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Abs t rac t .  Contrary to the common sense in economics and financial engineering, 
price fluctuations at very fine level of motion exhibit various evidences against the 
efficient market hypothesis. We attempt to investigate this issue by studying exten- 
sive amount of foreign currency exchange data for over five years at the finest level 
of resolution. We specifically focus on the proposed stability in binomial conditional 
probabilities originally found in much smaller examples of financial time series. In 
order to handle very large data, we have written an efficient program in C that au- 
tomatically generates those conditional probabilities. It is found that the stability is 
maintained for extremely large time duration that covers almost the entire period. 
Based on the length of conditions for which the conditional probabilities are distin- 
guishable each other, we identify the length of memory being less than 3 movements. 

Key words and phrases: Markovian structure, memory length, conditional proba- 
bility, high frequency data in finance, tick data, foreign exchange rates, prediction. 

1. Introduction 

Although efficient market hypothesis is a basic assumption in financial engineering 
that  regards any competitive market to be a perfectly fair gamble, investors believe in 
the opportunities of taking advantage by using various means such as arbitrage chances, 
skewness in probability distributions, and various patterns, because those opportunities 
indeed exist in the real financial time series. Details are, however, not clear enough to 
explain why some empirical 'rules' work, and what kind of stochastic process they are, 
to what degree they are stationary and how to deal with them. Much discussion has 
been made as to how we can incorporate a deviation from the efficient market in order 
to improve the theory of finance (Fama (1991)). 

Studying real data in the financial systems, especially high frequency data  of price 
movements is of special importance in order to answer those questions. Mainly due to 
their enormous sizes, high-frequency data  in finance have been difficult to access until 
recently. 

An epoch-making publication appeared in 1995 in which Mantegna and Stanley 
(1995) demonstrated that  the shape of probability density distribution of price incre- 
ments of S&P 500 stock index per minute follows the L~vy's stable distribution of index 
1.4, instead of Gaussian distribution. This implies that the price fluctuation is not a 
pure random walk but a walk with burst effects, often referred as the 'fat-tail'. This was 
the first in the literature to show that  high resolution financial data indeed obey to the 
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scale invariant statistics, proposed by Mandelbrot (1963) much earlier. Many different 
analyses following this work have derived various values of indices and the results are not 
conclusive so far. Moreover the auto-correlations of the price as a function of time reso- 
lution vanish after a few seconds, while the auto-correlations of volatility stay non-zero 
for months, which remains as an open problem. 

Ghashghaie et al. (1996) compared approximately 1.47 million data points U.S. 
Dollar-German Mark exchange rates recorded in HFDF (1993) with three dimensional 
fully-developed turbulence and showed that both the financial time series in HFDF (1993) 
and velocity differences of three dimensional turbulence follow Kolmogorov's scaling law 
of moments. They argued the resemblance of those two processes caused by the common 
cascade structure in the energy flow for turbulence and the information flow for the 
financial market. This issue is also an open problem. 

Those high-resolution financial data are called as 'tick data' ,  since every price move- 
ment (called tick) is recorded in them together with related information. From them we 
expect to obtain detailed information on the short-term behavior of financial data. Espe- 
cially it is expected to approach the question of how the no arbitrage chance hypothesis 
is to be altered at such high level of time resolution. Although there is no doubt that  
arbitrage chance is scarcely observed at the time scale of human reaction, it may be 
possible to find such chances at the resolution much smaller than the relaxation time. 
To this end we view the financial fluctuation from the same viewpoint as the microscopic 
motions of molecules compared to the macroscopic thermodynamics of bulk materials. 

2. Short-term patterns 

It is normally assumed that the fine fluctuations of financial data (such as currency 
exchange rates, or stock prices) can be regarded as the Brownian motion. This is another 
way of representing the dogma asserting that a competitive market is efficient and is very 
close to a perfect gamble, since a chance of making clear profit is immediately wiped 
out by prompt actions of shrewd investors. Luis Bachelier (1900) is said to be the first 
who identified the mathematical structure of competitive prices as random walks, in his 
P h . D .  thesis in 1900, five years earlier than the publication of Albert Einstein's famous 
paper on the Brownian motion. This hypothesis has long been a backbone of financial 
technology, based on which famous Black-Sholes formula was derived, for example. In 
short, the financial fluctuation is Brownian in the macroscopic level but  no one has 
studied what really happens in the microscopic level before examining the tick data. 

