Vt-let -- OF(l) ;  
l < k < n  

nn(i)~-~ (2.14) max ~-l(i)et : Op(1), i = 1 , . . . , l ;  
l < k < n  t = l  

(2.15) max M~ zt- le t  = OF(l ) ,  
l < k < n  t = l  

the proofs of which are omitted for brevity. Combining (2.11), (2.13)-(2.15), we obtain 
the argument in (2.10) is OR(l) ,  which entails IIn = OR(l). This proves (2.4). Since 
(2.5) follows from (2.4) and the fact In -- Op(1 /v /~  ), we establish the theorem. O 

So far, we have seen that the test for the variance change can be performed based 
on the least squares residuals. Since the approach based on the squares of residuals 
works adequately, it is natural to ask if an analogous phenomenon happens in the SREP 
(empirical process based on the squares of residuals). Recall that the REP (residual 
empirical process) converges to a non-Gaussian process in the presence of unit root 1 (cf. 
Lee and Wei (1999)). Also, it was shown that the residual based Bickel-Rosenblatt test 
using a smoothing technique can fail contrary to intuition (cf. Lee and Na (2002)). In 
short, the following derivation shows us that the SREP can be used as a basic process 
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for a goodness of fit test so long as the underlying density is symmetric and satisfies the 
regularity conditions in Lee and Wei, Section 3.2. The result is directly applicable to a 
Gaussian test. 

Let F be the distribution of el with symmetric density f ,  and let G be the distri- 
bution of e~, namely, G(x 2) = F(x) - F ( - x )  for x _> O. Define 

n 

1 ~ { I ( 4 _ < x ~ ) - a ( x ~ ) } ,  x > 0 ,  
En(x) = ~ ~:1 

n 

~ { i ( ~  < x~)-a(x~)}, ~ > 0. 2n(X) : - ~  ~=1 

Then, 

g~(x) - 
1 n 

) - ~ { i ( - x  < ~ < x) - (F(x) - F ( - x ) ) }  v~ 

n 1 n 
1 E { i ( g t  <_ x ) -  F(x)} - ~ ~-'~{I(~t <_ - x ) -  F ( - x ) } .  

V/n t ~ l  = 

Since in view of Lee and Wei (1999), 

n 

1 ~{• _< x ) -  F(x)}  - 
V/n t= l  

n 

1 E { i ( e t  _< x ) -  F(x)} 
V/n t = l  

n 

1 ~ ( ~ _  ~) 'x~_ iI (x )  + ~ ( x )  
-[- " ~  t = l  

with SUpx I~n(X)l = Op(]-), and f (x)  = f ( - x ) ,  we can see that 

sup Ign(X) - -  ~n(X)] = Op(1). 
x 

Therefore, 
gn(U) := $,((G-I(u))  1/2) ~ W~ 0 < u < 1. 

The above result suggests that a goodness of fit test for a symmetric density, includ- 
ing a Gaussian test, can be accomplished based on gn- In fact, the Gaussian test (when 
the variance is known) is converted into a chi-square distribution test. In actual practice, 
one should keep in mind that, if an estimate of variance is plugged into the empirical 
process, the limiting distribution is no longer a Brownian bridge, but  a Gaussian process 
as we usually observe in the empirical process context (cf. Lee and Wei (1999), Section 
3.2). Besides the goodness of fit test, we can reason that the sequential SREP (cf. Bai 
(1994)) can be employed to detect a distributional change in autoregressive models un- 
der the same conditions; it is well-known that this result does not hold when using the 
sequential REP (cf. Ling (1998)). All these facts support the usefulness of the method 
employing the squares of residuals in autoregressive models. 
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3. Test in nonparametric regression model 

In this section, we develop the variance change test procedure in a fixed design 
nonparametr ic  regression model wi th  a strong mixing error process. The nonparametr ic  
regression model under consideration is as follows: 

(3.1) Y, = g(xt) + e,, t = 1 , . . . , n ,  

where n denotes the sample size, x t  = t / n ,  t = 1 , . . . ,  n, are the equally-spaced design 
points, g is the regression function, and {et} is a s ta t ionary strong mixing process with 
zero mean and finite variance. The model in (3.1) has been studied by several authors: 
see Hall and Hart  (1990), Har t  (1991) and Wu and Chu (1994). Their concern was the 
est imation of the regression function g ra ther  than  the change detection problem itself. 

Our goal is to test the following hypotheses: 
H0: Eet 2 = a 2 for all t = 1 , . . . , n  vs. 
H1: not H0. 

Towards this end, we employ the cusum of squares test based on residuals. For an 
est imator  of g, we consider the kernel-type regression est imator introduced by Priestley 
and Chao (1972). Let K be a kernel function and h -- hn be a bandwidth.  Given 
observations Y1,- .- ,  In ,  the kernel regression function est imator gn( ' )  is given as 

1 n 
= - ~ - ~ Y t g h ( x -  x t ) ,  0 < x < 1, gn(x) 

t = l  

where K h ( u )  = K ( u / h ) / h ,  and the residuals are 

et = Yt - g n ( x t ) ,  t =  1 , . . . , n .  

In order to obtain an asymptot ic  result as in Incls and Tiao (1994), we assume 
tha t  {et} is geometrically strong mixing, viz., if we put  

ak  = a ( a ( e s , s  < O ) , a ( e s , s  > k)), k = 0, 1 , 2 , . . . ,  

where a(.T, 6) denotes the strong mixing coefficient between a-fields 9 c and G (cf. 
Doukhan (1994), p. 3), {ak} satisfies 

(3.2) ak  ~ C e  -pk  

for some C > 0 and p > 0. 
Before we state  the main theorem of this section, we introduce some notat ion and 

k conditions. We first define the part ial  sum of e~, namely, Sk = ~-,t=l e2t, k = 1, . . . ,  n.  In 
2 Var(S~), then provided E ~  = a 2 and Ee 4 < c~, we have fact, if we set s n = 

2 E(e 2 - a 2 )  2 2 ~  1 -  Z ( c ~ - a 2 ) ( e 2 + k - a  2) (3.3) 8 n = n + 
k = l  

n 

- 2)--:. - - : ) ,  
k = l  
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which is useful for later work. Since we have to deal with the residuals, we also define 
the partial sum of residuals: 

S k =  E @2 for 
t=[nhl+ l 

k = [nh] + 1 , . . . , n -  [nh], 

where the truncations for k are concerned with the kernel function K satisfying 
2 2 2 supp(K) C [-1,  1] which is assumed in (A3) below. Moreover, v(k) := E(el  - a  )(ei+ k - 

a 2) is estimated by 

1 
"~(k) -  n - 2 [ n h ]  E (e2_  ^ ^2 

t=[nh]+l 

where 
1 n-[nh]  

- n -  2[ h] 
t=[nh]+l 

Then the estimator sn̂ 2 of Sn2 is given by 

~̂ {~( S n = It  O) 

n } 
, 

k=l  

for a sequence of positive integers {/n} satisfying In --* oo and I n / n  --* 0 as n --* c~ as 
will be explained in more detail shortly. Note that  the residuals near end points are 
discarded to avoid the boundary effect in nonparametric regression. 

Below are the conditions imposed in this section. 
(A1) { a k }  satisfies (3.2), and Ele 2 - a2I r < c~ for some r > 2. 
(A2) The regression function g satisfies the Lipschitz condition, viz., 

Ig(x)  - g (y ) l  < D l l x  - y l ,  O <_ x , y  <_ l 

for some constant 0 < D1 < oo. 
(A3) The kernel function K vanishes outside [-1,  1] and is Lipschitz continuous 

on [-1,  1], viz., 
I K ( x )  - K ( y ) I  <_ D21x - Yl, - 1  <_ x , y  < 1 

for some constant 0 < D2 < c~. And K satisfies f K ( x ) d x  = 1. 

(A4) The bandwidth h = hn satisfies n h  2 -~  c~ and n h  4 --* 0 as n -~  c~. 

(Ah) In satisfies In -~  cx~, l n / v / ~ h  -~  0 and l ~ h  -~  0 as n -~  ~ .  

R e m a r k .  A broad class of processes, including invertible stationary ARMA(p, q) 
processes with innovations having a continuous distribution, satisfy Condition (A1) (cf. 
Gorodetskii (1977)). Conditions (A2)-(A4) are the usual conditions assumed in non- 
parametric regression estimation. 

Here is the main result of this section. 
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THEOREM 3.1. Assume that Ho holds. Under Conditions (A1)-(A5), 

(3.4) T~* := max S k -  ~ sup I w ~  . 
[nhl+ l <_k<_n--[nh] -- 0<u<t  

We reject Ho if T~ is large. 

Now we prove Theorem 3.1. We start with a lemma which can be found in Doukhan 
((1994), p. 46). 