Recently, Ohira et  al. (2002) has shown that the naive myth of efficient market 
hypothesis needs to be reconsidered at tick level. They showed by comparing two sets of 
data, A and B, which are well separated in time, that many of conditional probabilities 
for up/down motion take almost the same numerical values in the two data. 

Motivated by this observation, we investigated much wider sets of data and found 
that the stability persists for a very long term compared to the average decision time of 
most investors. Also we have roughly identified the upper limit of the memory length of 
foreign currency market. 

3. Tick data 

Prior to the First International Conference on High Frequency Data in Finance held 
in Europe in March 1995, the idea of distributing high frequency data to the academic 
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communi ty  was suggested at the planning session of the Conference held in August  1993. 
The  test  da t a  H F D F  (1993) d is t r ibuted by Olsen & Associates was prepared  under  such 
circumstances.  

Tick da ta  are presented as a set of informat ion on the  time, the price, posit ion of 
the price (bid, or ask), and other  information.  Th e  bid price is the  dealer 's  buying price 
on which we sell, and the ask price is the  dealer 's  selling price on which we buy. Always 
the bid price is lower t han  the ask price at  each time. We are bounded  to sell low and 
buy  high. Tables 1 and 2 are the typical  examples of H F D F  (1993) and CQ G  (2001), 
respectively. 

Tick da ta  are available for various kinds of price movements .  Th e  C Q G  (2001) is 
the largest da t a  set available to us at this moment  and we choose it to take advantage of 
statistics. Another  reason tha t  we adopt  this d a t a  set is t ha t  the foreign exchange rates 
have an advantage of cont inui ty  compared  to o ther  financial data .  Since the exchange 
market  is open somewhere on the Ear th ,  prices are recorded wi thout  in ter rupt ion  except  
weekends. This means we have continuous t ime series of length 30,000 to 40,000 on the 
average, a l though we use here the whole da t a  from 1995 to  2001 as a continuous t ime 
series. 

There  is a disadvantage in foreign exchange rates. First ,  all the  available da t a  are 
quotes only and we must  judge by  ourselves how many  of t hem were actual ly  executed. 
Stocks such as NYSE-TAQ (1993) and futures are, on the o ther  hand, usually equipped 
with informat ion on the actual ly  executed  prices, though they  have discontinuities at  
every closing t ime of the market  and a large amount  of accumula ted  orders rush into the 
market  almost  s imultaneously at  the opening t ime of the market .  

Another  possible problem is the diversity of informat ion sources. Recorded da ta  are 
gathered from all over the world and the price movements  do not  necessarily indicates 
the logical order  of the price moves. Test  da t a  such as H F D F  (1993) have detailed 
informat ion on the count ry  and the bank at  which each price quote  comes from. However, 
many  tick da t a  including CQG (2001) miss such informat ion and the resul ted da ta  are 

Table 1. Example of HFDF (1993) data of U.S. Dollar in terms of German Mark. The time, 
bid-price, ask-price, country/city code, bank code, filter (1 means a good data) are shown. 

HFDF (1993) Data Set Description 

CCYY-MM-DD (GMT) bid ask country/city bank filter 

1990-03-25 23:59:44 1 . 7 1 9 0  1.7195 344 01 0056 1 
1990-03-25 23:59:56 1 . 7 1 8 5  1.7192 036 02 0065 1 

http://www.olsendata.com/ 

Table 2. Example of CQG (2001) data of U.S. Dollar in terms of Japanese Yen. Contract 
number, date, session, time, bid (B) or ask (A) are listed. 

Contract Date Session Time Price (T) 

JY1995U 19950731 O 1730 11413 B 

JY1995U 19950731 1 0002 11376 B 
JY1995U 19950731 1 0002 11394 A 

http://www.cqg.com/ 
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simply a time series of quotes from many different countries/markets. However, this 
does not immediately mean that such tick data miss all the information on the logical 
order of price movements, since many investors nowadays depend on the on-line quotes 
coming from computer terminals, which are essentially the same information as seen in 
the tick data. 

Although many financial databases are gradually prepared for distribution, still 
most of those data sets are not easy to use for various reasons, such as recording errors, 
inconvenient formats, and high costs, etc. 