LEMMA 3.i. Assume that Ho holds. I f  E]e~ - a21 ~ < c~ for some r > 2 and (3.2) 
is true for some C > 0 and p > O, then 

(3.5) Z ( ~ [ n . ] -  -~ W O. 

LEMMA 3.2. Under Ho and 

1 ^ 
max gkl ~ o, I S k  - 

[nh]+l~k<n-[nh] x/n 

k 
where Sk = Et=[nh]+l e2t" 

PROOF. We write 
k 1 ~ 1 

t=[uh]+l 
k k 

1 2 1  

t=[nh]+ l V/~ t=inh]+ l 

= I k + I I k .  

Observe that 
.-[nh] { 

1 1 s  -- Xj)  (3.6) Ia <_ ~ E n 
t=[nh]+l 

< 3  

2 

+ - ~ g ( ~ j ) K . ( x ~ -  ~ j ) -  g(xd 
It j=l 

-~1 ~_, nl ejKh(xt -- xj) 
t=[nh]+l j=l  

in nhJ{l  }2 
+ . ~  ~ (g(xj) - g(x~))K.(x~ - xj) 

t=[nh]+l "= 

. 
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It is easy to check tha t  the first t e rm in (3.6) is O p ( n - t / 2 h  -~) since 

E ej K h  (x t  - x j )  = 0 , 

due to (A1) and (A3). The remaining nonstochastic terms in (3.6) are of order O ( n l / 2 h  2) 
and O(n-3 /2h -2 ) ,  respectively, since 

and 

n 
s ~ , ( g ( . , )  - a (x~))Kh( .~  - ~ )  = O(h)  
n 

j = l  

(3.7) g(xt)  K h (x t  - x j )  - 1 = 0 , 
j = l  

where we have used (A2) and (A3). Then, by using (A4) we obtain 

(3.8) max  Ilkl = oF( i ) .  
[nh]+ l <_k<n-[nh] 

For I Ik ,  we decompose it into three terms as follows: 

{ ( )} ---- V 1~2 t=~nh]+l g(xt)  1-- X E Kh(x t  -- s I Ik  

--e2 ~-..~ 1 ~ ( g ( x ~ )  - g (x , ) )Kh(x~  - x , )  + 
v~e t=[~]]+ l n j=l 

} 
t=[nh]+l rt j = l  

= IIk,1 -}- I I k a  -- IIk,3. 

First, observe tha t  

2 n-fnh] 

III<ll <_ -~ t=[n~h]q_l 

From this and (3.7), we have 

) g(xt)  1 - - 1  K h ( x t - - x j )  
n 

j = l  

s 

(3.9) max [IIk,11 = O p ( n - 1 / 2 h - 1 )  �9 
[nhl+l<_k<n-[nh] 

For IIk,2, set p = [n 1/3] and q = [(logn)2], and define random variables V / a n d  y~, 
as follows: 

bi ai+l --1 [,~ - 2 I~h] ]  
~ = ~ ,  ~'= ~ ~, ~=l,...,r= ~Tq j' t=ai t=bi-k l 
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(3.11) 

since 

--1 n [nh] + 1 + (p + q)(i 1) and where ~Tt = (n Y~.j=l(g(xt) - g(x j ) )Kh(x t  - xj))et ,  ai = 
bi = [nh] + 1 + (p+  q)(i - 1) +p .  Then, we can write 

~Zk 2 k 2 ~k 2 V/ 2 (a. lo)  ss~,2-~ ~ ~ , = ~ Z ~ + ~  ,+~/'k, 
t=[nh]+l 7=1 i = 1  

k where uk is the largest integer such that [nh]+l+uk(p+q)  <_ k, and Ak = Y~.t=[nh]+l rh-- 
Uk Uk Y~-i=l 17/- ~--~-~=1 IX/'. Let ~ be any positive real number. By the coupling theorem (cf. 

Doukhan (1994), p. 8, and Bosq (1996), p. 18), there exist independent random variables 
VI*,... , V* such that Vi* and 17i have the same distribution and 

( ( P IV~-V~*l >r < 1 8  aq 2 

Then, we can see that 

max = op(1), 
[nh]-t- l <--k<--n--[nhl 

t inh]+ l <-k<-n-[ nh] 

< P max  Vi > 
- k,~_~_~-~ 
< P ( m a x  1 E V / *  
- kl<~_<~ 7 ( > + P  max V i - V i *  ) 

l<u<r 

P ( max 1 IAkl > r 
\[nhl+l<k<_n-[nh] 

<_ P max rh 
i = 1  ai <k<ai+ l--1 

- - t ~  i 

(r (p + q)m 
= 0 \ n~ 2 ) , 

> 

~ ~--~ Var V/* + IV/- V/*I > 
) 

i = 1  i = 1  

__ o + o  
t,/~) ) 

= o(1). 
In the same manner, we also get 

1 ~ If/' (3.12) max = op(1). 
[nhl+l <k<n-[nh] V ~  

Furthermore, applying the coupling theorem again, we can show that  for any ~ > 0, 
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the detailed proofs of which are omit ted  for brevity. This entails tha t  

(3.13) 1 max  IAal = OF(l). 
[nh]+l<k~n-[nh] V/~  

Combining (3.10) and (3.11)-(3.13), we have 

(3.14) max Iz/k,21 = op(1). 
[~h]+l<k<~-[nh] 

Finally, we show tha t  

(3.15) max IIIk,31 = OF(l). 
[nh]+l~_k~n-[nh] 

n Let ~t = (n -1 ~-~j=l c jKh(Xt  - -x j ) )e t ,  p = Pn = [nhlogn] and q = qn = 2[nh] + [(logn)2], 
and define ai, bi, r and uk as we did before. Set 

b~ 

w,  = ~ (~ - E6) ,  w : :  
t=a~ 

a i + l  - - 1  

( ~ -  E~,), 
t=biA-1 

i =  1 , . . . , r .  

If we put  7~(k) = E ~ l ~ l + k ,  then 

and 

n 

= - 

j = l  

2 ~ 2 _ ~  2 ~ ,  2 
IIk,3 = - - ~  E Wi + W:  + + E~t, 

t k Uk uk = - - }-~-i=1 Wi shows tha t  if - ~-~i---1 W[. Simple where A k ~-~n=[nh]+l (~t E~t) algebra 
(A1) and (A3) hold, then 

n-[nh] 

t=[nh]+l 

and for all i = 1 , . . . , r ,  

Var(Wi) = O \ n2h2 ] .  

Then, in a manner  similar to the derivation of (3.11)-(3.13), we can obta in  (3.15) by 
utilizing the coupling theorem since only ej with j = t - [ n h ] , . . . ,  t + [nh] are involved 
in each ~t- Combining (3.8), (3.9), (3.14) and (3.15), we establish the lemma. El 

LEMMA 3.3. Under 1to and (A1)-(Ah), as n ~ c~, 

^2 co 

n 
k ~ - o o  

where ~(k) = E ( ~  - ~)(~1~+~ - ~2). 
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PROOF. Let 

~/*(k) = (n - 2[nh]) -1 
n - [ n h l - N  

E (c2 e2 - ' - # 2 ) (  t+lkl tt2) 
t=[nh]+l 

where #2 (n 2[nh])_l v-.n-[nhl 2 = -- 2--,t=ir~h]+l et" It suffices to show that  

In In 

(3.16) E ~ ( k ) -  E "~*(k) p 0 
k=-l~ k=-l~ 

and 
In In 

(3.17) E " / * ( k ) -  E "~(k) P o" 
k=-ln k=-l,~ 

In order to verify (3.16), we write 

1 
~(k) - ~,*(k) - n - 2[nh] 

n-[nh]-k  

- - - c ~ ) ( E , + k  - -  ~ 2 )  

t=[nhl+l 
+ (e~ ~ ) ( ~  f ,2) + ( 4  .2 _ _ _ _ . ~ ) ( ~ , §  ~+~) 

+ ( d  ~ 2 ) ( ~  f,~) + ( .2  - ~ ^5 - - ~ ) ( ~ + ~  - 4 + ~ )  

+ (#2 - ^ 2 

= R l ( k )  + . . .  + R s ( k ) .  