Recording errors are the most serious problem among all. Especially until early 
1990's when recordings were made by human hands, excess rates of jumping/missing 
digits are observed (Moriya (2002)). We use, as a standard data for cross-checking, 
HFDF (1993). 

Excess of zero in price movements causes another problem. Probability distribution 
of price increments can be approximated by Gauss distribution or other stable distri- 
bution only when a part of zeros are taken off. This process is necessary not only for 
quotes data but  also for actually traded data in order to approximate the probability 
distribution by a known distribution function. Therefore we need to fit a raw distribu- 
tion by a stable distribution and subtract appropriate amount of zeros then rescale the 
distribution and fit it again. This process can be avoided in many cases by appropriately 
choosing the histogram width. A careful treatment is called for in the course of statistical 
analysis. We do not get into this problem in this paper any further because we focus 
on the tick-wise motions and dot not deal with the delicate question of the statistical 
property. 

Finally we mention the problem of ask-bid spreads. Bid is a price at which the 
dealer wants to buy, and ask is the price to sell. Those are mostly paired at every tick. 
However, the total numbers of ask prices are usually different from the number of bid 
prices. It is said that  bid prices are more reliable because ask prices are vulnerable to 
recording errors and other external conditions. We still need more study before drawing 
any conclusion about this. 

4. Remarkable stability 

We first examine the largest currency exchange tick data that  we have, and then 
treat HFDF (1993) for the purpose of cross checking. We adopt the 'ask' quotes of U.S. 
Dollar vs. Japanese Yen from January 2, 1995 to April 12, 2001 having 10,127,289 data 
points (Hereafter we abbreviate this data  set as CQG_UJA). 

The process of our analysis is as follows. We first split the first 10 million data 
points into twenty sets, each of which contains 500,000 data points. We use {0,1} to 
represent {down, up} motion of the tick level price change and neglect data if there is 
no change from the previous one. We then compute all the 2 m conditional probabilities 
for memory depth m. We have written a program in C that automatically generates 2 m 
files containing each conditional probability for 20 data sets for a fixed memory depth 
m. In the case of m = 1, for example, two files are generated after scanning 20 data sets, 
one of which containing 20 values of P(1 I 0) for 20 data sets and the other containing 
20 values of P(1 I 1). Figure l(a) shows those two conditional probabilities for m = 1. 
Here P(1 I 0) indicates the rate for the price to rise (1 = T) after fall (0 -- ~) and P(1 I 1) 
indicates the rate for the price to rise (1 -- T) after rise (1 -- 1")- Note that  other elements 
such as P(0  I 0) = 1 - P(1 I 0), and P(0  I 1) = 1 - P(1 I 1) are not independent and thus 
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Fig. l(a) .  Two conditional probabilities, P(1 1 0) and P(1 I 1) for memory depth m = 1 
are drawn for the data  explained in the text (CQG_UJA) that  are cut into 20 samples of size 
500,000. 
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Fig. l (b) .  Four conditional probabilities, P(1 I 00), P(1 ] 10), P(1 I 01), and P(1 I 11) for the 
memory depth m = 2 are drawn according to the same method for the same data  as in (a). 

omitted in our discussion. Note that P(1 J 0) and P(1 ] 1) are both remarkably stable 
for the entire period from 1995 to 2001. 

Increasing the depth of memory is straightforward. For example there axe eight 
conditional probabilities, P(1 I 000),P(1 I 001) , . . . ,P (1  I t11) for m -- 3, which are 
plotted in Fig. l(c). Note that those time series of conditional probabilities keep high 
level of stability throughout the entire time period except the seventh sample and the 
seventeenth, which presumably correspond to rapid rises of U.S. Dollars. 

Another notable outcome of this study is on the information of memory length that  
the price fluctuations are supposed to have. We can read it out from Fig. l(a) and 
Fig. l(b) in the following manner. The lines are stable and well separated each other in 
(a) and (b) corresponding to m = 1 and 2, then at m = 3 shown in Fig. l(c) lines begin 
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Fig. l(c).  Eight conditional probabilities for ra = 3, P(1 I 000/, P(1 I 100), P(1 I 010/, 
P(1 I 110/, P(1 I 001), P(1 I 101/, P(1 I 011), P(1 I 111/, from the top to the bottom, are 
drawn according to the same method for the same data  as in (a) and (b/. 
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Fig. l(d).  Sixteen conditional probabilities for m = 4 are drawn according to the same method 
for the same data  as in (a)-(c). The first set of four lines including P(1 I 0000), P(1 [ 10001, 
P(1 ] 0100), P(1 I 1100) are bunched into the upper most part of the figure. The next bunch 
below the first one consists of the four lines including P(1 I 0010), P(1 I 1010), P(1 t 0110), and 
P(1 I 1110). The third bunch is made by P(1 ] 0001), P(1 I 1001), P(1 I 0101), P(1  I 1101), 
from the upper to the lower. P(1 I 0011), P(1 I 1011), P(1 ] 0111), P(1 I 1111), which indicates 
that  the memory length larger than  three, does not provide an extra knowledge on the price 
movements. 
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pairing, which means the following identity. 

P(1 1000) -- P(1 I 100), P(1 1011) = P(1 I 111), etc. 

Those equations imply that the condition of three consecutive fall of the price is equiva- 
lent to the two consecutive falls, and the three consecutive rises is equivalent to the two 
consecutive rises. 

Figure l id  ) showing the case m -- 4, in which many lines overlap each other. For 
example, the four lines corresponding to P(1 I 0000), P(1 I 0100), P(1 I 1000), and 
P(1 [ 1100) almost overlap into a single bunch at the upper part of the figure, and another 
four lines of P(1 [ **10) making the second highest bunch, and so on. As a result, 16 
lines in Fig. 1 (d) appear to be the four thick lines due to the loss of information. Here 
we must point out that P(1 I 0000) and P(1 [ 1111) largely deviate from this rule in 
appearance, due to the fact that the four consecutive moves to the same direction such 
as 0000 or 1111 are extremely rare events thus suffered from the low statistics. 

In other words, the memory length of the price movement is found to be about  
two (or up to three) ticks roughly speaking. We have checked this fact in studying 
mutual information between the past movements and the next, which also show that the 
meaningful length of memory being about  two ticks. 

This fact indicates that only the two movements (i.e., actually moved ticks) in the 
past control the next movement of the price and the memory beyond two movements 
is irrelevant to determine the next movement. This situation reminds us various other 
examples of off-random time series, such as human-generated random series (Tanaka- 
Yamawaki (1999)) that we studies some time ago thus could be fitted by means of a 
hidden Markov model (Rabinier and Huang (1993)). 

To this end, a question arises whether there is a difference in cutting the data into 
a different size of samples. The result for the case of 500 samples of size 20,000 is shown 
in Fig. 2, which is very similar to Fig. l(a) in the outline. 

In order to make the stability more quantitatively we compute mean and standard 
deviation for each time series of conditional probability and list the result in Table 3. 
Note that mean and standard deviation for both  columns coincide very well. 

We further examine the effect of downsizing the samples. In Fig. 3 we show the 
errors as a function of the size of samples. From this we can read out that  the results are 
essentially the same as the previous cases if the sample size is not very small compared 
to 10,000. 
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Fig. 2. Conditional probabilities calculated for the case of 500 samples of size 20,000, much 
finer than the case in Fig. 1, which has almost the same as Fig. l(a) in the outline. 
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Table 3. Mean and standard deviation of conditional probabilities of binomial motions in the 
foreign exchange data for various lengths of memory (up to four ticks) are listed at two different 
ways of sampling. The data  used in this table are the first ten million data points of the ask 
position of Japanese Yen vs. U.S. Dollar in CQG (2001). The left is the case where the sampling 
size is 20,000, while the right column is 500,000. Both coincide very well. 