Observe that by the Schwarz inequality, 

n-[nh] 
1 

]Rl(k)l-< n - 2 [ n h ]  E (e2-~t2)2 
t=[nh]+l 
n-[nh] 

2 
< . r L ,  ~ ( g ~ ( x , ) - - g ( ~ ) ) 4 +  
- n - z/nnu 

t J t=[nh]+l 

n-[~hl 
8 y- - g ( ~ ) ) ~ , .  

n -  2 [nh l  t=[nh]+l 
By Jensen's inequality and Condition (A1), we can see that 

n--[nh] rt~h] { (1~.~= 1 )4 
(gn(x~)  - g ( x d )  4 < 27  - ~ j K h ( x ,  - x j )  

t=[nh]+l t=[nhJ+l 
4 

+ - ~ ( g ( x j )  - g ( x ~ ) ) K h ( x ~  - z j )  
n j=l 

n 1 n 1 +o,o 4, + o  
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E v ' n -  [nh] Since z--,t=[nh]+l e4t = O(n )  and 

n-[nh] 
E (gn(Xt) 22 - g ( x t ) )  et < 

t=[nh]+l 

we obtain, uniformly in k, 

( 1 
(3.18) [R~(k)[ = ON 

( n~_~h] )1/2 (rt~_~h ] )1/2 
(gn(xt)  - g (x t ) )  4 e 4 , 

\t=[nh]+l \t=[nh]+l 

/ ( ( 1 / 1 / 2  ) (1)  
V h 4 + O R  n--~-gh2Vh 4 = O R  -s v h 2 , 

where a V b denotes the maximum of a and b. For i = 2, 4, we have 

(3.19) 
n- [nh] ) 

IRi(k)l < 1 
t=[nh]+l 

1/2 

n--[nh] ) 1/2 
1 [ 2 p2) 2 

t=[nh]-t-1 

(Op(-~l h2)) 1/2 = V ( ())Op1 1/2 

) = Op V h  

in view of (3.18). Furthermore, by Lemma 3.2, we have that for i = 3,6, 

(3.20) Ini(k)[ < 

and for i = 5, 7, 

(3.21) IRi(k)l < 

= op 

Also, by Lemma 3.2, 

(3.22) 

n 1 max 
( n -  2[nhD 2 [nh]+Z<_j<_n-[nh] V ~ 

1 n ~ h ]  
(e~ - d )  

v/-d t=[,~hl+l 

1 n -  [nh] 

n - 2[nh] t=[nh]+l 

o,(1) 
n 

(n - 2[nh]) 2 

J 

t=[nh]A-1 

n - 2[nh] 
( ~  - 

( rn j r)2 
1 E (et2 - gt2) 

"-~ t=[nh]+l 
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Hence, (3.16) is yielded by (3.18)-(3.22) and Condit ion (A5). 
Now, it remains to prove (3.17). Noticing tha t  

1 n-[nh]-k 

-- @t ~t+k 
t=[nh]+l 

n - 2[nh] + 

n - 2[nh] (t=[nh]+l t=n-[nh]-k+l 

we have 

k 2 2 
n -- 2[nh] (EClel+k nu vr4) 

n -  [n h] - k I. 1 
-- (etet+ k -- Ee2te2+k ) + OR(l). E ('~*(k) 7(k)) -- 2[nh] E 22  

k=--ln k=-ln n -  t=[nh]+l 

Then, using the Minkovski inequality in L2-norm [l" [12, and Conditions (A1) and (A5), 
we obtain 

n-- [nh] - -  k [ 
1 

@t 6t +k n -  2[nh] Z 22  _ Ee2e2t+k) 
k=-ln t=[nh]+l 2 

l. ] 1 
-< E n -  2[nh] E 

t=-ln t=[nh]+l 
 nhlk 2 II (etet+ k - Ee2e2+k ) 

2 

= o p ( 1 ) ,  

which implies (3.17) and the lemma is established. [] 

P R O O F  OF T H E O R E M  3.1. Let -2 S n = Var(Sn_[nh] ). Then,  from (3.3) and Lemma 

3.3, we can see tha t  Sn/Sn P 1 and ~n/v/-n P T. Now, note tha t  

k -  [nh] ~ 
ls~ Sk - n -  2[nh] --[-hl) 

} sn gn n -  2[nh] n-[nh] 

Sn V ~  (~k -- ~k) ~ - - - 2 - ~ 1  (S--Inhl  -- Sn-l-hJ)  �9 

Then, the theorem is a direct result of Lemmas 3.1 and 3.2. [] 

4. Simulation results 

In this section we conduct  a simulation s tudy  to evaluate the tests in Sections 2 
and 3. In this simulation we perform a test at a nominal level a = 0.05. The empirical 
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sizes and  powers  are calcula ted as the  reject ion number  of the  null hypothes is  out  of 
2000 repet i t ions.  First ,  in order  to see the  pe r fo rmance  of Tn in Sect ion 2, we consider 
the model  