Memory 20,000 points * 500 (Fig. 2) 500,000 points * 20 (Fig. 1) 

depth Conditional prob. Mean SD Conditional prob. Mean SD 

P(1 0) 

P(1 1) 

P(1 00) 

P(1 01) 

P(1 10) 

P(1 11) 

P(1 000) 

P(1 001) 

P(1 1010) 

0.709454 0.031540 P(1 

0.292142 0.026769 P(1 

0.780571 0.047476 P(1 

0.321634 0.028868 P(1 

0.680840 0.032513 P(1 

0.220092 0.039745 P(1 

0.783128 0.074298 P(1 

0.354890 0.026408 P(1 

0.694159 0.032194 P(1 

0) 0.709468 0.027599 

1) 0.292127 0.022062 

00) 0.779413 0.040372 

01) 0.321320 0.024599 

10) 0.681142 0.029041 

11) 0.221170 0.031636 

ooo) 
OOl) 
010) 

0.777754 0.065382 

0.355078 0.020703 

0.694682 0.028650 

0.221135 0.027110 

0.781253 0.035437 

0.305832 0.025239 

0.652568 0.028362 

0.218003 0.053657 

P(1 

P(1 
P(1 
P(1 
P(1 

P(1 

P(1 
P(1 
P(1 
P(1 
P(1 
P(1 
P(1 
P(1 
P(1 
P(1 

P(1 
P(1 
P(1 
P(O 
P(1 

011) 0.220839 0.034717 P(1 

100) 0.781533 0.041745 P(1 

101) 0.306406 0.029698 P(1 

110) 0.652805 0.033508 P(1 

111) 0.213118 0.064068 P(1 

0000) 0.748125 0.110421 P(1 

0001) 0.368033 0.035580 P(1 

0010) 0.695044 0.037562 P(1 

0011) 0.228630 0.033577 P(1 

0100) 0.784996 0.043715 P(1 

0101) 0.307030 0.030511 P(1 

0110) 0.656575 0.033938 P(1 

0111) 0.201415 0.054516 P(1 

1000) 0.796713 0.062471 P(1 

1001) 0.351561 0.026444 P(1 

1010) 0.693953 0.031783 P(1 

1011) 0.216675 0.037123 P(1 

1100) 0.775189 0.040976 P(1 

1101) 0.305087 0.032059 P(1 

1111) 0.638904 0.038500 P(1 

1111) 0.246158 0.097646 P(1 

011) 

100) 

101) 

110) 

111) 

0000) 0.732846 0.094989 

0001) 0.368679 0.022827 

0010) 0.694816 0.032082 

0011) 0.229240 0.024018 

0100) 0.784954 0,036416 

0101) 0.306176 0.026225 

0110) 0.656526 0.028420 

0111) 0.203979 0.043949 

1000) 0.794030 0.053197 

1001) 0.351566 0.020340 

1010) 0.694742 0.028230 

1011) 0.216797 0.028588 

1100) 0.774522 0.033464 

1101) 0.305270 0.024924 

1110) 0.638109 0.027176 

1111) 0.259902 0.080375 

Finally a comment is in order. At first look, the two lines in Fig. l(a) appear 
to be dependent since the sum of the two at each moment seems to be one. This is 
caused by the fact that the total number of up motions and that of down motions are 
approximately the same in the time series we have used here. For the same reason 
Fig. l(b),  Fig. l(c), and Fig. l(d) axe approximately symmetric against the horizontal 
line of height 1/2. However we consider them independent quantities because the slight 
difference between the upper half and the lower half of the figures carries important 
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Fig. 3. Standard deviations of P(1 I 0) as a function of sample sizes. The minimum size 
required is about 5,000-10,000. 

informat ion characterizing the da ta  set. 

5. Concluding remarks 

We have s tudied tick da t a  of cur rency exchange ra te  tha t  contains over 10 million 
'ask'  quotes of U.S. Dollar vs. Japanese  Yen from Janua ry  2, 1995 to April  2001. 

First  we wrote  a p rogram tha t  ext rac ts  the  condit ional  probabili t ies of b inary  mo- 
tions by assigning the 'up'  motion to  1 and 'down'  mot ion  to 0, and neglecting unmoved 
motions and automat ica l ly  generates 2 m files corresponding to  the  condi t ional  probabil-  
ities of memory  length m. 

We found tha t  those condit ional  probabili t ies are very  stable over years,  and the 
effective length of memory  is two, roughly speaking from the separat ion of independent  
condit ional  probabilit ies.  We have also checked tha t  this process is independent  of the 
size of da t a  sampling, by showing tha t  the mean  and s t andard  deviat ion of the t ime 
series for two sizes, 20,000 and 500,000. Also the min imum sample size required for this 
analysis is 5,000-10,000, from the magni tude  of errors at each size. 
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