X t  = f lX t -1  + et, t = 1 , . . . , n ,  

where  X0 is assumed to be  0 and  r are lid normal  r a n d o m  variables  wi th  m e a n  zero and  
variance a 2. Now we consider the  p rob lem of tes t ing the following hypotheses:  

H0: cr 2 remains  equal  to 1 for t = 1 , . . . ,  n, vs. 
H i :  ~r 2 = 1 for t = 1 , . . . , [ n / 2 ]  and  a 2 = A for t = [n/2] + 1 , . . . , n ,  

where  A takes the values 2 and 4. Here we evaluate  Tn wi th  the  sample  size n = 200, 
300, 500 and fl = 0.2, 0.5, 0.8, 1.0. The  empir ical  sizes and powers  are summar ized  
in Table  1. As seen in the table,  Tn does not have size dis tor t ions and  produces  good 
powers. I t  is manifes t  t ha t  the sizes and  powers do not depend  upon  the  values of  fl, 
and  the  test  works well for the  uns table  case as well as the s t a t i ona ry  case. 

Now, in order  to evaluate  the pe r fo rmance  of the  test  T,~ in Sect ion 3, we consider 
the  nonpa rame t r i c  regression model  in (3.1): 

Yt = g(x t )  -b ~t, t = 1 , . . . ,  n, 

where g(x)  = 25x 3 - 45x 2 + 24x - 3.6 and  {~t} satisfies the equation:  

r ~-- r  -]- et, Ir < 1, t = 1 , . . . ,  n, 

where et are lid normal  r a n d o m  variables  wi th  mean  zero and  var iance w 2. For the 
es t imat ion  of the regression function,  we use the  kernel funct ion 

K ( x )  = ~(1 - x2) I [_ l ,1] (x ) ,  

where I(-)  denotes  the indicator  function,  the  bandwid th  h = hn = n - 1 / 3 / 3 ,  and In = 
2 As before, we assume tha t  the  var iance change occurs  a t  t = n / 2  [n 1/4] in es t imat ing  s , .  

and pe r fo rm a test  for the following hypotheses:  
H0: w 2 remains  equal  to 1 over t = 1 , . . . , n ,  vs. 
H i :  w 2 changes f rom 1 to 8 at  t = In/2], 

where  5 takes the  values 2, 4 and 9. Here  we employ  the sample  size n -- 200, 300, 500, 
and  r = 0, 0.3, 0.5, 0.8 in order to see the correlat ion effect. T h e  figures in Tables  2 
and  3 denote  the  empir ical  sizes and  powers,  respectively. From the  results ,  we can see 
t ha t  the  tes t  has no severe size dis tor t ions at m o d e r a t e  sample  size, say, n > 300, and  it 
produces  good powers u n d e r / / 1 .  T h e  power  depends  on the  values of r which decreases 
as r approaches  1 and when 5 has lower values. As ant ic ipated,  it increases as ei ther  5 
or n increases. The  results ob ta ined  in our  s imulat ion s tudy  enable  us to conclude t ha t  
the cusum of squares test  pe r fo rms  adequa te ly  for the  var iance change in nons t a t iona ry  
and nonpa rame t r i c  t ime  series models.  

Table 1. Empirical sizes and powers of Tn. 

/3 0.2 0.5 0.8 1.0 

A size 2 4 size 2 4 size 2 4 size 2 4 

200 .033  .818  1,00 .030 .818  1.00 .037 .788 1.00 .037 .826  1.00 

300 ,034  .953  1.00 .039 .953  1.00 .032 .953 1.00 .037 .957 1.00 
500 .042  .998  1.00 .050 .997  1.00 .042 1.00 1.00 .042 .998 1.00 
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Table 2. Empirical sizes of T~. 

r 0.0 0.3 0.5 0.8 

200 .028 .030 .035 .030 

300 .026 .034 . 0 4 1  .040 

500 .034 .048 .042 .050 

Table 3. Empirical powers of T n. 

r 0.0 0.3 0.5 0.8 

2 4 9 2 4 9 2 4 9 2 4 9 

200 .559 .981 .998 .511 .978 .998 .466 .949 .995 .318 .851 .978 

n 300 .834 1.00 1.00 .774 .999 1.00 .706 .995 1.00 .474 . 9 6 1  .996 

500 .990 1.00 1.00 .975 1.00 1.00 .940 1.00 1.00 .725 .999 1.00 
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